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1 Preface

These notes offer an elementary introduction to category theory. Why bother writing a new text when
so many exist already? Two main features distinguish this text from all others known to the author:
• The fraction of the text occupied by examples is considerably larger.
• A much larger area of mathematics is covered by examples. In particular, areas such as measure theory,
functional analysis, smooth manifolds, and partial differential equations are emphasized.

2 Notation

Bold letters N, Z, Q, R, C denote the (semi)rings of natural, integer, rational, real, and complex
numbers. Sans-serif letters like Set denote categories. Euler calligraphic letters like Mor denote functors.
Roman letters like sup denote ordinary mathematical operators.
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3 Introduction

Category theory is omnipresent in such branches of mathematics as algebraic geometry, algebraic topol-
ogy, number theory, complex geometry, logic, commutative algebra, K-theory. More recently, categories
made their way into a variety of applied areas such as condensed matter physics, signal processing, statistics,
etc.

Very roughly, categories fit into the following chain of abstractions:
• Antiquity and middle ages: numbers and figures as mathematical objects. Abstraction: some numbers
and figures need not be present in nature. Operations: addition, multiplication, division of numbers;
compass and straightedge constructions with geometric objects.
• 18th and 19th century: functions as mathematical objects axiomatizing sequences of operations men-
tioned in the previous item: polynomials, analytic functions, smooth functions, continuous functions.
Abstraction: some functions might not be specified by an explicit formula. Operations on functions:
addition, multiplication, limit, infinite sums, etc.
• Early 20th century: abstract mathematical structures axiomatizing the above operations on functions:
sets, groups, rings, fields, vector spaces, topological spaces, Banach spaces, C*-algebras, measurable
spaces, Lie groups. Abstraction: some mathematical structures might not have functions as their
elements. Operations on structures: direct sum, product, direct and inverse limits, etc.
• Middle of 20th century: categories (abstract collections of mathematical structures axiomatizing the
above operations): categories, abelian categories, toposes, regular categories, sites and Grothendieck
topologies, etc. Abstraction: some categories need not arise as categories of mathematical structures.
Operations on categories: coproducts and products, functor categories, etc.
• 21st century: higher categories (abstract collections of gadgets mentioned in the previous item): 2-
categories, model categories, ∞-categories, (∞, n)-categories, etc. Abstraction: some higher categories
need not arise from specific classes of categories. Operations: same as above (roughly, higher categories
themselves form a higher category and higher category theory can process itself).

When trying to characterize the structure of category theory and its role in mathematics, it is useful to
compare the notion of a category to that of a complex number. Both are omnipresent in mathematics: it is
hard to name an area of mathematics untouched by category theory or complex numbers. Another unifying
property of both notions is that there are relatively few deep theorems about categories or complex numbers
per se, i.e., not belonging to some other field of mathematics.†

For instance, there are many theorems in other fields of mathematics for which the notion of a complex
number is essential:
• the field of complex numbers is algebraically closed (the fundamental theorem of algebra);
• bounded entire functions on the complex plane are constant (Liouville’s theorem in complex analysis);
• a compact Kähler manifold with vanishing first Chern class has a Kähler metric with vanishing Ricci
curvature (differential geometry).

However, one cannot say that these results form a “theory of complex numbers” in the sense one normally
uses the word “theory” in mathematics.

In the same way, categories are essential components of many theorems throughout mathematics:
• Pushforward along proper morphisms of locally Noetherian schemes preserves coherent sheaves (alge-
braic geometry);
• Čech cohomology, de Rham cohomology, and singular cohomology of a smooth manifold are isomorphic
(topology);
• On a Stein manifold, the first Cousin problem is always solvable, whereas the second Cousin problem is
always solvable if and only if the second integer cohomology vanishes (complex analysis).

It is important to point out, though, that these theorems are only a tiny sample of the enormous variety
of results making use of categories, in the same way as with the three theorems using complex numbers
above.

† It is not entirely true that “pure” category theory is devoid of deep theorems. Among nontrivial results
in category theory proper one can cite the Barr–Beck monadicity theorem, the Giraud theorem, and the
Freyd–Mitchell embedding theorem.
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The analogy with complex numbers breaks down when we consider the learning aspects. Complex num-
bers can be introduced and their basic properties proven in less than an hour. In contrast, category theory
requires at least two orders of magnitude more time to get acquainted with. Acquiring a working under-
standing of category theory resembles climbing the Tibetan Plateau: one first has to expend a substantial
amount of effort simply to climb 5 kilometers (3 miles) to the top of the plateau (i.e., learn and understand
the relevant notions such as categories, functors, adjunctions, Kan extensions, etc.). After this, one still
has to spend a considerable amount of time acclimatizing to the high altitude of the plateau (i.e., the high
level of abstraction associated with the categorical language). The first few days one is guaranteed to have
altitude sickness (i.e., difficulty managing the high level of abstraction and using the associated notions and
tools), which eventually disappears once one spends a sufficient amount of time on the plateau.

Categories, functors, and natural transformations

4 Categories

Definition 4.1. A category C is a collection of the following data:
• a class† Ob(C) of objects (we write X ∈ C instead of X ∈ Ob(C);
• for any X ∈ C and Y ∈ C we have a set‡ MorC(X,Y ) of morphisms from X to Y (alias maps, arrows),

but instead of f ∈MorC(X,Y ) we write f :X → Y or X
f→ Y ;

• for any X ∈ C an identity morphism on X: idX :X → X;
• for any X,Y, Z ∈ C the composition of morphisms ◦:MorC(Y, Z) ×MorC(X,Y ) → MorC(X,Z), but
instead of ◦(g, f) we write g ◦ f or gf .
This data must satisfy the following properties:
• unitality : for any morphism f :X → Y we have idY f = f idX = f ;
• associativity : for any morphisms f :W → X, g:X → Y , h:Y → Z we have (hg)f = h(gf).

Used in 2.0*, 4.1, 4.1*, 4.2, 4.3, 4.26, 4.28, 5.1, 5.2, 6.1, 6.29, 6.30, 6.31, 6.32, 6.33, 6.34, 6.38, 7.1, 7.2, 7.4, 9.0*, 9.1, 9.2, 9.5*, 9.16, 9.36, 10.0*, 10.2, 10.5,

10.34*, 11.5, 11.19, 13.3, 13.4, 13.8, 23.6, 25.2, 26.1, 26.5*, 26.6, 26.6*, 26.7*, 27.3, 27.6, 27.7*, 30.1, 30.11*, 31.1, 31.2, 32.2, 33.2, 33.3, 33.4, 33.5.

We often write Mor instead of MorC when no ambiguity can arise. If f :X → Y is a morphism in C,
we say that X is the domain (alias source) of f and Y is the codomain (alias target) of f . We also write
X = dom f and Y = codom f .

The primordial example of a category is the category of sets :

Example 4.2. The category Set has sets as objects and Mor(X,Y ) is the set of functions from X to Y .
Composition is given by the composition of functions and idX is the identity function X → X. Used in 2.0*, 4.5,

4.15, 4.41, 5.3, 6.3, 6.5, 6.9, 6.28, 6.30, 6.31, 6.32, 6.33, 6.35, 6.36, 6.38, 6.39, 7.10, 7.12, 7.13, 7.34, 8.4, 8.6, 9.17, 10.14, 10.19, 10.22, 10.31, 10.32, 10.33,

10.34*, 11.2, 11.14, 11.17, 11.19, 12.3, 13.3, 13.6, 13.8, 14.4, 15.3, 15.5, 15.6, 16.2, 16.4, 18.3, 19.2, 20.2, 20.5, 21.2, 21.3, 21.4, 22.2, 23.7, 25.1, 25.2, 25.3,

25.4, 26.0*, 26.1, 26.2, 26.3, 26.4, 26.5, 26.5*, 26.6, 26.7, 26.7*, 27.0*, 27.1, 27.2, 27.4, 27.7, 28.1, 28.3, 29.3, 29.5, 30.6, 30.7, 30.11, 30.11*, 30.12, 31.1, 31.3,

33.3.

Example 4.3. The category Group has groups as objects and Mor(X,Y ) is the set of group homomorphisms
X → Y . Composition is given by the composition of group homomorphisms (which is again a group
homomorphism) and idX is the identity group homomorphism on a group X. Used in 4.6, 6.5, 6.9, 6.10, 6.14, 6.16, 6.36,

8.6, 8.7, 8.8, 8.9, 8.14, 11.14, 12.6, 13.5, 14.7, 15.5, 19.3, 20.3, 21.3, 22.2, 28.4, 29.5, 31.4.

Before we continue with more examples, we introduce an important construction on categories.

Definition 4.4. The full subcategory of a category C on a class of objects D ⊂ C is a category that has
D as its class of objects, whereas the sets of morphisms as well as identities and composition are inherited
from C.

Example 4.5. The category FinSet of finite sets is the full subcategory of Set on the class of finite sets. Used

in 4.15, 5.5.

† A class is like a set, except that it can be much bigger. For instance, there is a class of all sets, but
there is no set of all sets (by Russell’s paradox).
‡ Some mathematicians also allow a class here, in which case our variant is referred to as a “locally small

category”.
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Example 4.6. The category Ab of abelian groups is the full subcategory of Group on the class of abelian
groups. Used in 5.3, 5.5, 6.3, 6.5, 8.6, 8.8, 8.14, 12.5, 13.5, 13.6, 13.9, 20.3.

We now give more examples of categories from various areas of mathematics.

4.7. Algebra

Example 4.8. The category Ring of rings has (associative) rings as objects and homomorphisms of rings
as morphisms. (We require associative rings to have a unit and their homomorphisms to preserve units.) It
has a full subcategory CRing of commutative rings. The latter has a full subcategory Field of fields. Used in

4.11, 5.3, 6.5, 6.10, 6.11, 6.36, 7.49, 8.6, 8.9, 12.7, 12.8, 13.5, 19.4, 20.3, 21.3, 21.6, 26.4, 26.5, 31.4.

Example 4.9. Given a ring R, the category ModR has right R-modules as objects and R-linear homomor-
phisms of modules as morphisms. If k = R is a field, we denote this category by Vectk (vector spaces over a
field k). Likewise, we have the categories Algk (associative unital algebras over k) and LieAlgk (Lie algebras
over k). The category Algk has a full subcategory CAlgk of commutative algebras. Used in 4.9, 4.32, 5.3, 5.5, 6.5, 6.13,

6.14, 6.21, 6.24, 6.25, 6.36, 7.10, 7.11, 7.16, 7.47, 8.6, 8.8, 8.11, 9.34, 10.5, 12.5, 13.5, 13.6, 13.9, 20.3, 21.3, 25.3, 31.3, 31.4, 31.5, 32.5, 33.4.

Example 4.10. Given a group G, we define the category GSet of sets with a G-action. Its objects are pairs
(S, ρ), where S is a set and ρ:G → ΣS is a homomorphism of groups, i.e., every element of G acts via a
permutation on S. We denote g · s = ρ(g)(s). Morphisms (S, ρ)→ (S′, ρ′) are functions f :S → S′ such that
f(ρ(g)(s)) = ρ′(g)(f(s)), i.e., f commutes with the action of G: g · f(s) = f(g · s). Used in 10.34*, 10.36*.

Example 4.11. The category BoolAlg is the full subcategory of Ring on Boolean algebras : rings in which all
elements are idempotent, i.e., x2 = x. (Such rings are automatically commutative.) We will also make use
of the (nonfull) subcategory ComplBoolAlg of complete Boolean algebras and continuous homomorphisms (a
Boolean algebra A is complete if any subset of A has a supremum with respect to the order x ≤ y ≡ x = xy
and a homomorphism of Boolean algebras is continuous if it preserves these suprema). Finally the category
ComplAtomBoolAlg is the full subcategory of ComplBoolAlg consisting of complete atomic Boolean algebras
(a Boolean algebra is atomic if for any nonzero z ∈ A there is an atom a ∈ A such that a ≤ z, where a is an
atom if a 6= 0 and for any b ∈ A such that 0 ≤ b ≤ a either b = 0 or b = a). Used in 4.11, 6.39, 7.12, 7.13, 7.35, 8.16.

Example 4.12. Other algebraic structures, far too numerous to be named here, also form categories.
Morphisms are maps of underlying sets that preserve all algebraic operations. Examples include monoids,
magmas, loops, heaps, rigs, G-actions for a fixed group G, division rings, algebras over a ring R, Lie algebras
over a field k, k-vector spaces with an inner product, etc. Order-theoretic notions, such as posets, linearly
ordered sets, ordered groups, ordered fields, etc., also form categories.

4.13. Combinatorics

Example 4.14. The category Graph of (directed graphs) has graphs (i.e., pairs of functions s, t:E → V )
as objects and homomorphisms of graphs (i.e., functions v:V → V ′ and e:E → E′ such that vs = s′e and
vt = t′e) as morphisms.

Example 4.15. The category of species plays an important role in combinatorics. We will define it later
as a category of functors from FinSet× to Set.

4.16. General topology

Example 4.17. The category Top has topological spaces as objects and continuous maps as morphisms.
(The composition of continuous maps is again continuous.) The category Top∗ has pointed topological spaces
as objects and continuous maps that preserve the basepoint as morphisms. We also have the following full
subcategories of Top: Haus (Hausdorff spaces) and CompHaus (compact Hausdorff spaces). Used in 4.17, 4.39, 5.3,

6.5, 6.6, 6.16, 6.36, 7.15, 7.30, 7.31, 7.32, 7.36, 7.45, 8.13, 8.14, 9.10, 9.12, 9.15, 10.7, 10.8*, 10.11*, 10.16, 10.20, 10.21, 10.27, 10.31, 10.32, 10.33, 11.17,

12.4, 13.7, 14.5, 14.6, 15.6, 16.4, 21.4, 25.4, 30.12.

Example 4.18. The category TopGroup has topological groups as objects and continuous homomorphisms of
topological groups as morphisms. The categories of topological rings, topological fields, topological modules,
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and topological vector spaces over a topological field k (denoted TopVectk or simply TopVect if no ambi-
guity can arise) can be defined in an analogous fashion. We will also need the full subcategory HausGroup
(Hausdorff topological groups), LocCompHausGroup (locally compact Hausdorff groups), LocCompHausAb
(locally compact Hausdorff abelian groups), CompHausGroup (compact Hausdorff groups). Finally, the cat-
egory LocCompHausGroupOpen has locally compact Hausdorff topological groups as objects and continuous
open homomorphisms as morphisms. Used in 4.18, 4.22, 6.20, 6.21, 6.36, 7.16, 7.18, 7.23, 8.14, 9.32, 16.5.

Example 4.19. There are two different categories of metric spaces. The category Met1 of metric spaces
and contractive maps has metric spaces as objects and contractive maps as morphisms. (A map f :X → Y
is contractive if d(f(x), f(x′)) ≤ d(x, x′) for any points x, x′ ∈ X.) The category Met of metric spaces and
continuous maps has metric spaces as objects and continuous maps as morphisms. (Every contractive map
is continuous, but not vice versa.) These two categories have different properties and illustrate the fact that
in category theory morphisms are as important as objects. Used in 4.21, 6.5, 6.7, 6.36.

4.20. Functional analysis

The spaces below can be either real or complex, but we omit this data in the notation.

Example 4.21. Continuing the examples with metric spaces (Met1 and Met), one can define two different
categories of Banach spaces: Ban1 has Banach spaces as objects and contractive linear maps as morphisms,
whereas Ban has Banach spaces as objects and continuous linear maps as morphisms. One also has the
categories Hilb1 and Hilb for Hilbert spaces. Used in 4.22, 5.3, 6.5, 6.7, 6.18, 6.36, 6.37, 7.15, 7.22, 7.23, 7.24, 7.26, 7.27, 8.11, 9.9, 9.10,

9.21, 10.7, 10.11*, 11.19, 14.8, 21.5, 33.5.

Remark 4.22. As we will see later, the categories Ban and Hilb can be identified (in the appropriate sense)
with certain full subcategories of TopVect, the category of topological vector spaces. This is not true for
Ban1 and Hilb1: a topological vector space contains no information about norms or inner products.

Example 4.23. The theory of operator algebras delivers many examples of categories. The category BanAlg
has Banach algebras as objects and continuous homomorphisms of algebras as morphisms. The category
C∗ has C*-algebras as objects and *-homomorphisms as morphisms. The category W∗ has von Neumann
algebras (alias W*-algebras) as objects and ultraweakly continuous *-homomorphisms as morphisms. The
full subcategories CC∗ and CW∗ of commutative algebras are also important. Used in 4.26, 6.5, 6.36, 7.29, 7.30, 7.31,

7.32, 7.44, 7.45, 9.12, 9.13.

Remark 4.24. The examples given so far may create an impression that objects in a category are sets with
structures, whereas morphisms are functions that preserve these structures. (Such an approach is explained
in Chapter IV of Bourbaki’s Set Theory.) However, this is not always the case and below we define the
categories Meas, HoTop, and ΨDO∞

M , none of which can be interpreted as “sets with structures”. This
situation is analogous to the one with groups. Groups were originally defined as sets of permutations of a
fixed set S closed under composition and inverses.

4.25. Measure theory

Example 4.26. A naive approach to defining an appropriate category for measure theory would take
pairs (X,M) as objects, where X is a set and M is a σ-algebra of measurable subset of X. Morphisms
(X,M) → (X ′,M ′) would be functions f :X → X ′ such that for any m ∈ M ′ we have f−1(m) ∈ M , i.e.,
preimages of measurable sets are measurable.

The problem with this approach is that there is not enough data to formulate any nontrivial theorem of
measure theory using this category: the notion of a negligible set (alias set of measure 0) features prominently
in all main results of measure theory. Furthermore, measure theory identifies different maps that differ on
a set of measure 0, which is not reflected in the above category.

We modify our definition accordingly and define a category Meas whose objects are triples (X,M,N),
where X and M are as above and N ⊂ M is a σ-ideal of negligible sets. (A σ-ideal is a σ-algebra that is
additionally closed under passage to subsets, which reflects the fact that subsets of sets of measure 0 again
have measure 0.) We remark that the data of N encodes exactly the same data as a measure class, i.e., an
equivalence class of measures on (X,M) with respect to the following equivalence relation: µ ∼ ν if µ � ν
and ν � µ.
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Morphisms (X,M,N) → (X ′,M ′, N ′) are equivalence classes of functions f :X → X ′ such that f−1

sends elements of M ′ to M and elements of N ′ to N (the latter condition is motivated below). The
equivalence relation says that f ∼ g if {x ∈ X | f(x) 6= g(x)} ∈ N (two functions are identified if they differ
on a negligible set). In fact, to get a satisfactory theory, one must also allow functions f :X0 → X ′, where
X0 ⊂ X is a measurable subset of X with negligible complement, i.e., X \X0 ∈ N . The equivalence relation
is defined in a similar fashion, f ∼ g if X \ {x ∈ X | x ∈ dom f ∩ dom g ∧ f(x) = g(x)} ∈ N .

The operation of composition descends to equivalences classes: if f ∼ g for some

f, g: (X1,M1, N1)→ (X2,M2, N2),

then fe ∼ ge for any e: (X0,M0, N0)→ (X1,M1, N1) and hf ∼ hg for any h: (X2,M2, N2)→ (X3,M3, N3).
Indeed,

{x0 ∈ X0 | f(e(x0)) 6= g(e(x0))} = e−1{x1 ∈ X1 | f(x1) 6= g(x1)},
and we have

A = {x1 | f(x1) 6= g(x1)} ∈ N1,

so e−1(A) ∈ N0 because e−1 sends elements of N1 to N0. Likewise,

B = {x1 ∈ X1 | h(f(x1)) 6= h(g(x1))} ⊂ {x1 ∈ X1 | f(x1) 6= g(x1)} ∈ N1,

so B ∈ N1 because N1 is closed under passage to subsets. (See Definition 4.28 for an abstract formulation
of this construction.)

As a vindication of this definition, we will see later that a subcategory of Meas consisting of localizable
measurable spaces can be identified with CW∗, the category of commutative von Neumann algebras. Used in

4.24, 4.26, 4.27, 4.37, 5.3, 5.5, 6.20, 6.39, 7.33*, 7.34, 7.35, 7.36, 7.38, 7.38*, 7.39, 7.42, 7.43, 7.45, 8.16, 9.17, 10.7, 11.20*.

Remark 4.27. All previous categories have the following pattern: objects are sets equipped with additional
structure, morphisms are functions that preserve this structure. The category Meas is not of this type because
we identified functions that differ on a set of measure 0. In particular, one can prove that given a morphism in
Meas, there is no way to choose a representative function in such a way that these choices respect composition
(i.e., the composition of two representatives is again a representative). In other words, there no reasonable
notion of an “underlying set” in Meas.

The above quotient construction occurs often enough to deserve a precise formalization.

Definition 4.28. A congruence R on a category C is an equivalence relation RX,Y on Mor(X,Y ) for any
pair of objects X,Y ∈ C that satisfies the following compatibility condition: for any objects X,Y, Z ∈ C,
morphisms f, f ′:X → Y , g, g′:Y → Z, if f ∼ f ′ and g ∼ g′, then also gf ∼ g′f ′. The quotient category C/R
has the same objects as C, whereas morphisms fromX to Y are elements of the quotient setMor(X,Y )/RX,Y .
Used in 4.26, 4.37.

4.29. Differential geometry

Example 4.30. The category Man has smooth manifolds as objects and smooth maps as morphisms.
(Smooth means infinitely differentiable. A smooth manifold can be defined as a subset of Rn that is locally
diffeomorphic to some coordinate inclusion Rk → Rn.) Analysts like to work with a full subcategory of this
category consisting of open subsets of Rn for all n ≥ 0. Used in 4.33, 5.3, 6.23, 6.24, 6.25, 6.36.

Example 4.31. The category LieGroup has Lie groups as objects and smooth homomorphisms of groups as
morphisms. Used in 6.25, 6.36, 9.34.

Example 4.32. Given a smooth manifold M , the category VBunM has vector bundles over M as objects
and smooth linear maps of vector bundles as morphisms. As we will see later, this category can be identified
with a certain subcategory of ModC∞(M), where C∞(M) denotes the algebra of smooth functions on M .
Analysts like to work with a full subcategory of this category consisting of trivial vector bundles, whose
objects are Rn and morphisms Rn → Rn′

are smooth functions M → Hom(Rn,Rn′
). Used in 4.32, 4.33, 4.35, 6.23,

6.24, 6.25, 6.36, 16.5.

Example 4.33. The category VBun (here we do not fix a manifold) has pairs (M,V ) (M ∈ Man and
V ∈ VBunM ) as objects and pairs (f, g): (M,V )→ (M ′, V ′) (f :M →M ′ and g:M → f∗M ′) as morphisms.
Composition is defined as (f ′, g′) ◦ (f, g) = (f ′ ◦ f, f∗g′ ◦ g).
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4.34. Partial differential equations

Example 4.35. Given a smooth manifold M , the category DOM has vector bundles over M as objects and
differential operators as morphisms. Specifically, a morphism V → V ′ is a linear map of real vector spaces
T : C∞(V )→ C∞(V ′) that preserves support: for any f ∈ C∞(V ) we have suppT (f) ⊂ supp f , where supp g
is the closure of the set {m ∈ M | g(m) 6= 0}. Equivalently, we can say that the Schwartz kernel of T is
supported on the diagonal of M ×M . By Peetre’s theorem this definition is equivalent to the coordinate
definition that defines differential operators using local coordinate expressions of the form

∑
k ak∂

kf , where
the sum is finite, k is a multi-index, ak is a smooth function on M , and ∂kf denotes the partial derivative
of f corresponding to the multi-index k. Used in 4.35, 5.3.

Example 4.36. Given a smooth manifold M , the category ΨDOps
M has vector bundles over M as objects

and properly supported pseudodifferential operators as morphisms. Specifically, a morphism V → V ′ is a
linear map of real vector spaces T : C∞

cs (V ) → C∞
cs (V

′) (C∞
cs denotes smooth compactly supported sections)

whose Schwartz kernel is properly supported and is a conormal distribution on M ×M with respect to its
diagonal. Used in 4.36, 16.5.

Example 4.37. Another important category ΨDO∞
M is obtained from vector bundles on M and pseudod-

ifferential operators between them using the quotient construction of Definition 4.28 that we already used
to define Meas: we declare two pseudodifferential operators equivalent if their difference is a smoothing
operator (i.e., its Schwartz kernel is a smooth function on M ×M). One can verify that composition of such
equivalence classes form a sheaf on M (i.e., satisfy a gluing property) and their composition can be defined
without the proper support condition. (Smoothing operators composed on either side with a pseudodiffer-
ential operator give a smoothing operator.) Thus we indeed get a category. This category is important in
the calculus of pseudodifferential operators. For instance, elliptic differential operators become isomorphisms
(defined below) in this category, and their inverse is known as a parametrix. Used in 4.24, 5.3.

4.38. Homotopy theory

Example 4.39. In homotopy theory and algebraic topology a key role is played by the homotopy category
of topological spaces, sometime denoted HoTop. It is formed from Top by identifying homotopic continuous
maps: two continuous maps f, g:X → Y of topological spaces are homotopic if there is a homotopy between
them, i.e., a continuous map h:X × [0, 1] → Y whose restrictions to X × {0} and X × {1} are f and g
respectively. (Strictly speaking, the category that is actually used in homotopy theory is the full subcategory
of HoTop consisting of CW-complexes, but we ignore such details for now.) Used in 4.24, 4.39, 5.3, 6.6, 6.40.

4.40. Sheaf theory

Example 4.41. In set theory, categories of presheaves and sheaves (to be defined below), allow one to
prove the independence of the continuum hypothesis and the axiom of choice from the Zermelo–Fraenkel
axioms. Roughly speaking, some of these categories behave like the category Set, except that the continuum
hypothesis or the axiom of choice fails in them.

Example 4.42. Presheaves and sheaves also play a very important role in complex analysis and algebraic
geometry, for instance, they are used to define sheaf cohomology, which is one of the most important invariants
of complex manifolds and algebraic varieties.

4.43. Algebraic geometry

Example 4.44. Fix an algebraically closed field k. The category AffVark has affine algebraic varieties
over k (i.e., subsets of kn defined by polynomial equations with coefficients in k) as objects and regular maps
(restrictions of polynomial maps km → kn) as morphisms. Used in 7.47, 7.48, 7.48*, 32.5.
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5 Isomorphisms

Any set with one element can be turned into a group in the obvious fashion. Different sets with one
element (e.g., {∅}, {{∅}}, {{∅, {∅}}}, etc.) give rise to groups (e.g., G1, G2, G3 for the above sets) that from
a formal viewpoint are different groups: G1 6= G2, G2 6= G3, etc. However, in group theory we perceive
these groups as the “same” group: even though they are not equal groups, they are isomorphic groups. The
situation in other categories is entirely analagous, and the notion of an isomorphism in a category generalizes
the notion of an isomorphism in a group.

Definition 5.1. A morphism f :X → Y in some category C is an isomorphism if there is a morphism
g:Y → X (typically denoted f−1) such that gf = idX and fg = idY .

Remark 5.2. The morphism f−1 = g defined above is unique. Indeed, if some g′ has the same property,
then g′ = idX g′ = (gf)g′ = gfg′ = g(fg′) = g idY = g.

Examples 5.3. We list several categories and describe isomorphisms in them.
• Set: bijections (alias one-to-one and onto functions);
• Ab, Ring, ModR, and other categories algebraic of algebraic structures: isomorphisms;
• Top: homemorphisms;
• HoTop: homotopy equivalences of topological spaces;
• Man: diffeomorphisms;
• Ban1: isometric isomorphisms of Banach spaces;
• Ban: linear homeomorphisms of Banach spaces (not necessarily norm-preserving);
• DOM : zeroth order differential operators given by multiplication by a smooth nonvanishing function;
• ΨDO∞

M : a large class that contains all elliptic differential (and pseudodifferential) operators;
• Meas: an isomorphisms of the underlying sets with σ-algebras and σ-ideals, after possibly removing
negligible sets from source and target (e.g., R and R \ {0, 1, 2} are isomorphic, if we use Lebesgue
structures).

Definition 5.4. An endomorphism is a morphism whose source and target are the same. An automorphism
is an endomorphism that is also an isomorphism. Given an object X in a category C, the group of automor-
phisms of X is the set of all automorphisms of X equipped with the operation of composition and is denoted
by AutC(X) or simply Aut(X) if C is clear from the context. Used in 5.4, 5.5, 5.9, 5.10, 5.12, 9.7.

Examples 5.5.
• X ∈ FinSet (finite sets): Aut(X) is the symmetric group on X;
• X = Zn ∈ Ab (lattices): Aut(X) = Z/2 × SLn(Z) is (up to the factor Z/2) the unimodular group of
degree n;
• X = kn ∈ Vectk: Aut(X) = GL(kn) = GL(n, k) is the general linear group of degree n over a field k;
• X ∈ Meas: Aut(X), the group of measurable automorphisms, plays an important role in ergodic theory.

Used in 5.5.

5.6. Groupoids

Definition 5.7. A groupoid is a category in which all morphisms are isomorphisms.

Example 5.8. The fundamental groupoid π≤1(X) of a topological space X is defined as follows. Objects
are points of X. Morphisms x → y are equivalences classes of continuous maps f : [0, 1] → X such that
f(0) = x and f(1) = y modulo the equivalence relation of relative homotopy : f ∼ g if there is a continuous
map h: [0, 1]× [0, 1]→ X such that h|0×[0,1] = f , h|1×[0,1] = g, h|[0,1]×0 = x̂, and h|[0,1]×1 = ŷ. Here x̂ and ŷ
denote the constant maps [0, 1]→ X with values x and y respectively. Composition is defined by composing
the underlying representative functions f : [0, 1]→ X and g: [0, 1]→ X as follows:

gf =

{
f(2t) 0 ≤ t ≤ 1/2
g(2t− 1) 1/2 ≤ t ≤ 1.

One checks that this operation respects the above equivalence relation, which gives a well-defined composi-
tion. The identity morphism x → x is the equivalence class of the constant map [0, 1] → X with value x.

9



The category that we just defined is a groupoid: the inverse can be defined on a representative function
f : [0, 1]→ X as g: [0, 1]→ X, g(t) = f(1− t). Used in 5.9, 10.31, 10.32, 10.33, 10.33*, 10.34*.

Example 5.9. Consider a topological space X with a point x ∈ X. The group Autπ≤1(X)(x) is denoted
π1(X,x) and is referred to as the fundamental group of the pointed space (X,x). It is an important in-
variant in topology. A different choice x′ of a basepoint yields a noncanonically isomorphic fundamental
group π1(X,x′). More precisely, a morphism f :x → x′ (i.e., an homotopy class of paths) in π≤1(X) gives
rise to an isomorphism π1(X,x)→ π1(X,x′) (namely, p 7→ fpf−1, where the right side uses composition in
π≤1(X)), and different morphisms x→ x′ can give different morphisms of groups. Used in 5.9, 6.16, 10.34*.

Example 5.10. The (absolute) Galois groupoid Gal(k) of a field k has as objects algebraically closed (or
separably closed if char k 6= 0) extensions L/k, whereas morphisms are isomorphisms L → L′ of extensions
over k (i.e., the action on k is identity). The automorphism group AutGal(k)(L/k) of some algebraic closure L
of k is known as the (absolute) Galois group of k. A different choice of L/k yields a noncanonically isomorphic
Galois group. More precisely, isomorphisms L → L′ produce isomorphisms Gal(L/k) → Gal(L′/k), and
different isomorphisms can produce different isomorphisms of groups. Used in 5.10.

Remark 5.11. The above examples of fundamental groupoids and Galois groupoids seem to be analogous.
Indeed, both groupoids can be defined using the same construction: the fundamental groupoid of a topos.
For topological spaces one takes the topos of sheaves, whereas for fields one takes the etale topos.

Remark 5.12. The above arguments can be generalized to show that in any groupoid G an isomorphism
X → X ′ induces a homomorphism of groups AutG(X)→ AutG(X

′).

6 Functors

In the previous section we gave many examples of categories in different areas of mathematics. One
glaring omission from this list is category theory itself. Morphisms between categories are known as functors.

Definition 6.1. A functor F:C→ D from a category C to a category D is given by the following data:

• a function Ob(F):Ob(C)→ Ob(D) that sends objects of C to objects of D;

• for any object X,Y ∈ C we have a function MorF(X,Y ):MorC(X,Y ) → MorD(F(X), F(Y )), i.e., F
maps a morphism f :X → Y to a morphism F(f): F(X)→ F(Y ).

This data must satisfy the following properties:

• for any morphisms f :X → Y and g:Y → Z in the category C we have F(g ◦ f) = F(g) ◦ F(f), i.e., F
preserves composition;

• for any object X ∈ C we have F(idX) = idF(X), i.e., F preserves identity morphisms.

Remark 6.2. Thus, to define a functor F:C→ D one must specify an object F(X) ∈ D for any object X ∈ C,
a morphism F(f): F(X)→ F(Y ) of D for any morphism f :X → Y in C such that the operation of composition
and identity morphisms are preserved.

Example 6.3. Forgetful functors are one of the easiest functors to define. For instance, the forgetful functor
Ab→ Set is defined as follows. We send an abelian group A to its underlying set with the algebraic operations
discarded. A homomorphism of abelian groups X → Y is a function between the underlying sets, hence
already a morphism of sets. The forgetful functor preserves compositions because morphisms of abelian
groups are composed by composing their underlying functions. The identity morphism is preserved for the
same reason.

Remark 6.4. Although one can give rigorous definitions of the adjective “forgetful”, typically this term is
used in an informal manner, with somewhat imprecise corner cases.

Example 6.5. In an entirely analogous fashion we have forgetful functors Group → Set, Ring → Set,
Top→ Set, Ban→ Set, Ban1 → Set, etc. Somewhat less obviously one also has forgetful functors Vectk → Ab,
Ring → Ab, Ban → Met, Ban1 → Met1 (but not Ban → Met1), W

∗ → C∗, CW∗ → CC∗. For instance,
any vector space has an underlying abelian group, and linear maps of vector spaces are maps of abelian
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groups with additional properties (namely, preservation of multiplication), hence we have a forgetful functor
Vectk → Ab.

Example 6.6. By definition of HoTop we have a functor Top→ HoTop. Applying this functor can be seen
as discarding the nontopological information.

Example 6.7. We have the obvious inclusion functors (another informal term) Met1 → Met, Ban1 → Ban.

6.8. Algebra

Example 6.9. The free group functor FreeGroup: Set→ Group sends a set S to the free group FreeGroup(S)
on the generating set S. A function f :X → Y is sent to the (unique) homomorphism of free groups
FreeGroup(f): FreeGroup(X)→ FreeGroup(Y ) that sends elements of X ⊂ FreeGroup(X) to their images in
Y ⊂ FreeGroup(Y ) via f . (Here we used the universal property of free groups to extend the above map to
a homomorphism of groups.) Used in 6.9.

Example 6.10. The group of units functor −×:Ring→ Group sends a ring R to its group R× of invertible
elements, i.e., elements x ∈ R for which there is y ∈ R such that 1 = xy = yx. Any homomorphism of rings
R→ S preserves invertible elements and therefore induces a homomorphism of groups U(R)→ U(S).

Example 6.11. The polynomial ring functor −[x]:Ring → Ring sends a ring R to the ring R[x] of poly-
nomials in a single variable x with coefficients in R. A homomorphism of rings R → S is sent to the
homomorphism of rings R[x]→ S[x] given by applying it to each coefficient.

Nonexample 6.12. The group center construction sends a group G to its center Z(G) defined as {g ∈ G |
∀x ∈ G: gx = xg}. A homomorphism of groups G → H does not restrict to a homomorphism of groups
Z(G) → Z(H). For instance, take G = Z/2, H = Σ3, and G → H sends the nontrivial element of Z/2
to a permutation in Σ3 that permutes two of the elements and leaves the third one untouched. We have
Z(Z/2) = Z/2, but Z(Σ3) = {1}.

Example 6.13. The exterior algebra functor Λ:Vectk → Algk sends a k-vector space V to its exterior
algebra ΛV and a linear map V →W to the induced homomorphism of algebras ΛV → ΛW .

Example 6.14. Fix a field k. The group algebra functor k[−]:Group → Algk sends a group G to its
group algebra k[G] and a homomorphism of groups G → H to the induced homomorphism of algebras
k[G] → k[H]. The group of units functor −×:Algk → Group sends a k-algebra A to the group of its units
(invertible elements) A×, with the induced multiplication.

6.15. Topology

Example 6.16. The fundamental group functor Top∗ → Group was defined in Example 5.9.

6.17. Measure theory

Example 6.18. The functor L1: LocMeas → Ban1 sends a localizable measurable space (X,M,N) to the
Banach space of finite measures on (X,M,N), defined as the Banach space of countably additive maps
µ:M → C whose restriction on N vanishes. (The norm of µ is |µ|(X) = sup|f |≤1

∫
f dµ.) A morphism

f : (X,M,N)→ (X ′,M ′, N ′) maps a finite measure µ on (X,M,N) to the finite measure f∗µ on (X ′,M ′, N ′)
that sends m′ ∈M ′ to µ(f−1(m′)). Used in 6.19, 7.44.

Remark 6.19. More traditionally, one could define L1(X,M,µ), where X is a set, M is a σ-algebra of subset
of X, and µ is a finite measure on (X,M), i.e., a countably additive map M → C, as the Banach space of
equivalence classes of measurable functions f such that

∫
|f | dµ exists and is finite. Equivalences classes are

taken with respect to the σ-ideal N = {m ∈ M | µ(m) = 0}. Assume that (X,M,N) is localizable. We
have an isomorphism L1(X,M,µ)→ L1(X,M,N) that sends f 7→ f · µ, where (f · µ)(m) =

∫
m
f dµ. Thus,

as long as two different measures µ and µ′ have the same σ-ideal N of sets of measure 0, the Banach spaces
L1(X,M,µ) and L1(X,M,µ′) are isometrically isomorphic. (This also follows directly from the Radon–
Nikodym theorem, which holds for localizable measurable spaces.)

Example 6.20. The Haar measurable space functor HaarMeas: LocCompHausGroupOpen → Meas sends a
locally compact Hausdorff topological group G to a measurable space (X,M,N), where X is the underlying
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set of G, N is the σ-ideal of sets of measure 0 with respect to some (hence all) left (or right) Haar measure
on G, and M is the σ-algebra generated by N and open sets. (A left Haar measure is a left-invariant Radon
measure on G, or, equivalently, a left-invariant continuous functional on the space of compactly supported
continuous functions on G equipped with the topology of uniform convergence on compact subsets.) An
open continuous homomorphism of locally compact groups is sent to the equivalence class of its underlying
function. (Negligible sets are preserved under preimages of open maps.)

Example 6.21. The functor MeasConv: LocCompHausGroup → AlgR sends a locally compact Hausdorff
topological group G to the real algebra of bounded measures on G, with the product of µ and ν given by
the convolution µ ∗ ν of measures. A continuous homomorphism of groups f :G → H is mapped to the
homomorphism of real algebras MeasConv(G)→MeasConv(H) that sends a bounded measure µ on G to
its pushforward f∗µ along f , defined as (f∗µ)(E) = µ(f−1(E)) for any open set E in H. Used in 6.21, 7.16.

6.22. Smooth manifolds and Lie groups

Example 6.23. The functor T :Man→ VBun sends a smooth manifold M to its tangent bundle TM and a
smooth map f :X → Y to the induced tangent map TM → TN .

Example 6.24. Given a manifold M ∈ Man with a basepoint ∗ ∈M , we define a functor fiber:VBunM →
Vectk by sending a vector bundle over M to its fiber over ∗ ∈ M and a morphism of vector bundles to the
induced morphism of fibers.

Example 6.25. The functor LieGroup→ VectR is defined as the composition LieGroup→ Man→ VBun→
Vectk, where the first functor is the forgetful functor, the second functor is the tangent functor T , and the
third functor is the fiber functor with respect to the identity element of the Lie group. As shown in any
book on Lie groups, this functor factors as the composition LieGroup→ LieAlgR → VectR, where the second
functor is the forgetful functor.

6.26. Category theory

Recall that not every class is a set. For instance, by Russell’s paradox, the class of all sets is not a set.

Definition 6.27. A category C is small if the class of its objects is a set.

Example 6.28. The category Set is not a small category. The full subcategory of Set on objects that are
subsets of some fixed set X is a small category.

Definition 6.29. The category Cat of small categories has small categories as objects and functors as
morphisms. Composition of morphisms G:D→ E and F:C→ D is given by the composition of functors : the
functor G ◦ F sends an object X ∈ C to the object G(F(X)) ∈ E and a morphism f :X → Y in C to the
morphism G(F(f)):G(F(X))→ G(F(Y )) in E. The identity morphism on C is the identity functor idC:C→ C
such that idC(X) = X and idC(f) = f . Used in 6.31, 6.32, 7.3, 9.0*, 9.36.

Remark 6.30. The above definition restricts to small categories because functors between small categories
form a set (as opposed to a mere class) and we require a set (not a class) of morphisms between any pair of
objects. There is no category of categories because functors (say) Set → Set form a class that is not a set:
this class contains constant functors, i.e., functors Set → Set that send any object X ∈ Set to some fixed
set A and any morphism f in Set to idA. Thus there are as many constant functors as there are sets, so in
particular the class of functors Set→ Set contains a subclass isomorphic to the class of all sets, and therefore
cannot be a set by Russell’s paradox. This problem is easily circumvented by introducing conglomerates,
which are collections that can contain classes (and not just sets) as elements. This yields a “huge” category
CAT of categories. Used in 7.4, 7.5, 9.0*.

Definition 6.31. The functor Ob:Cat → Set sends a category C to its set of objects and a functor to its
underlying function on objects.

Definition 6.32. The functor π0:Cat→ Set sends a category C to the set Ob(C)/∼, where ∼ denotes the
equivalence relation of isomorphism of objects. Used in 9.0*, 9.1, 9.4, 9.5*, 9.7, 10.36, 10.36*.

Definition 6.33. Given a category C, the functor MorC:C
op × C→ Set (see Definition 7.1 for a definition

of Cop) sends a pair of objects (X,Y ) in C to the set MorC(X,Y ). Morphisms (X,Y )→ (X ′, Y ′) are pairs of
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functions f :X ′ → X and g:Y → Y ′, which are sent to the induced function MorC(X,Y )→MorC(X
′, Y ′).

(In the above × denotes the product of categories C and Cop, a construction that will be explained below.)

Many examples of categories given above have “sets with structures” as objects and “functions that
preserve the structure” as morphisms, e.g., groups and group homomorphisms, topological spaces and con-
tinuous maps, smooth manifolds and smooth maps, etc. We do not give a definition of a “structure” here,
but see Chapter IV of Bourbaki’s Theory of Sets for one possible definition. We can, however, rather easily
formalize such types of categories as concrete categories.

Definition 6.34. A functor F:C → D is faithful if for any pair of object X,Y ∈ C the induced function
MorC(X,Y )→MorD(F(X), F(Y )) is injective.

In other words, F is faithful if F(f) = F(g) implies f = g for any pair of morphisms f, g:X → Y .

Definition 6.35. A concrete category is a pair (C, U), where C is a category and U :C → Set is a faithful
functor. A category C is concretizable if there is U such that (C, U) is a concrete category.

Examples 6.36. The following categories are concrete for the obvious choice of the functor U , the underlying
set functor:

• Set;
• Group, Ring, Vectk, any other category of algebraic objects;

• Met, Met1;
• Top, TopGroup, TopVectk;
• Ban, Ban1, C

∗, W∗;

• Man, LieGroup, VBun.

Example 6.37. A given category C can admit many different functors U that make it concrete. For instance,
for Ban1 apart from the underlying set functor we can take the functor U(X) = {x ∈ X | ‖x‖ ≤ 1}.

Example 6.38. We show that Setop (see Definition 7.1 below) is concrete by defining a faithful functor
U : Setop → Set. Set U(X) = 2X , the set of all subsets of X. For a morphism q:X → Y in Setop (i.e.,
a function f :Y → X), we have to define a function U(q):U(X) → U(Y ), i.e., a function 2X → 2Y . We
take f−1, the function that sends a subset A ⊂ X to its preimage f−1(A) = {y ∈ Y | g(y) ∈ A}. We
have id−1

X (A) = A and (f2f1)
−1(A) = f−1

1 (f−1
2 (A)) (the order of f1 and f2 is reversed because of the

contravariance). Thus we indeed have defined a functor U : Setop → Set. If for any set A ⊂ X we have
f−1(A) = g−1(A) for two functions f :Y → X and g:Y → X, then f = g, so the functor is faithful. This
proves that Setop is concrete.

Example 6.39. We could try to turn the category Meas into a concrete category in the most naive way.
Assign to a measurable space (X,M,N) the set X and to a morphism of measurable spaces (X,M,N) →
(X ′,M ′, N ′) coming from some function f :X → X ′ this function f . This does not give us a functor Meas→
Set for the very simple reason: a morphism (X,M,N) → (X ′,M ′, N ′) is an equivalence class containing
many different functions, and it is unclear which one we should take so that composition is respected.
The concreteness of Meas can be established by virtue of a faithful functor MeasAlg:Measop → BoolAlg
constructed in Example 7.35 and the fact that BoolAlg (and hence BoolAlgop) is concrete.

Example 6.40. A theorem of Freyd says that HoTop is not concretizable.
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7 Contravariance and duality

The following construction, despite its apparent simplicity, plays a very important role in category
theory.

Definition 7.1. Given a category C its opposite category Cop has the same objects as C and MorCop(X,Y ) =
MorC(Y,X). Composition is the map

MorCop(Y, Z)×MorCop(X,Y ) = MorC(Z, Y )×MorC(Y,X)
∼= MorC(Y,X)×MorC(Z, Y )→MorC(Z,X) = MorCop(X,Z).

Used in 6.33, 6.38.

Definition 7.2. Given a functor F:C→ D, its opposite functor Fop:Cop → Dop has the same object function
Ob(Fop):Ob(Cop) → Ob(Dop) as F, using Ob(Cop) = Ob(C) and Ob(Dop) = Ob(D), so Ob(Fop) = Ob(F)
makes sense. The morphism function F

op
X,X′ :MorCop(X,X ′) → MorDop(Y, Y ′) is the same function as

FX′,X :MorC(X
′, X)→MorD(Y

′, Y ).

The above two definitions combine together in a single functor.

Definition 7.3. The functor op:Cat→ Cat sends a category C to the category Cop and a functor F:C→ D
to the functor Fop:Cop → Dop. Used in 6.33, 6.38, 6.39, 7.1, 7.2, 7.3, 7.4, 7.5, 7.5*, 7.6, 7.7, 7.10, 7.11, 7.12, 7.13, 7.15, 7.16, 7.18, 7.23, 7.24,

7.26, 7.30, 7.31, 7.35, 7.44, 7.45, 7.47, 7.48, 7.48*, 7.49, 8.2, 8.16, 9.9, 9.10, 9.12, 9.13, 9.32, 10.5, 10.7, 10.14, 10.19, 10.22, 12.1, 14.0*, 17.4, 20.3*, 25.1,

25.2, 25.4, 26.0*, 26.1, 26.2, 26.3, 26.4, 26.5, 26.5*, 26.6, 26.7, 26.7*, 27.0*, 27.1, 27.2, 27.4, 27.7, 29.2, 30.6, 30.7, 30.10*, 30.11, 30.11*, 30.12, 31.1, 32.5.

Remark 7.4. We have op ◦ op = idCAT.

Remark 7.5. Abusing the language, we may also talk about a “functor” op:CAT → CAT defined in the
same way. (It is a “functor” and not a functor because CAT is a “category” and not a category.) However,
Cop and Fop always make sense for an individual category C or a functor F.

Recall that an object X ∈ C can be identified with a functor X: 1 → C, where 1 denotes any category
with one object and one morphism. If 1 is such a category, then so is 1op. In particular, Xop: 1op → Cop

itself specifies an object in Cop, which we again denote by Xop. We have (Xop)op = X.
Likewise, a morphism f :X → Y in C can be identified with a functor f : 2 → C, where 2 denotes any

category with two objects and a single nonidentity morphism, which goes from one object to the other. If 2
is such a category, then so is 2op. In particular, fop: 2op → Cop itself specifies a morphism in Cop, which we
again denote by fop. We have (fop)op = f .

Below we will see many examples when some category C is equivalent (term defined below) to the
opposite category of some other category D. Such an equivalence is implemented by a contravariant functor.

Definition 7.6. A contravariant functor from C to D is a functor Cop → D, or, equivalently, C→ Dop.

Remark 7.7. One way to see the equivalence between functors F′:Cop → D and F′′:C→ Dop is to expand the
definition: a contravariant functor F from C to D assigns to every object X ∈ C an object F(X) = F′(Xop) =
(F′′(X))op ∈ D and to every morphism f :X → Y in C a morphism F(f) = F′(fop) = (F′′(f))op: F(Y )→ F(X)
in D. Composition and identity morphisms must be respected.

Remark 7.8. Of course, contravariant functors are just a particular case of the general notion of functor
(sometimes referred to as a covariant functor). The justification for introducing this new bit of terminology
is that many functors naturally arise as contravariant functors, i.e., their domain or codomain is the opposite
category of some previously defined category.

We now give several examples of contravariant functors.

7.9. Algebra

Example 7.10. The functor OSet: Set
op → AlgR sends a set S to the real algebra of functions on S and a

function f :S → T to the homomorphism of real algebras given by precomposition with f , i.e., S → T → R.

Example 7.11. Fix a field k. The dual vector space functor DVS:Vectopk → Vectk sends a vector space V
to V ∗: = Hom(V, k) and a linear map V → V ′ to the induced map Hom(V ′, k)→ Hom(V, k). Used in 10.5.
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Example 7.12. The functor 2−: Setop → ComplAtomBoolAlg sends a set S to the complete atomic Boolean
algebra 2S of functions S → 2 = {0, 1} (equivalently, the complete atomic Boolean algebra of subsets of S)
and a function f :S → T to the homomorphism of complete atomic Boolean algebras f−1: 2T → 2S .

Example 7.13. The functor SpecAtom:ComplAtomBoolAlgop → Set sends a complete atomic Boolean
algebra A to its set of atoms (which can be defined as morphisms A→ 2) and a continuous homomorphism
B → A to the induced function given by the composition B → A→ 2.

7.14. General topology

Example 7.15. The functor OBan:Top
op → BanR sends a topological space X to the Banach space of

bounded continuous functions X → R with the pointwise operations. A continuous map X → Y is mapped
to the contractive linear map of Banach spaces OBan(Y )→ OBan(X) given by the compositionX → Y → R.
Used in 7.15, 10.7, 10.11*.

Example 7.16. The functor OConv:CompHausGroupop → AlgR sends a compact Hausdorff topological
group G to the real algebra of continuous functions on G, with the multiplication given by the convolution of
functions with respect to the unique Haar measure µ on G such that µ(G) = 1. A continuous homomorphism
of groups f :G→ H is mapped to the homomorphism of real algebras OConv(H)→ OConv(G) that sends a
function p on H to its pullback f∗p along f , defined as f∗p = p ◦ f . This example should be contrasted with
the covariant functor of Example 6.21, which was defined on measures instead of functions. This distinction
is essential: we can pushforward measures and pullback functions, but not vice versa. Measures cannot be
pulled back unless we have additional data (such as a relative measure on f). The pushforward of a function
can be defined as a measure, which need not be a function, e.g., it can be the Dirac δ-measure. Used in 7.16.

7.17. Topological algebra

Example 7.18. The functor PD: LocCompHausAbop → LocCompHausAb sends a locally compact Hausdorff
abelian topological group G to the topological group Hom(G,U(1)), whose elements are continuous homo-
morphisms G→ U(1), equipped with the compact-open topology (whose subbasis consists of functions that
map a given compact subset K ⊂ G to a given open subset V ⊂ U(1). A continuous homomorphism of
group G→ G′ induces a continuous homomorphism Hom(G′,U(1))→ Hom(G,U(1)). Used in 9.32.

7.19. Banach spaces

We give some examples related to the Hahn–Banach theorem. We start by defining one of the categories
involved. Everything below can be done either for real or complex spaces.

Definition 7.20. The category Ball has unit balls as objects, defined as pairs (V,B) consisting of a Hausdorff
locally convex topological vector space V and a Hausdorff topological subspace B ⊂ V such that B is balanced
(i.e., 0 ∈ B and for any x ∈ B and number t such that |t| ≤ 1 we have tx ∈ B), and B is convex (i.e., for
any x, y ∈ B and real numbers r ≥ 0 and s ≥ 0 such that r + s ≤ 1 we have rx + sy ∈ B). Morphisms
(V,B) → (V ′, B′) are continuous linear maps V → V ′ that send B to B′. The category Ball is also known
as the category of Saks spaces. Used in 7.20, 7.21, 7.22.

Definition 7.21. CompBall is the full subcategory of Ball consisting of balls (V,B) such that B is compact.
It is also known as the category of Waelbroeck spaces. Used in 7.24, 7.26, 7.27, 9.9, 9.10, 10.11*.

Example 7.22. We have a functor Ban1 → Ball that sends a Banach space X to the (typically noncompact)
unit ball (X,X≤1), whereX≤1 denotes the subset ofX consisting of elements of norm at most 1. A contractive
map X → X ′ of Banach spaces is sent to the induced map (X,X≤1)→ (X ′, X ′

≤1), the contractivity property
guaranteeing that the unit ball is preserved.

Example 7.23. We have functors DBS:Banop1 → Ban1 and DTVS:Banop1 → TopVect. Given some X ∈
Banop1 , the Banach space DBS(X) is the Banach space of bounded linear functionals on X equipped with
the induced Banach norm, whereas DTVS(X) is the Hausdorff locally convex topological vector space of
bounded linear functionals on X equipped with the weak-* topology induced by X. Both functors are
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typically denoted X 7→ X∗, and the ambiguity must be resolved from the context. On morphisms both
functors are defined using precomposition, as usual. Used in 7.23.

Example 7.24. The dual unit ball functor DUB:Banop1 → CompBall is defined as follows. Given a Banach
space X consider the vector space X∗ of continuous linear functionals on X equipped with the weak-*
topology, i.e., the coarsest topology in which every function on X∗ given by evaluation on some fixed element
x ∈ X is continuous. We define DUB(X) = (X∗, X∗

≤1), where X∗
≤1 denotes the set of functionals of norm

at most 1. A continuous linear map X → Y of Banach spaces induces a continuous linear map Y ∗ → X∗,
which restricts to Y ∗

≤1 → X∗
≤1. Used in 7.24, 7.25, 7.27, 9.0*, 9.9, 10.11*.

Remark 7.25. The traditional Hahn–Banach theorem can be interpreted as saying that an inclusion A ⊂ B
of Banach spaces is sent by the functor DUB to a surjective map of unit balls.

Example 7.26. The functor OBall:CompBallop → Ban1 is defined as follows. A unit ball (V,B) is sent to
the Banach space of linear functionals f on V . The norm of a functional is defined as the supremum of its
absolute value on B. A morphism (V,B)→ (V ′, B′) induces a contractive map from linear functionals on V ′

to linear functionals on V given by the composition V → V ′ → C. Used in 7.27, 9.0*, 9.9.

Remark 7.27. Below we will see that DUB and OBall are mutually inverse to each other in the appropriate
sense and identify (in the appropriate sense) Ban1 and CompBall. This is a strengthening of the traditional
Hahn–Banach theorem.

7.28. Operator algebras

We now define the two functors that together form the famous Gelfand duality for commutative C*-
algebras and compact Hausdorff spaces.

Definition 7.29. The category C∗ of C*-algebras is defined as follows. Its objects are C*-algebras, i.e.,
complex algebras A equipped with an involution (i.e., a morphism of abelian groups ∗:A → A such that
a∗∗ = a, 1∗ = 1, (ab)∗ = b∗a∗, and (λa)∗ = λ̄a∗ for any λ ∈ C) and a norm that is compatible with the
involution and multiplication (i.e., ‖1‖ = 1, ‖ab‖ ≤ ‖a‖ · ‖b‖, ‖a∗a‖ = ‖a∗‖ · ‖a‖) such that the underlying
normed vector space is complete, i.e., a Banach space. Morphisms f :A → B are morphisms of complex
algebras that preserve the involution, i.e., f(a∗) = f(a)∗. (One can prove that f is automatically contractive.)
The category CC∗ of commutative C*-algebras is the full subcategory of C∗ consisting of C*-algebras that
are commutative, i.e., ab = ba.

Definition 7.30. The functor OCont:CompHausop → CC∗ sends a compact Hausdorff space X to the com-
mutative C*-algebra OCont(X) of complex-valued continuous functions on X equipped with the pointwise
algebra structure, involution given by the complex conjugation, and norm given by the supremum of the
absolute value. A continuous map of compact Hausdorff spaces f :X → Y is sent to the morphism of com-
mutative C*-algebras OCont(Y ) → OCont(X) given by precomposition with f , i.e., a continuous function
Y → C is mapped to the continuous function X → Y → C. Used in 7.30, 7.32, 9.12, 9.15.

Definition 7.31. The Gelfand spectrum functor SpecCC: (CC
∗)op → CompHaus sends a commutative C*-

algebra A to the compact Hausdorff topological space SpecCC(A) whose points are homomorphisms of
C*-algebras A→ C and a set S ⊂ SpecCC(A) is closed if there is a morphism of C*-algebras g:A→ B (for
some B) such that s:A → C is in S if and only if s = tg for some morphism t:B → C. (Of course, one
must show that the resulting object is a compact Hausdorff topological space.) A morphism f :A → B of
commutative C*-algebras is sent to the continuous map SpecCC(f): SpecCC(B) → SpecCC(A) that sends
a point b ∈ SpecCC(B) (i.e., a morphism B → C) to the composition A → B → C, which is a point in
SpecCC(A). (Again, one must show that this function is a continuous map.) Used in 7.31, 7.32, 9.12, 9.15, 9.16.

Remark 7.32. Once again, we will see below that SpecCC and OCont form an equivalence of categories
between CompHaus and CC∗.

7.33. Measure theory

We recall that the category Meas has triples (X,M,N) as objects and equivalence classes of measurable
maps as morphisms.

The following functor exhibits sets as discrete measurable spaces.
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Example 7.34. The functor Disc: Set → Meas sends a set S to (S, 2S , ∅) and a function f :S → T to the
morphism (S, 2S , ∅) → (T, 2T , ∅) given by the equivalence class of f (which in this case contains only f
itself). Used in 7.43, 9.17.

We establish a connection between measurable spaces and Boolean algebras.

Example 7.35. The functor MeasAlg:Measop → BoolAlg sends a measurable space (X,M,N) to the
Boolean algebra M/N of equivalences classes of measurable sets modulo negligible sets and a morphism
of measurable spaces f : (X,M,N) → (X ′,M ′, N ′) to the induced morphism M ′/N ′ → M/N of Boolean
algebras given by the preimage map f−1. Recall that f is an equivalence class of measurable functions and
equivalent functions induce the same morphism M ′/N ′ → M/N , see Theorem 324A in Fremlin’s Measure
Theory for more details. Used in 6.39, 8.16.

We now explain how to get measurable spaces from topological spaces.

Definition 7.36. The functor Borel:Top → Meas sends a topological space X to the measurable space
(X,BorelX , {∅}), where BorelX is the σ-algebra of Borel subsets of X (i.e., the σ-algebra generated by open
subsets of X). A continuous map f :X → Y is sent to the equivalence class of f . (Any equivalence class
consists of a single element, and measurable functions are precisely continuous functions.) The functor
Baire:Top → Meas sends a topological space X to the measurable space (X,BaireX , {∅}), where BaireX is
the σ-algebra of Baire subsets of X, which is generated by functionally open subsets of X, i.e., sets of the
form f−1(0,∞) for some continuous function f :X → R. Used in 7.36, 7.38, 7.43, 7.44, 9.16, 10.7, 10.11*.

For us, the following different construction of a measurable space from a topological space will also be
of use. It formalizes the well-known set of analogies between negligible sets and meager sets, see Oxtoby’s
Measure and Category. (Meager sets are defined as countable unions of nowhere dense sets, i.e., sets whose
closure has empty interior.)

Definition 7.37. The category TopOpen has topological spaces as objects and continuous open maps as
morphisms. A map is open if the image of any open set is an open set. Used in 7.38, 7.42, 7.45, 28.5.

Definition 7.38. The functor BorelMeager:TopOpen → Meas turns a topological spaceX into a measurable
space (X,BorelMeagerX ,MeagerX), where BorelMeagerX is the σ-algebra generated by open and meager
subsets of X and MeagerX is the σ-ideal of meager subsets of X. A continuous map X → Y is sent to the
equivalence class of the underlying function, which is measurable because preimages of meager subsets are
meager, which in its turn follows from the fact that preimages of closed subsets with empty interior again
have empty interior because the map is open. The functor BaireMeager is defined in exactly the same way,
but with Borel sets replaced by Baire sets as defined in Definition 7.36. Used in 7.38, 7.42.

We now establish a connection to functional analysis and operator algebras. In practice, Meas has ex-
tremely pathological objects that make most of the familiar theorems of measure theory false. The condition
of σ-finiteness is often used to remedy this problem, but we use a less restrictive property.

Definition 7.39. The category LocMeas of localizable measurable spaces is the full subcategory of Meas
consisting of measurable spaces (X,M,N) such that the factoralgebra M/N is complete: every subset
S ⊂M/N has a supremum in M/N . Used in 6.18, 7.43, 7.44, 7.45, 9.13, 9.15, 11.20*, 33.6.

Remark 7.40. Translated in the language of underlying sets, a measurable space is localizable if for any
subset F ⊂M (not necessarily countable) there is X ∈M such that for all Y ∈ F we have Y \X ∈ N and
if X ′ ∈ M is another element of M with the same property, then X \ X ′ ∈ N . Such X is known as the
essential supremum of F . If F is finite or countable, then X must be equivalent (up to a negligible set) to⋃
F , the union of all elements in F , which is guaranteed to be an element of M . If F is uncountable, there

is no relation between X and the union of all elements in F . For example, suppose X = R, the σ-algebra M
consists of Lebesgue measurable sets, and the σ-ideal N consists of sets of Lebesgue measure 0. Take as
F all singleton subsets of X. Then X = ∅. Indeed, for any Y ∈ F we have Y \ X = Y ∈ N because all
singleton sets have measure 0.

Example 7.41. The measurable space Lebesgue(C) = (C,LebesgueC,NullC), where LebesgueC is the
σ-algebra of Lebesgue measurable subsets of C and NullC is the σ-ideal of sets of Lebesgue measure 0, is
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localizable. In fact, any measurable space that admits a finite measure that does not vanish on M \ N is
localizable. Used in 7.41, 7.43, 11.20*.

Example 7.42. The restriction of the functor BaireMeager:TopOpen → Meas to the full subcategory
consisting of topological spaces with a countable base lands in localizable measurable spaces. This is true
because any equivalence class of measurable sets in this case contains an open set, so the supremum can be
computed as the union.

Example 7.43. The measurable space Borel(C) = (C,BorelC, {∅}) is not localizable. (Take as F the
uncountable family of singleton subsets a nonmeasurable subset of C.) One can replace it with a certain

localizable measurable space Ĉ, which is not Lebesgue(C). Indeed, there are no morphisms Disc{∗} → C.
(The preimage of every point in C would have to be negligible, i.e., empty, a contradiction.) On the

other hand, morphisms Disc{∗} → Ĉ are in bijection with morphisms Disc{∗} → Borel(C), i.e., complex

numbers. The existence of Ĉ can be demonstrated most easily using the tools of category theory developed
below: the category LocMeas is a reflective subcategory of Meas and Ĉ can be defined as the reflection of
Borel(C).

Definition 7.44. The functor L∞ = OMeas: LocMeasop → CW∗ sends a localizable measurable space
(X,M,N) to the von Neumann algebra of bounded measurable functions on X. The latter can be defined as
the set of all morphisms (X,M,N)→ (C,BorelC, {∅}), where BorelC denotes the σ-algebra of Borel subsets
of C. The structure of a complex *-algebra is induced from C. It remains to show (by definition of a von
Neumann algebra) that the underlying Banach space is the dual of some other Banach space, the predual. In
our case we take the Banach space of complex-valued finite measures on X, defined as σ-additive functions
M → C that vanish on N . (This space is also denoted by L1(X,M,N) and is an example of Lp-spaces that
are important in analysis.) Used in 9.13, 9.15, 9.16, 9.24.

Definition 7.45. The von Neumann spectrum functor SpecMeas: (CW
∗)op → LocMeas is defined as the

composition of three functors: the forgetful functor (CW∗)op → (CC∗)op, the Gelfand spectrum functor
(CC∗)op → CompHaus, and the functor TopOpen → Meas. The composition of the first two functors lands in
the subcategory of TopOpen consisting of hyperstonean topological spaces and open maps, which is why com-
posing with the third functor makes sense. The resulting composition itself lands in localizable measurable
spaces. See §III.1, in particular, Theorem III.1.18 in Takesaki’s Theory of Operator Algebras for the relevant
facts about hyperstonean spaces used in this definition. Used in 9.13, 9.15, 9.16, 9.17, 9.25, 9.27, 9.28, 9.30.

7.46. Algebraic geometry

Fix an algebraically closed field k.

Example 7.47. The functor OSch:AffVar
op
k → CAlgk sends an affine variety V to the commutative k-algebra

of regular maps V → k and a regular map f of affine varieties V ′ → V to the induced homomorphism
OSch(V ) → OSch(V

′) given by the precomposition with f . This functor lands in the full subcategory
CAlgAffk of finitely generated k-algebras without nilpotent elements. Used in 7.47, 7.48, 7.48*.

Example 7.48. The functor SpecSch:CAlgAffGen
op
k → AffVark has as its source the category CAlgAffGenopk

that is defined just like CAlgAffopk except that its objects (i.e., algebras) are equipped with a finite set of
generators (but morphisms need not preserve the generators). (This rather awkward kludge is necessary
because we defined affine varieties as subsets of kn. It can be eliminated by passing to abstract algebraic
varieties, whose category is equivalent to our category.) We define the variety SpecSch(A,G), where G is
a finite set of generators of A (which induces a homomorphism of algebras k[G] → A), as the subset of
kG consisting of those points for which the associated evaluation map k[G] → k factors as the composition
k[G] → A → k for some homomorphism A → k (which, if it exists, uniquely determines the corresponding
point in kG). The regular map of varieties SpecSch(A,G)→ SpecSch(A

′, G′) for a homomorphism A′ → A
is defined by sending the point corresponding to a homomorphism A→ k to the point corresponding to the
homomorphism A′ → A→ k. Used in 7.48, 7.48*.

Below we will see that OSch and SpecSch define an equivalence of categories between AffVark and
CAlgAffopk (and CAlgAffGenopk ). In other words, one could define the category AffVark as CAlgAffopk and
dispose of our definition above.
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One may ask how we can define morphisms between varieties defined over different fields k and k′.
Furthermore, how one can perform operations such products and disjoint unions on such varieties? The
resulting objects would have to be more general than varieties. The following definition represents a funda-
mental breakthrough by Grothendieck. (The definition was already used in some form by Wolfgang Krull,
but it was Grothendieck who developed the associated theory systematically.)

Definition 7.49. The category AffSch of affine schemes is defined as CRingop. Used in 26.4.

Below we will see how one can define (nonaffine) schemes (which are in the same relation to affine
schemes as varieties are to affine varieties) using a very powerful formalism known as the functor of points.

8 Monomorphisms and epimorphisms

Definition 8.1. A monomorphism in a category C is a morphism f :X → Y such that for any object W
and any pair of morphisms g1, g2:W → X such that fg1 = fg2 we have g1 = g2.

Definition 8.2. An epimorphism in a category C is a morphism f :X → Y that is a monomorphism in the
category Cop.

Remark 8.3. It is instructive to unfold the above definition: an epimorphism in a category C is a morphism
f :X → Y such that for any object Z and any pair of morphisms h1, h2:Y → Z such that h1f = h2f we
have h1 = h2.

Example 8.4. In Set monomorphisms are injective functions (take W = {∗}) and epimorphisms are sur-
jective functions (take Z = {0, 1}).

8.5. Algebra

Example 8.6. In any category of algebraic objects, such as Group, Ab, Ring, Modk, Algk, etc., monomor-
phisms are injective homomorphisms. It suffices to take as W the free object on one generator and the
remainder of the argument is identical to Set using the fact that morphisms out of such a free object are
in bijection with the elements of target. Furthermore, all surjective homomorphisms are epimorphisms,
however, some categories may have nonsurjective epimorphisms (see below).

Example 8.7. In Group all epimorphisms are surjective homomorphisms. This can be established most eas-
ily using Schreier’s theorem: every subgroup H ⊂ G equals {x ∈ G | g(x) = h(x)} for some homomorphisms
g, h:G→ G′ (observe that g = h if and only if H = G). Indeed, the image of any epimorphism f :F → G is
a subgroup H ⊂ G, then Schreier’s theorem supplies g and h such that gf = hf , hence g = h by definition
of an epimorphism, and therefore H = G, i.e., f is surjective.

Example 8.8. The same argument as for Group also shows that epimorphisms coincide with surjective maps
in the categories Ab, Vectk, and ModR. However, the analog of Schreier’s theorem is trivial here: given an
epimorphism f :X → Y we take Z = Y/f(X), the map h1 is the canonical quotient map Y → Y/f(X) = Z,
and h2 is the zero map. (For nonabelian groups we can only make sense of Y/f(X) as a set of cosets, not as
a group. However, one can use the symmetric group of the set ∗ t Y/f(X) to a similar effect, as shown by
Linderholm.)

Example 8.9. In Ring not all epimorphisms are surjective. For instance, Z → Q is a nonsurjective epi-
morphism: if two ring homomorphism g, h:Q→ R coincide on Z, then for any integer p and q 6= 0 we have
g(p/q) = g(p)g(q)−1 = h(p)h(q)−1 = h(p/q). Here we used the fact that homomorphisms of rings preserve
inverses of invertible elements, which we also used to show that −×:Ring→ Group is a functor.

One can characterize epimorphisms of rings in more familiar terms. This is a nontrivial result due to
Cohn, Isbell, Mazet, and Silver. A morphism of rings f :A→ B is an epimorphism if and only if the dominion
of the subring f(A) in B coincides with B. Here the dominion of a subring S ⊂ R is the set of all elements
of R that can be represented as the product of matrices XPY (with coefficients in R), where X, P , and Y
have size 1×m, m× n, and n× 1 respectively, and P , XP , and PY have coefficients in S.
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8.10. Functional analysis

Example 8.11. In Ban and Ban1 monomorphisms are injective maps (take W = R or W = C). Epimor-
phisms are morphisms with dense image (take Z = Y/f(X) and then proceed as for Vectk; for Ban1 note
that the quotient map is contractive).

8.12. General topology

Example 8.13. In Top mononomorphisms are injective continuous maps (take W = {∗}) and epimorphisms
are surjective continuous maps (take W = {0, 1} with the antidiscrete topology). In Haus (the full subcat-
egory of Top on Hausdorff spaces) mononomorphisms are injective continuous maps (take W = {∗}) and
epimorphisms are continuous maps with dense image (two continuous functions with Hausdorff codomains
that coincide on some subset must also coincide on its closure). In CompHaus (the full subcategory of Haus
on compact spaces) monomorphisms are continuous injections for the same reason, whereas epimorphisms
are (once again) continuous surjective maps (continuous maps with dense image between compact Hausdorff
spaces are automatically surjective).

Example 8.14. In the category TopGroup of topological groups and continuous group homomorphisms
monomorphisms are injections (take W = Z) and epimorphisms are surjections (given an epimorphism
f :G → H, use Schreier’s theorem to construct a homomorphism of discrete groups H → K whose kernel
is precisely the image of f , and equip K with the antidiscrete topology so that H → K is continuos). In
the full subcategory HausGroup monomorphisms are precisely injections (take W = Z). Any morphism with
a dense image is an epimorphism, and judging by what happens for categories Group and Haus one could
be led to conjecture that all epimorphisms have dense image, but a counterexample was constructed by
Uspenskij. This statement is true, however, for compact topological groups (a theorem of Poguntke) as well
as Hausdorff abelian topological groups (the same argument as for Ab).

8.15. Measure theory

Example 8.16. In the category Meas monomorphisms and epimorphisms can be most easily described in
terms of the functor MeasAlg:Measop → BoolAlg: they are precisely those morphisms that are mapped
by MeasAlg to an epimorphism (i.e., surjection) respectively monomorphism (i.e., injection) of Boolean
algebras. (The two classes of maps are exchanged because of op.) In more concrete terms, monomorphisms
of measurable spaces are morphisms (X,M,N)→ (X ′,M ′, N ′) such that any element of M is equivalent to
the preimage of some element of M ′. Likewise, epimorphisms are characterized by the property that any
element m′ ∈M ′ whose preimage belongs to N itself belongs to N ′, i.e., only negligible sets have negligible
preimages.
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9 Equivalences of categories

Previously we defined the category Cat of small categories and the “huge” category CAT of categories.
Any category has a built-in notion of isomorphism. In particular, we can talk about isomorphisms of
categories. These are functors F:C→ D such that there is a functor G:D→ C and G ◦ F = idC, F ◦G = idD.

This is a perfectly good definition except that it fails to exhibit many categories as equivalent even
though we consider them to be the “same”. This is entirely analogous to how “same” groups need not be
equal, but only isomorphic. There are many groups (in fact, a proper class of groups) with one element, but
only one isomorphism class of groups with one element.

In the above definition, G ◦ F = idC means that for any object X ∈ C we have G(F(X)) = X. This
is hardly ever true for any of the constructions that we considered above, e.g., OBall(DUB(X)) 6= X for a
Banach space X, even though these two Banach spaces are isomorphic.

We can consider functors F:C→ D for which there is a functor G:D→ C such that X is isomorphic (but
not necessarilly equal) to G(F(X)) for any objectX ∈ C and Y is isomorphic to F(G(Y )) for any object Y ∈ D.
This can also be formulated by saying that the functions π0(F):π0(C) → π0(D) and π0(G):π0(D) → π0(C)
are mutually inverse to each other.

This modified definition is far too expansive. For instance, recall that any group G gives rise to a
category BG that has a single object ∗ whose endomorphisms are elements of G and composition is given by
multiplication. The above definition makes BG and BH the “same” for any pair of groups G and H.

Even more so, consider any groupoid C and a discrete category π0(C) (all morphisms are identity
morphisms) on the set of isomorphism classes of C. We have a canonical functor C → π0(C). We can also
choose an inclusion π0(C) → C that choose a representative for each equivalence class. The composition
π0(C) → C → π0(C) is the identity functor π0(C) → π0(C). The other composition C → π0(C) → C sends
any object in C to an isomorphic object.

These examples show us what is wrong with out last attempt: we should take morphisms into account.

Definition 9.1. An equivalence of categories is a functor F:C → D for which there is a functor G:D → C
such that the induced maps FX,X′ :MorC(X,X ′) → MorC(F(X), F(X ′)) for any objects X,X ′ ∈ C and
GY,Y ′ :MorD(Y, Y

′) → MorD(G(Y ),G(Y ′)) for any objects Y, Y ′ ∈ D are isomorphisms and the functions
π0(F):π0(C)→ π0(D) and π0(G):π0(D)→ π0(C) are mutually inverse to each other.

There is a simple practical criterion for equivalence.

Definition 9.2. Given a functor F:C→ D, we have an induced function

FX,X′ :MorC(X,X ′)→MorD(F(X), F(X ′))

for any pair of objects X,X ′ ∈ C. We say that the functor F is
• faithful if FX,X′ is injective for any X, X ′;
• full if FX,X′ is surjective for any X, X ′;
• fully faithful if FX,X′ is bijective for any X, X ′, in which case we denote its inverse by F−1

X,X′ .

Remark 9.3. Suppose C is a full subcategory of D. Then the canonical inclusion C→ D is a fully faithful
functor.

Definition 9.4. An essentially surjective functor is a functor F:C → D such that the induced function
π0(F):π0(C) → π0(D) is surjective. (In other words, for any object Y ∈ D there is an object X ∈ C such
that F(X) is isomorphic to Y .)

Proposition 9.5. A functor F:C → D is an equivalence if and only if it is fully faithful and essentially
surjective.

Proof. Necessity of these two properties follows immediately from the definition of an equivalence. To show
sufficiency, we start by constructing the functor G:D → C. On objects, we invoke the axiom of choice and
construct a function Ob(G):Ob(D)→ Ob(C) by choosing for every object Y ∈ D an object G(Y ) ∈ C such
that there is an isomorpism ϵY : F(G(Y ))→ Y . We also record a choice of an isomorphism ϵY .

Given a morphism g:Y → Y ′ in D we define G(g) = F−1
G(Y ),G(Y ′)(ϵ

−1
Y ′ ◦ g ◦ ϵY ). Here ϵY : F(G(Y )) → Y ,

g:Y → Y ′, and ϵ−1
Y ′ :Y ′ → F(G(Y ′)) compose together into a morphism F(G(Y )) → F(G(Y ′)). By the fully
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faithfulness of F the function FG(Y ),G(Y ′):MorC(G(Y ),G(Y ′))→MorD(F(G(Y )), F(G(Y ′)) is a bijection, so
it has an inverse, which we used in the formula for G(g).

Given morphisms g:Y → Y ′ and g′:Y ′ → Y ′′, we immediately compute

G(g′) ◦G(g) = FG(Y ′),G(Y ′′)
−1(ϵ−1

Y ′′ ◦ g′ ◦ ϵ′Y ) ◦ FG(Y ),G(Y ′)
−1(ϵ−1

Y ′ ◦ g ◦ ϵY )
= FG(Y ),G(Y ′′)

−1(ϵ−1
Y ′′ ◦ g′ ◦ ϵ′Y ◦ ϵ−1

Y ′ ◦ g ◦ ϵY )
= FG(Y ),G(Y ′′)

−1(ϵ−1
Y ′′ ◦ g′ ◦ g ◦ ϵY ) = G(g′ ◦ g).

(The second equality follows from the preservation of composition by F.) Likewise,

G(idY ) = F−1(ϵ−1
Y ◦ idY ◦ϵY ) = F−1(idF(G(Y ))) = idG(Y ) .

Thus G is a functor.
Finally, the functions π0(F):π0(C) → π0(D) and π0(G):π0(D) → π0(C) are mutually inverse to each

other once we show that π0(F) is injective, which by definition of G implies that π0(G) is its inverse. Thus
we have to show that for any objects X,X ′ ∈ C such that F(X) and F(X ′) are isomorphic objects in D, the
objects X and X ′ are themselves isomorphic in C. Indeed, if g: F(X) → F(X ′) is an isomorphism, then so
is F−1

X,X′(g):X → X ′.

We illustrate this abstract theorem with two simple examples.

Example 9.6. Suppose C is a category and D is a full subcategory of C such that any isomorphism class in C
has exactly one representative that belongs to D. Then the inclusion D→ C is an equivalence of categories.
The category D has an interesting (and unusual) property: two objects are isomorphic if and only if they are
equal. Such categories are known as skeletal categories and the above shows that any category is equivalent
to a skeletal category.

Example 9.7. We can leverage the above example to obtain a classification of groupoids in terms of
groups. Given any groupoid G, we can take the full subcategory of G formed by some fixed isomorphism
class of objects. The collection of all such full subcategories contains all objects of G, and there are no
morphisms between objects that belong to different subcategories. Thus G splits as a disjoint union (later
to be formalized as the coproduct) of its connected components (indexed by π0(G)), so it suffices to classify
connected groupoids, i.e., π0(G) is a singleton. If we pick any object ∗ ∈ G, then the inclusion of the full
subcategory on ∗ into G is an equivalence. Thus any connected groupoid is equivalent to a groupoid with one
object. The latter is completely determined by the group AutG(∗), whose elements form morphisms ∗ → ∗
and the group operations determine composition. Vice versa, for any group G one constructs a groupoid BG
with one object, which has AutBG(∗) ∼= G. Furthermore, functors BG → BH can be identified with group
homomorphisms G→ H. Thus, up to an equivalence, every groupoid G can be thought of as a collection of
groups indexed by the elements of π0(G). Used in 10.34*.

9.8. Functional analysis

Example 9.9. The functors DUB:Banop1 → CompBall and OBall:CompBall→ Banop1 form an equivalence of
categories. This is the Hahn–Banach theorem. Given X ∈ Ban1, the isomorphism ev:X → OBall(DUB(X))
sends an element x ∈ X to the linear function ev(x):X∗ → C that sends an element f ∈ X∗ to f(x) ∈ C,
i.e., ev(x)(f) = f(x). (We have

‖ ev(x)‖ = sup
f∈X∗

≤1

| ev(x)(f)| = sup
f∈X∗

≤1

|f(x)| = ‖x‖,

so ev is indeed a contractive map.) Given Y ∈ CompBall, the isomorphism ev:Y → DUB(OBall(Y ))
is a morphism of compact balls Y = (V,B) → ((OBall(V,B))∗, (OBall(V,B))∗≤1) that sends v ∈ V to
the continuous linear map OBall(V,B) → C that sends an element f ∈ OBall(V,B) to f(v) ∈ C, i.e.,
ev(v)(f) = f(v). (The norm of ev(v) equals the norm of v because |f(v)| ≤ ‖f‖ · ‖v‖, so ev(v) is indeed a
morphism of balls.) Used in 9.9, 10.5, 10.11*.

Remark 9.10. The traditional formulation of the Hahn–Banach theorem states that any functional B → C
on a Banach subspace B ⊂ A can be extended to a functional A→ C with the same norm. We can deduce it
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from the above stronger version as follows. The inclusion B ⊂ A is a monomorphism in Ban1, equivalently,
an epimorphism in Banop1 . The above equivalence sends it to an epimorphism in CompBall. The forgetful
functor CompBall→ CompHaus preserves epimorphisms. The resulting epimorphism in CompHaus is a map
that sends a contractive functional A → C to its restriction B → C. Epimorphisms of compact Hausdorff
spaces are precisely surjective maps, which in our case means that any contractive functional B → C extends
to a contractive functional A→ C, which immediately implies the original statement.

9.11. Gelfand and von Neumann dualities

Example 9.12. The functors SpecCC: (CC
∗)op → CompHaus and OCont:CompHausop → CC∗ form an

equivalence of categories. This is the Gelfand duality theorem for commutative C*-algebras. We describe
the involved isomorphisms. Given X ∈ CompHaus, the isomorphism X → SpecCC(OCont(X)) sends a
point x ∈ X to the morphism OCont(X) → C that evaluates on X. Given A ∈ CC∗, the isomorphism
A → OCont(SpecCC(A)) sends an element a ∈ A to the evaluation map SpecCC(A) → C that sends an
element f :A→ C of SpecCC(A) to f(a) ∈ C.

Example 9.13. The functors SpecMeas: (CW
∗)op → LocMeas and L∞: LocMeasop → CW∗ form an equiv-

alence of categories. This is result is due to von Neumann. Given A ∈ CW∗, the isomorphism A →
L∞(SpecMeas(A)) is defined by sending an element a ∈ A to the equivalence class of a bounded measurable
function SpecMeas(A)→ C that sends a point p ∈ SpecMeas(A) (i.e., a morphism of C*-algebras A→ C)
to p(a). Given X ∈ LocMeas, the isomorphism X → SpecMeas(L

∞(X)) is defined as follows.

9.14. Spectra of operators and functional calculus

Example 9.15. The continuous functional calculus and Borel functional calculus receive an easy inter-
preation in terms of the Gelfand and von Neumann dualities. Consider a bounded operator P :H → H on
a complex Hilbert space H. Denote by A the C*-subalgebra of B(H) (the C*-algebra of bounded linear
operators on a Hilbert space H) generated by the operator P . Likewise, denote by B the von Neumann
subalgebra of B(H) generated by P . The following statements are equivalent:
• A is commutative;
• B is commutative;
• P is normal : P ∗P = PP ∗.
In this case, we have SpecCC(A) ∈ CompHaus and SpecMeas(B) ∈ LocMeas. We refer to them as the

spectrum of P taken as a topological space or as a measurable space respectively, and denote them SpecCC(P )
and SpecMeas(P ). Thus given f ∈ OCont(SpecCC(A)) ∼= A ⊂ B(H) or g ∈ L∞(SpecMeas(B)) ∼= B ⊂
B(H) we can send f and g to operators f(P ) ∈ B(H) and g(P ) ∈ B(H) using the above isomorphisms
provided to us by the equivalence of categories above. The morphisms OCont(SpecCC(A)) → B(H) and
L∞(SpecMeas(B))→ B(H) are known as the continuous and Borel functional calculus respectively.

Remark 9.16. The operator P ∈ B corresponds to an element in L∞(SpecMeas(B)) ∼= B, i.e., a morphism
of measurable spaces f : SpecMeas(B) → Borel(C). Similarly, we have a morphism g: SpecCC(A) → C of
locally compact Hausdorff spaces. These two embeddings are related to the traditional notion of a spectrum
of P as a subset of C, namely {λ ∈ C | P − λ · idH /∈ B(H)×}, where B(H)× denotes the set of invertible
elements of B(H) (Q ∈ B(H)× if there is R ∈ B(H) such that QR = RQ = idH). This set equals the
essential range of f , i.e., {λ ∈ C | ∀U 3 λ: f−1(U) /∈ N}. In our setting we have more information about
the spectrum of P : we have a topological space and a measurable space, not merely a set.

Remark 9.17. Any measurable space splits as a disjoint union of a discrete measurable space (i.e., in the
image of the functor Disc: Set→ Meas) and a diffuse measurable space (which has no isolated points). When
applied to SpecMeas(P ), the former is known as the set of eigenvalues or the point spectrum of P and the
latter is known as the continuous spectrum of P .

Remark 9.18. Functional calculi for a family of commuting normal operators can be defined in exactly the
same fashion.

Remark 9.19. One can also define a Borel functional calculus for unbounded normal operators P and
unbounded measurable functions f . The operator f(P ) can be defined in the same way as above, but
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commutative von Neumann algebras must be replaced by commutative extended von Neumann algebras
(alias EW*-algebras) defined by Dixon in his paper Unbounded operator algebras.

9.20. Spectral theory

Definition 9.21. The category RepA of representations of a von Neumann algebra A is defined as follows.
Objects are pairs (H, ρ), where H ∈ HilbC and ρ:A → B(H) is a morphism of von Neumann algebras.
Morphisms (H, ρ) → (H ′, ρ′) are bounded linear maps f :H → H ′ such that for any a ∈ A and h ∈ H we
have f(ρ(a)(h)) = ρ′(a)(f(h)). Used in 9.22, 9.24, 9.25.

Remark 9.22. The category RepA is equivalent to the category W∗ModA of Hilbert W*-modules, which
are defined like Hilbert spaces, but with the inner product taking values in A instead of C.

Definition 9.23. The category HilbBunM of measurable fields of Hilbert spaces (alias Hilbert bundles) over
a measurable space M = (X,M,N) is defined as follows. Used in 9.24, 9.25.

Definition 9.24. The functor L2:HilbBunM → RepL∞(M) sends a Hilbert bundle B over M to a represen-

tation of L∞(M) whose underlying Hilbert space is the Hilbert space L∞(B)⊗L∞(M) L
2(M), where L∞(B)

denotes the L∞(M)-module of equivalence classes of bounded measurable sections of B. The action of
L∞(M) is given by its right action on L2(M). A morphism of Hilbert bundles is mapped to the morphism
of representations given by the fiberwise action. Used in 9.24, 9.26, 9.27.

Definition 9.25. The spectral decomposition functor Decomp:RepA → HilbBunSpecMeas(A) sends a repre-
sentation (H, ρ) of A to the Hilbert bundle whose fiber over some point p ∈ SpecMeas(A) (i.e., a homomor-
phism of C*-algebras p:A → C) is H ⊗A C, where the right action of A on H is given by ρ and the left
action of A on C is given by p. Used in 9.26.

Example 9.26. The functors L2 and Decomp form an equivalence of categories.

Example 9.27. Continuing the discussion about functional calculus, consider a normal operator P ∈ B(H).
The (commutative) von Neumann algebra B generated by B has a canonical inclusion ρ:B → B(H), hence
(H, ρ) is a representation B. Accordingly, we have a Hilbert bundle T over SpecMeas(P ) such that (H, ρ) ∼=
L2(T ). This is the Hahn–Hellinger spectral theorem for bounded operators on a Hilbert space.

Remark 9.28. Previously we subdivided SpecMeas(P ) into its discrete part, the point spectrum, and its
diffuse part, the continuous spectrum. The subset of the point spectrum consisting of those points λ ∈ C
that have finite-dimensional fibers (i.e., eigenspaces) and λ does not belong to the continuous spectrum is
known as the discrete spectrum of P . Its complement in SpecMeas(P ) is the essential spectrum of P .

Remark 9.29. In complete analogy with the Borel functional calculus, one can deduce the spectral theorem
for commuting families of normal operators. Likewise, passing to extended von Neumann algebras allows
one to treat unbounded normal operators.

Remark 9.30. Analagous results (due to Irving Segal) can be established for representations of commutative
von Neumann algebras in arbitrary von Neumann algebras, i.e., morphisms A→ B, where A is commutative.
In this case, the analog of spectral theory (known as reduction theory) produces a bundle of von Neumann
algebras over SpecMeas(A). In particular, if we take A to be the center of B, this identifies B with the
algebra of bounded measurable sections of a bundle of von Neumann algebras with trivial center (known as
factors) over SpecMeas(A).

9.31. Topological groups

Example 9.32. The functor PD: LocCompHausAbop → LocCompHausAb constructed in Example 7.18 is an
equivalence of categories. This is the Pontryagin duality for locally compact topological groups. Its inverse
is the same functor, now regarded as a functor LocCompHausAb → LocCompHausAbop. Both relevant
isomorphisms are also the same: the map G → PD(PD(G)) sends g ∈ G to the continuous homomorphism
PD(G)→ U(1) that maps f :G→ U(1) to f(g) ∈ U(1).
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9.33. Lie groups

Example 9.34. The functor LieGroup→ LieAlgR can be restricted to simply connected Lie groups, in which
case it becomes an equivalence of categories. This is Lie’s third theorem.

9.35. Posets

Example 9.36. The category Proset of sets equipped with a reflexive transitive binary relation (henceforth
prosets) is equivalent to the full subcategory PC of Cat consisting of those categories C such that for any
pair of morphisms f, g:X → Y in C we have f = g. The functor Proset → PC sends a proset (X,R) to the
category whose set of objects is X and the set of morphisms x→ y consists of a single element if xRy or is
empty otherwise. Composition and identity maps are uniquely defined in the obvious way. A morphism f
of prosets is sent to the unique functor whose object function is f . The functor PC→ Proset sends a small
category C in PC to the proset (Ob(C), R), where xRy if and only if there is a (unique) morphism x → y.
Used in 9.36.

Example 9.37. In particular, any poset gives rises to a category. Identity morphisms are the only isomor-
phisms in this category. Used in 10.13, 17.4, 23.2.

10 Natural transformations

In our discussion of equivalences of categories we mentioned that it is a bad idea to talk about equalities
of functors such as idC = G ◦ F because such an equality would in particular state that two objects in a
category are equal, whereas typically we can only hope for an isomorphism, not equality.

Thus it seems resonable to try to define isomorphisms of functors in such a way that idC and G ◦ F are
isomorphic functors if F and G form an equivalence of categories.

Isomorphisms are a particular case of morphisms, so we start by defining morphisms of functors.

Definition 10.1. Suppose C and D are categories and F:C→ D and G:C→ D are functors (with the same
sources and targets). A natural transformation (alias morphism of functors) from F to G (notation: t: F→ G

or t: F⇒ G) is given by a collection of morphisms tX : F(X)→ G(X) for any X ∈ C such that the following
diagram commutes for any morphsim f :X → Y in C:

F(X)
F(f)−−−−→ F(Y )ytX

ytY

G(X)
G(f)−−−−→ G(Y ).

In other words, for any f :X → Y we have G(f) ◦ tX = tY ◦ F(f).

Definition 10.2. Suppose C and D are categories. The category of functors Fun(C,D) has functors F:C→ D
as objects and natural transformations t: F ⇒ G as objects. The identity natural transformation idF: F → F

has (idF)X = idX for any X ∈ C. The composition of u:G ⇒ H and t: F ⇒ G (where F,G,H:C → D) has
(u ◦ t)X = uX ◦ tX for all X ∈ C. Associativity and unitality follow from the associativity and unitality of D.
Used in 10.3, 10.14, 10.19, 10.31, 10.34*, 26.0*, 26.1, 26.2, 26.3, 26.4, 26.5, 26.5*, 26.6, 26.7, 26.7*, 27.4.

Observation 10.3. Isomorphisms in Fun(C,D) are precisely those natural transformations t: F → G for
which tX is an isomorphism for all X ∈ C. These are known as natural isomorphisms.

10.4. Algebra

Example 10.5. Recall that the dual vector space functor DVS:Vectopk → Vectk sends a vector space V to
V ∗ = Hom(V, k) and a linear map V → V ′ to the induced map Hom(V ′, k)→ Hom(V, k). The composition
DVS ◦DVSop:Vectk → Vectk sends a vector space V to V ∗∗ = Hom(Hom(V, k)) and a linear map h:U → V
to the induced linear map h∗∗:U∗∗ → V ∗∗, defined as (h∗∗(û))(g) = û(g ◦ h), where û ∈ U∗∗, g ∈ V ∗,
g ◦ h ∈ U∗. We have a natural transformation ι: idVectk ⇒ DVS ◦DVSop whose value on a vector space V is
the linear map V → V ∗∗ that sends v ∈ V to the linear map evv:V

∗ → k that sends g ∈ V ∗ to g(v) ∈ k. In
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formulas: (ιV (v))(g) = g(v). The naturality property requires that the following diagram commutes for any
linear map h:U → V :

U
h−−−→ VyιU

yιV

U∗∗ h∗∗

−−−→ V ∗∗.

In othr words, we must have h∗∗ιU = ιV h. We compute for any u ∈ U

(h∗∗(ιU (u)))(g) = (ιU (u))(g ◦ h) = (g ◦ h)(u) = g(h(u)

and
(ιV (h(u)))(g) = g(h(u)),

both by definition of ι and h∗∗.

10.6. Measure theory

Definition 10.7. Recall the functors

Meas:CompHaus
Baire|CompHaus−−−−−−−−−−−−−−−→ Meas

L1

−−−−−−−−−−−−−−−→ Ban1

and
DualCont:CompHaus

OBan−−−−−−−−−−−−−−−→ Banop1
∗−−−−−−−−−−−−−−−→ Ban1.

We have a natural transformation ι:Meas → DualCont such that for any X ∈ CompHaus the morphism
ιX :Meas(X)→ DualCont(X) sends a measure µ to the functional f 7→

∫
f dµ. Used in 10.7, 10.11*.

Theorem 10.8. (Riesz 1909, Markoff 1938, Kakutani 1941.) The natural transformation ι is an isomor-
phism. Used in 10.11*.

It follows formally from the definitions that for any X ∈ CompHaus the map ιX preserves the norm,
in particular, it is injective. The difficult part is to show that ιX is surjective, i.e., every continuous linear
functional on X arises from some measure. Following Garling and Hartig, we explain how the naturality of ι
can be exploited to reduce this problem to the case of very special topological spaces.

Definition 10.9. A topological space X is extremally disconnected if the closure of any open set is an open
set.

Recall the following fact from general topology. (Later we will offer a categorical perspective on the
Stone–Čech compactification.)

Proposition 10.10. The Stone–Čech compactification of a discrete topological space X is extremally dis-
connected. In particular, for any compact Hausdorff topological space X the Stone–Čech compactification of
its underlying set X0 equipped with the discrete topology is an extremally disconnected compact Hausdorff
space X̂0 equipped with a canonical surjective continuous map X̂0 → X, which arises from the universal
property of the Stone–Čech compactification by extending the canonical map X0 → X to X̂0.

We can now use the naturality of ι to reduce the case of general compact Hausdorff space to the case of
extremally disconnected compact Hausdorff spaces.

Proposition 10.11. If ιX is an epimorphism for all extremally disconnected X, then ι itself is an epimor-
phism, i.e., ιX is an epimorphism for all compact Hausdorff X.

Proof. Consider the naturality square of the morphism c: X̂0 → X:

Meas(X̂0)
Meas(c)−−−−−−−−−−−−−→ Meas(X)yιX̂0

yιX

DualCont(X̂0)
DualCont(c)−−−−−−−−−−−−−→ DualCont(X).
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The morphism X̂0 → X is an epimorphism in CompHaus. The induced morphism OBan(X) → OBan(X̂0)
is a monomorphism in Ban1. By the Hahn–Banach theorem (Example 9.9) the induced morphism

DUB(OBan(X̂0))→ DUB(OBan(X))

is an epimorphism in CompBall, hence the underlying morphism

DualCont(c):DualCont(X̂0)→ DualCont(X)

in the category Ban1 is an epimorphism. The morphism ιX̂0
is an epimorphism by assumption, hence so is

the composition DualCont(c) ◦ ιX̂0
. Hence ιX is an epimorphism.

We conclude this example by proving that ιX is an epimorphism for any extremally disconnected compact
Hausdorff space X. For such X the σ-algebra BaireX is generated by clopen (closed and open) subsets of X
(the nontrivial implication presents a functionally closed subset f−1(−∞, 0] of X as a countable intersection
of clopen subsets given by the closures of f−1(−∞, ϵ) for all rational ϵ > 0). The characteristic function of
a clopen subset is continuous, and by restricting the given continuous linear functional f on OBan(X) to
characteristic functions of clopen subsets of X we obtain a finite premeasure on the Boolean algebra of clopen
subsets, i.e., a function on the algebra of clopen subsets that satisfies the countable additivity property for
any disjoint family of clopen sets whose union is clopen (by compactness such a family is necessarily finite).
By the Hahn–Kolmogorov extension theorem such a premeasure extends uniquely to a finite measure µ on
BaireX . The linear functional ιX(µ) coincides with f on the characteristic functions of clopen subsets of X,
and the linear span of such functions is dense in OBan(X), hence ιX(µ) = f , which completes the proof of
Theorem 10.8.

10.12. Sheaves of sets on topological spaces

In analysis and geometry we commonly study various spaces through functions on them. The only
holomorphic functions on the Riemann sphere (alias complex projective line) are constant functions. On the
other hand, open subsets of the Riemann sphere have plenty of holomorphic functions on them. Thus if we
intend to study the Riemann sphere through functions on it, we must consider functions that are defined on
an open subset. The relevant framework for such considerations is provided by the theory of sheaves.

Definition 10.13. Given a topological set X, the category Open(X) is the category associated to the poset
of open subsets of X as explained in Example 9.37. Used in 10.14, 10.19, 10.22, 10.29, 10.33.

Definition 10.14. The category PreSh(X) of presheaves on a topological space X is defined as

Fun(Open(X)op, Set).

Used in 10.16, 10.20.

Thus a presheaf F assigns a set F (U) to any open set U ⊂ X and a restriction map F (ι):F (V )→ F (U)
to any inclusion ι:U → V of open sets. Elements of F (V ) are referred to as sections of F over V . If
x ∈ F (V ), then its image under F (ι) is denoted by x|U and we refer to it as the restriction of x to U . The
definition of a functor implies that for any x ∈ F (V ) we have x|V = x and for any T ⊂ U ⊂ V we have
(x|U )|T = x|T , both of which are families properties of restrictions of functions to subsets of their domains.

Examples 10.15. Given a topological space X, we define the following presheaves F on X (the restriction
maps are given by traditional restrictions of functions):
• F (U) is the set of continuous maps U → R;
• F (U) is the set of bounded continuous maps U → R;
• F (U) is the set of Borel measurable maps U → R.

Example 10.16. Given a continuous map p:T → X of topological spaces, we define the presheaf SecPre(p)
of continuous sections of the map p by setting SecPre(p)(U) = {s:U → T | ps = κ} for any open subset
κ:U → X and SecPre(p)(ι): SecPre(p)(V ) → SecPre(p)(U) to the map s 7→ s ◦ ι for any inclusion of open
subsets ι:U → V . In fact, we have a functor SecPre:Top/X → PreSh(X) that sends p to SecPre(p) and
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a morphism p → q in Top/X (i.e., a continuous map f :T → T ′ such that qf = p) to the induced natural
transformation SecPre(p)→ SecPre(q) whose value on some open set U ⊂ X sends s:U → T to fs:U → T ′.
Used in 10.16, 10.16*, 10.20.

The last example is very important because many practical example can be seen as particular instances
for various choices of p (sometimes involving rather weird spaces T ).

We would like to characterize the image of the functor SecPre. This can be accomplished using the
following intermediate definition.

Definition 10.17. Given a presheaf F and an open subset U ⊂ X, we say that some sections x, y ∈ F (U)
are locally equal if there is an open cover {Vi} of U such that for all i we have x|Vi = y|Vi . In this case we
write x ∼ y.

Of course, x = y implies x ∼ y, but the opposite need not be true in general.

Definition 10.18. Given a presheaf F on X, an open set U ⊂ X, and an open cover {Vi} of U , a compatible
family is a collection {ti} of sections ti ∈ F (Vi) such that for all i and j we have ti|Vi∩Vj

∼ tj |Vi∩Vj
. The set

of all compatible families of sections of F over the open cover V is denoted by ComFam(F, V ). Used in 10.18*,

10.19.

We also have a canonical map F (U)→ ComFam(F, V ) that sends a section s ∈ F (U) to the compatible
family {s|Vi

}. Indeed, the compatibility condition is verified because s|Vi∩Vj
= s|Vi∩Vj

Definition 10.19. Given a topological space X, the category Sh(X) of sheaves of sets on X is defined as
the full subcategory of Fun(Open(X)op, Set) consisting of those functors F :Open(X)op → Set that satisfy
the gluing property : for any open set U ⊂ X and for any open cover {Vi} of U the canonical map F (U) →
ComFam(F, V ) is an isomorphism. Used in 10.20, 10.22, 10.23, 10.24, 10.25, 10.29, 10.30.

Example 10.20. The functor SecPre:Top/X → PreSh(X) lands in sheaves on X. We denote the core-
stricted functor as Sec:Top/X → Sh(X). Used in 10.23, 10.30.

Definition 10.21. A continuous map p:Y → X is etale if it is an open map and a homeomorphism locally
on Y , i.e., there is an open cover {Ui} of Y such that the corestriction of p|Ui to its image in X is a
homeomorphism for any i. The category Et/X is the full subcategory of Top/X consisting of etale maps
to X. Used in 10.22, 10.23, 10.24, 10.25, 10.28, 10.30.

Definition 10.22. The functor Et: Sh(X) → Et/X sends a sheaf F :Open(X)op → Set to the etale map
Et(F ):T → X, where T is the etale space of F constructed as follows. Its points are equivalence classes of
triples (x, U, s), where x ∈ U , U ∈ Open(X), s ∈ F (U), with respect to the equivalence relation (x, U, s) ∼
(x′, U ′, s′) if x = x′ and there is V ⊂ U ∩ U ′ such that x ∈ V and s|V = s′|V . A base of open sets is
constructed by taking for any U ∈ Open(X) and s ∈ F (U) the set of equivalence classes of (x, U, s), where
x ∈ U is arbitrary. The map T → X that sends the equivalence class of (x, U, s) to x is a continuous map.
Used in 10.22, 10.23, 10.30.

Theorem 10.23. The functors Sec:Et/X → Sh(X) and Et: Sh(X) → Et/X form an equivalence of cate-
gories.

This theorem provides us with a powerful dictionary that relates etale maps and sheaves. We illustrate
this idea by giving two important constructions, one of which is easier to state using sheaves and the other
one using etale spaces.

Definition 10.24. Given a continuous map f :X → Y , the pushforward functor f∗: Sh(X) → Sh(Y ) sends
a sheaf F to the sheaf f∗F defined as (f∗F )(V ) = F (f−1(V )). A morphism of sheaves (i.e., a natural
transformation of functors) F → G is sent to the induced natural transformation F (f−1(V ))→ G(f−1(V )).
The pushforward functor Et/X → Et/Y is defined using the above equivalence.

Definition 10.25. Given a continuous map f :X → Y , the pullback functor f∗:Et/Y → Et/X sends an
etale map g:T → Y to the etale map T ×Y X → X, where T ×Y X: = {(t, x) | g(t) = f(x)}. The pullback
map Sh(Y )→ Sh(X) is defined using the above equivalence.
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10.26. Galois theory of coverings

Definition 10.27. Given an object X ∈ Top, the category Cov/X of covering maps (alias covering pro-
jections) is defined as follows. Objects are morphisms p:T → X in Top for which X admits a base of
open sets U such that p−1(U) is homeomorphic to a disjoint union of copies of X. Morphisms p → p′ are
continuous maps f :T → T ′ such that p′f = p. Used in 10.28, 10.30, 10.32, 10.33, 10.34, 10.34*, 10.36, 10.36*.

Remark 10.28. The category Cov/X is a full subcategory of Et/X. The definition of an etale map p:Y → X
requires that any point in p−1(x) for some x ∈ X has an open neighborhood that maps homeomorphically
to X. The definition of a covering then requires that we can choose these neighborhoods to be disjoint and
homeomorphic to each other.

We now translation the notion of a covering into the language of sheaves.

Definition 10.29. The category LCSh(X) of locally constant sheaves over X is the full subcategory of
Sh(X) consisting of locally constant sheaves over X, i.e., sheaves F for which there is a base B of X such
that the restriction of F to B (which is a full subcategory of Open(X)) is a constant functor, i.e., a functor
that sends any morphism to an isomorphism. Used in 10.30, 10.34, 10.34*.

Proposition 10.30. The functors Sec and Et restrict to the full subcategories Cov/X of Et/X and LCSh(X)
of Sh(X) and form an equivalence of these full subcategories.

Definition 10.31. Given an object X ∈ Top, the category Trans(X) of transport functors over X is the
category Fun(π≤1(X), Set). Thus an object F ∈ Trans(X) assigns a set Fx to each point x ∈ X and a map
of sets Fx → Fy to each path in X from x to y. Used in 10.31, 10.32, 10.33, 10.34, 10.34*, 10.36*.

Definition 10.32. Given an object X ∈ Top, the functor Monodromy:Cov/X → Trans(X) is defined as
follows. For an object p:T → X in Cov/X the functor Monodromy(p):π≤1(X)→ Set sends a point x ∈ X
to fiber f−1(x). A morphism (i.e., the homotopy equivalence class of a path h: [0, 1] → X from x ∈ X to
y ∈ Y ) is sent to the map f−1(x) → f−1(y) that sends an element a ∈ f−1(x) to the element b ∈ f−1(y)
such that there is a path g: [0, 1]→ T from a to b with pg = h. The definition of a covering space is designed
in such a way as to guarantee that g is unique and the map f−1(x)→ f−1(y) does not depend on the choice
of h in the equivalence class. Used in 10.32, 10.34.

Definition 10.33. Given an object X ∈ Top, the reconstruction functor Recons:Trans(X)→ Cov/X sends
a transport functor F :π≤1(X)→ Set to the covering space p:T → X defined as follows. The underlying set
of T is the disjoint union of sets F (x) for all x ∈ X, which is equipped with a canonical map to X. A base
of open subsets of T is constructed by taking for any x ∈ X, w ∈ F (x), and U ∈ Open(X) such that x ∈ U
the set {F (h)(w) | h: [0, 1] → U}. A natural transformation F → G induces a map TF → TG, which turns
out to be continuous. Used in 10.34, 10.34*, 10.36.

To exclude pathologies we work in the category GoodTop of locally path-connected and (locally or
semilocally) simply connected topological spaces. A space is locally path-connected if it admits a base of
path-connected open subsets. A space is locally simply connected if it admits a base of simply connected open
subsets, i.e., path-conected open subsets U such that any map S1 → U extends to a map D2 → U . A space X
is semilocally simply connected if it admits a base of open subsets U such that π≤1(ι):π≤1(U) → π≤1(X)
identifies any pair of parallel morphisms.

Theorem 10.34. Given an object X ∈ GoodTop, the functors Monodromy:Cov/X → Trans(X) and
Recons:Trans(X) → Cov/X form an equivalence of categories. In particular, both of these categories are
further equivalent to the category LCSh(X) of locally constant sheaves on X. Used in 10.35.

Thus we have three different languages of talking about the same things: Cov/X, Trans(X), and
LCSh(X).

Recall the classification of groupoids given in Example 9.7: any groupoid is equivalent to to a disjoint
union of groupoids of the form BG for some groups G. In the case of the groupoid π≤1(X) the disjoint union
is indexed by the path components of X, which we can study separately. Thus for the sake of brevity, we
consider only the case of connected groupoids, i.e., BG for some group G (which is π1(X, ∗) in the case of a
path-connected space X with some basepoint ∗ ∈ X). In this case the category Fun(BG, Set) is equivalent
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to the category GSet, i.e., sets equipped with an action of G, as defined in Example 4.10. The equivalence
Fun(BG, Set) → GSet is implemented by the functor that sends F ∈ Fun(BG, Set) to the pair (F (∗), ρ),
where ∗ ∈ BG is the only object of BG and ρ:G = MorBG(∗, ∗) → MorSet(F (∗), F (∗)) is induced by the
functor data of F .

Coverings of a nonconnected X ∈ GoodTop can be treated separately for each connected component
of X, so we lose no generality by assuming that X is connected. In this case, if we choose a some basepoint
x ∈ X, then π≤1(X) is canonically equivalent to Bπ1(X,x) and Trans(X) is canonically equivalent to GSet,
where G = π1(X,x).

Furthermore, for any covering p:T → X we may decompose T into its connected components. Such a
decomposition corresponds (in the category GSet) to the decomposition of a G-set into a disjoint union of
transitive G-sets (a G-set X is transitive if for any x, x′ ∈ X there is g ∈ G such that g · x = x′). Again, we
lose no generality if we assume T to be connected. Thus the category of connected coverings of a connected
base X is equivalent (canonically once we choose a basepoint x ∈ X) to the category GSetTrans of transitive
G-sets, where G = π1(X,x).

We now give a more concrete description of the category of transitive G-sets for any group G.

Proposition 10.35. Given a group G, the category GSetTrans of transitive G-sets is equivalent to the
category whose objects

We now illustrate the power of the three languages explained above by giving a simple proof of the
existence of universal coverings.

Proposition 10.36. Any object X ∈ GoodTop admits a universal covering, which is an object p ∈ Cov/X
(i.e., p:T → X is a covering map) such that π0(p):π0(T ) → π0(X) is an isomorphism and whose total
space T has a property that any continuous map S1 → T extends to a continuous map D2 → T , i.e., any
circle can be filled by a disk. (If X is path-connected, this amounts to saying that T is simply connected.)

Proof. It suffices to treat the case π0(X) = {∗}, so π≤1(X) is (noncanonically) equivalent to BG for some G
(which can be taken to be the fundamental group of X with respect to any basepoint of X). In this case,
the category Trans(X) is equivalent to GSet. The latter category contains the left regular action of G (on
itself), i.e., the pair (G, ρ), where ρ:G→ ΣG acts via g · s: = gs for any g ∈ G and s ∈ G. This G-set gives
us an object in Trans(X), hence an object in Cov/X, which is the universal cover of X.

Limits and colimits

11 Products

We are familiar with such constructions as the product of sets, groups, topological spaces. As it turns
out, these are all instances of a single categorical construction.

Definition 11.1. Given a category C and a family {Xi}i∈I of objects in C, the product of {Xi} (if it exists)
is the following collection of data that satisfies the following properties.
• An object Y ∈ C, commonly denoted

∏
i∈I Xi.

• For each i, a projection morphism pi:Y → Xi.
• For any object Y ′ ∈ C and any family of morphisms {p′i:Y ′ → Xi} there is a unique morphism f :Y ′ → Y
such that pif = p′i for all i.

Example 11.2. Suppose I = {0, 1}. The product of {X0, X1} is typically denoted X0 × X1. It has two
projection maps p0:X0 ×X1 → X0 and p1:X0 ×X1 → X1. If C = Set, then X0 ×X1 = {(x0, x1) | xi ∈ Xi}
is the set of all ordered pairs of elements of X0 and X1. We have p0(x0, x1) = x0 and p1(x0, x1) = x1. Used in

11.7.

Special indexing classes I give rise to special types of products:
• If I is a set, we talk about small products.
• If I is a finite, infinite, countable, uncountable set, we talk about finite, infinite, countable, uncountable
products.
• If I has two elements, we talk about binary products, or sometimes simply products.
• If I has a single element, we will see below that p:Y → X is an isomorphism, so this case is trivial.
• If I is empty, we talk about terminal objects (see below).

30



Remark 11.3. There is no reason why products must exist, and below we will see that the category of
fields does not have any products, excluding the case when I has a single element.

Example 11.4. If the indexing class I is empty, then the definition of an I-indexed product boils down to
saying that the product of an empty family is an object Y ∈ C such that for any object Z ∈ C there is a
unique morphism Z → Y . We refer to such object as the terminal object of C and denote it by 1.

Remark 11.5. Suppose Y and Y ′ are terminal objects in the same category C. By definition of terminal
object, there is exactly one morphism of the form y:Y → Y , f :Y → Y ′, g:Y ′ → Y , y′:Y ′ → Y ′. On
the other hand, idY :Y → Y , idY ′ :Y ′ → Y ′, gf :Y → Y , fg:Y ′ → Y ′ are morphisms, so we must have
idY = y = gf and idY ′ = y′ = fg. In other words, f and g are mutually inverse isomorphisms. Thus any
two terminal objects in the same category are isomorphic, and the isomorphism itself is unique. This is the
reason why we talk about the terminal object of C above: although the terminal object is not unique, it is
unique up to a unique isomorphism, which is all what we really care about. For instance, in the category
of groups the terminal object is the group with one element. Even though there is more than such group
because there are many sets with one element, they are all uniquely isomorphic to each other. There is no
reason for terminal object to exist, though: for instance, the category of fields has no terminal object.

Remark 11.6. Suppose C is a category and {Xi}i∈I is an I-indexed family of objects in C. Consider
the category ConeX , whose objects are pairs (Y, {pi}), where Y ∈ C and pi:Y → Xi, and morphisms
(Y ′, {p′i}) → (Y, {pi}) are morphisms f :Y ′ → Y such that p′i = pif for all i ∈ I. The product of {Xi}, if
it exists, is the terminal object in this category. In particular, in light of the above remark, the product of
{Xi} is unique up to a unique isomorphism.

Remark 11.7. We return to Example 11.2. We glossed over the definition of ordered pair and the existence
of X0 × X1. In traditional Zermelo-style set theory all objects are sets, so ordered pairs must be encoded
as sets. There are many different definitions of ordered pairs in terms of sets. For instance, one can
take (x0, x1) = {{{x0}, ∅}, {{x1}}} (Wiener) or (x0, x1) = {{x0}, {x0, x1}} (Kuratowski). Both of these
definitions satisfiy the following property of ordered pairs: (x0, x1) = (x′

0, x
′
1) if and only if x0 = x′

0 and

x1 = x′
1. As for existence, using the first definition we see that (x0, x1) ⊂ 22

X0∪X1
, whereas for the second

definition we have (x0, x1) ⊂ 2X0∪X1 . This allows us to define X0 × X1 = {z ∈ 22
2X0∪X1

| ∃x0, x1: z =

(x0, x1) ∧ xi ∈ Xi} (using the first definition; for the second definition we take z ∈ 22
X0∪X1

). Thus the
existence of binary products of sets follows from the axioms of separation, power set, pair, and extensionality.

Remark 11.8. The case of finite products of sets can be treated similarly to the case of binary products.
The product of {X0, . . . , Xn−1} is denoted X0× · · ·×Xn−1. It can be written as {(x0, . . . , xn−1) | xi ∈ Xi},
and the projection map pi sends (x0, . . . , xn−1) to xi. Of particular interest is the case n = 0: the product
of the empty family of sets is a set consisting of a single element, namely, the empty tuple (). This singleton
set is the terminal object in the category of sets.

Remark 11.9. Suppose we have no knowledge of ordered pairs. How could one guess what X0×X1 should
be just from its universal property? We have already seen that elements of any set Y are in canonical
bijection with morphisms {∗} → Y in the category of sets, where {∗} denotes some arbitrary fixed singleton
set. Using the universal property of X0×X1 we see that elements of X0×X1 are in bijection with morphisms
{∗} → X0×X1, which themselves are in bijection with morphisms {∗} → X0 and {∗} → X1, which themselves
can be identified with elements of X0 and X1. This determines the set X0 ×X1.

Example 11.10. Infinite (small) products of sets are constructed in a similar fashion. Given a family {Xi}
of sets, we set

∏
i Xi = {f : I →

⋃
i Xi | ∀i ∈ I: f(i) ∈ Xi}. The projection maps pk:

∏
i Xi → Xk are given

by evaluation: pk(f) = f(k). Given a family of functions p′i:Y → Xi, the (unique) function f :Y →
∏

i Xi

such that pif = p′i is given by f(y)(i) = p′i(y).

Example 11.11. Suppose Xi 6= ∅ for all i ∈ I. Then
∏

i Xi 6= ∅ if and only if the axiom of choice is satisfied
for the family {Xi}.

Example 11.12. If the indexing family I is a proper class, the product
∏

i Xi of an I-indexed family
{Xi} need not exist. For instance, take Xi = {0, 1}. The elements of the set

∏
i Xi, if it exists, should

be in bijection with I-indexed families of elements of {0, 1}, which can be identified with subclasses of I.
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Subclasses of the proper class I themselves form a proper class, therefore
∏

i Xi does not exist. If I is a
proper class, then

∏
i Xi does exist in some situations. If Xi = ∅ for some i, then

∏
i Xi = ∅. If Xi is a

singleton set away from some subset (and not just a subclass) I ′ ⊂ I, then
∏

i Xi
∼=
∏

I′ Xi.

From now on we will concentrate on small products, whereas the case of products indexed by a proper
class can be treated similarly to the above remark.

11.13. Algebra

Example 11.14. In the category of groups small products always exist. Indeed, homomoprhisms of groups
Z → G can be identified with elements of G. Consider a family {Gi} of groups with the underlying sets
U(Gi), where U :Group → Set is the forgetful functor. By the universal property of products, the product∏

i Gi, if it exists, must satisfy U(
∏

i Gi) ∼=
∏

i U(Gi), i.e., the underlying set of product is the product of
underlying sets. Using the same trick with homomorphisms from Z, we see that U(pi) must be the projection
map

∏
i U(Gi) → U(Gi). The projection maps are homomorphisms of groups, and this forces the group

operations on
∏

i U(Gi) to be defined indexwise. Once again, we managed to discover what the product
must be via simple applications of the universal property.

Two special cases deserve to be mentioned: of course, the product of a two-element family of groups
{G0, G1} is their usual group-theoretic product G0 × G1. The product of the empty family is the terminal
group, i.e., the group with one element.

Nothing in the above example is specific to groups. Exactly the same argument works for rings, modules,
monoids, and other algebraic structures that are defined using only algebraic identities. Such structures are
known as varieties of algebras.

Fields do not form a variety of algebras. Nonzero elements in a field must form a group with respect to
multiplication, and it is not possible to have an algebraic identity that is true only for some elements. More
formally, in any variety of algebras products must exist, which is false for the category of fields.

Nonexample 11.15. In the category of fields only products of one-element families exist.

11.16. General topology

Example 11.17. In the category of topological spaces products can be computed as follows. First, observe
that continuous functions ∗ → X, where X ∈ Top and ∗ denotes the singleton topological space, are in
bijection with the points of X. Thus the points of X0 × X1 are in bijection with continuous functions
∗ → X0 × X1. The latter are in bijection with pairs of continuous functions ∗ → X0 and ∗ → X1, i.e.,
pairs of points in X0 and X1. Thus U(X0 × X1) ∼= U(X0) × U(X1), where U :Top → Set is the forgetful
functor. Likewise, U sends the projection morphisms X0×X1 → X0 and X0×X1 → X1 to the corresponding
projection functions. Furthermore, the projection maps are continuous, so sets of the form U0 × U1, where
U0 ⊂ X0 and U1 ⊂ X1 are open, must be open in X0×X1. If we take these open sets as a base of a topology
for X0 ×X1, the resulting topological space does satisfy the universal property of a product, which in this
case boils down to saying that for any continuous maps Y → X0 and Y → X1 the induced map Y → X0×X1

is also continuous, which follows immediately from the fact that the sets U0 × U1 form a base of X0 ×X1.

11.18. Functional analysis

Example 11.19. In the category Ban1 small products exist and can be computed as follows. Observe
that morphisms C → X for some X ∈ Ban1 are in bijection with the elements of the unit ball of X. If∏

i Xi exists, its unit ball must be isomorphic to MorBan1(C,
∏

i Xi) ∼=
∏

i MorBan1(C, Xi) ∼=
∏

i(Xi)≤1. In
particular, we have U(

∏
i Xi) ⊂

∏
i U(Xi), where U :Ban1 → Set is the forgetful functor, and the inclusion

is proper. Reconstructing a Banach space from its unit ball
∏

i(Xi)≤1 we get that
∏

i Xi is a Banach space
such that U(

∏
i Xi) is the subset of

∏
i U(Xi) consisting of those tuples f such that i 7→ ‖f(i)‖ is a bounded

function. Algebraic operations are defined indexwise. The norm of f ∈
∏

i Xi is defined as supi∈I ‖f(i)‖,
which in fact is forced upon us by the fact that the projection functions pk are contractive maps.
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11.20. Measure theory

The previous examples were all based on the same scheme: use some simple object S (such as a singleton
set or a one-dimensional vector space) such that morphisms S → X detect various information about X,
such as its underlying set, algebraic operations on this set, projection maps, etc. Further, the fact that the
projection maps must be morphisms in the category allowed us to recover any remaining structure (this was
the case with topological spaces and Banach spaces).

The situation with the categories Meas and LocMeas is quite different. For starters, there is no mea-
surable space that could play the role of S. Of course, one could try to take S = ({∗}, {∅, {∗}}, {∅} or
S = ({∗}, {∅, {∗}}, {∅, {∗}}. The first takes the discrete singleton measurable space. Morphisms S → X can
be identified with atoms of X, i.e., points x ∈ X such that {x} /∈ N . This tells us that the set of atoms of a
product of measurable spaces is the product of sets of atoms of individual factors. However, the set of atoms
tells us very little about the measurable space, for instance, Lebesgue(R) has no atoms. The second choice
of S is even worse: it is isomorphic to (∅, {∅}, {∅}), and there is exactly one morphism S → X for any X,
which reveals no information about X whatsoever.

However, we can still guess that one can construct the product (X0,M0, N0)× (X1,M1, N1) in the form
(X0 ×X1,−,−) and then try to guess what the blanks should be assuming that the projection morphisms
are represented by the set-theoretical projection functions. Indeed, this immediately tells us that sets of the
form m0 ×m1 must be measurable for any m0 ∈ M0 and m1 ∈ M1, whereas sets of the form n0 ×m1 and
m0 × n1 must be negligible for any n0 ∈ N0 and n1 ∈ N1.

Proposition 11.21. The product of a countable family {(Xi,Mi, Ni)}i∈I of measurable spaces can be
computed as (

∏
i Xi,M,N) with projection maps pi:

∏
k Xk → Xi, where N is the σ-ideal generated by the

sets p−1
i (n) for all n ∈ Ni and i ∈ I and M is the σ-algebra generated by N and the sets p−1

i (m) for all
m ∈Mi and i ∈ I.

Proof. The maps pi are morphisms of measurable spaces by definition of M and N . We now verify the
universal property for a given (Y,MY , NY ) and morphisms fi: (Y,MY , NY ) → (Xi,Mi, Ni). For existence,
observe that the tuple (fi): (Y,MY , NY ) →

∏
i(Xi,Mi, Ni) is a morphism by definition of M and N . For

uniqueness, suppose f, g: (Y,MY , NY ) →
∏

i(Xi,Mi, Ni) are morphisms such that pif = pig for all i ∈ I.
If we fix some representatives for f and g, this means that some pif = pig on a conegligible set, whose
preimage under pi is also conegligible. Now f = g on the (countable) intersection of these conegligible sets,
hence f and g are representatives of the same morphism.
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12 Coproducts

Coproducts are defined as products in the opposite category.

Definition 12.1. Given a category C and a family {Xi}i∈I of objects in C, their coproduct
∐

i∈I Xi is the
product of {Xi} in Cop.

We unfold this definition to make it easier to see what is going on. The coproduct consists of an object
Y =

∐
i∈I Xi in C together with a family of injection morphisms ιi:Xi → Y (which need not be injections

in the sense of set theory) such that the following universal property is satisfied: for any object Y ′ ∈ C with
morphisms ι′i:Xi → Y ′ there is a unique morphism f :Y → Y ′ such that fιi = ι′i for all i ∈ I.

Definition 12.2. The initial object in a category C is the coproduct of the empty family, i.e., an object
0 ∈ C such that for any object Y ∈ C there is a unique morphism 0→ Y .

Example 12.3. Suppose C = Set. Then we can take
∐

i Xi =
⋃

i Xi×{i} and ιi(x) = (x, i) for any x ∈ Xi.
In this case the coproduct is known as the disjoint union of Xi.

Example 12.4. If C = Top, then U(
∐

i Xi) =
∐

i U(Xi). The topology on
∐

i U(Xi) can be recovered by
taking Y to be the Sierpiński space, i.e., {0, 1} with the base of open sets {{1}}. Maps into Y are in bijection
with open subsets of the source, which tells us that open subsets in

∐
i U(Xi) are precisely unions of ιi(U),

where U ⊂ Xi is open.

Example 12.5. If C = Ab, more generally, ModR for some ring R, then
∐

i Xi can be computed as the
R-module of finitely supported functions I →

∐
i U(Xi) with indexwise operations. If I is finite, then

∐
i Xi

is in fact isomorphic to
∏

i Xi.

Example 12.6. If C = Group, then
∐

i Xi can be described as a group whose elements are finite tuples
of elements in Xi and their formal inverses with composition given by concatenation, modulo the relations
x · x−1 = e. In particular,

∐
i Z is known as the free group on I.

Example 12.7. If C = CRing, then
∐

i Xi is also known as the (infinite) tensor product of Xi.

Nonexample 12.8. If C = Field, no nonsingleton coproducts exist, essentially for the same reason as
products. If we restrict to the full subcategory of fields of some fixed characteristic p, the resulting category
does have an initial object: the prime field of characterstic p, i.e., Z/pZ for p 6= 0 and Q for p = 0.
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13 Equalizers

Equalizers generalizes notions such as kernels of groups and fixed points of maps.

Definition 13.1. Suppose C is a category and f, g:X → Y is a pair of parallel morphisms in C. The
equalizer of f and g is a morphism e:W → X such that fe = ge and for any other morphism e′:W ′ → X
such that fe′ = ge′ there is a unique morphism h:W ′ →W such that eh = e′.

Remark 13.2. Just like in the case of products, we can define the equalizer of f and g as the terminal
object in a certain category Forkf,g, whose objects are morphisms e:W → X in C such that fe = ge (i.e.,

forks W
e−−−→ X −−f−−−→−−−−g−→ Y ) and morphisms from e:W → X to e′:W ′ → X are morphisms h:W → W ′

in C such that e′h = e. Used in 13.3, 14.2.

Example 13.3. The equalizer of f and g in the category C = Set can be computed as W = {x ∈ X | f(x) =
g(x)} with its canonical inclusion map into X. Indeed, if e′:W ′ → X is such that fe′ = ge′, then f and g
are equal on the image of e′, or in other words, the image of e′ is contained in {x ∈ X | f(x) = g(x)} = W .
Therefore, there is a unique map h:W ′ →W such that eh = e′, namely, the corestriction of e′ to W ⊂ X. In
terms of forks, we see that the category Forkf,g is equivalent to the category Set/W (whose terminal object
is id:W →W ).

Example 13.4. The set of fixed points of a function f :X → X is the equalizer of f and idX , i.e., {x ∈ X |
f(x) = x}.

Example 13.5. The equalizer of f and g in the category C = Group can be computed as the subgroup
W = {x ∈ X | f(x) = g(x)} with its canonical inclusion map into X. The same is true for any other
varieties of algebras e.g., Ab, ModR, Vectk, Ring, CRing, Algk.

Example 13.6. The equalizer of f and g in the category C = Ab, Vectk, or ModR can be computed as the
set W = {x ∈ X | f(x) = g(x)} with its induced operations and the canonical inclusion map into X. Indeed,
W ∈ C because W is closed under all operations like addition and multiplication by scalars becuase f and g
are homomorphisms. The remainder of the argument proceeds in the same way as for C = Set.

Example 13.7. The equalizer of f and g in the category C = Top can be computed as the subspace
W = {x ∈ X | f(x) = g(x)} (with the induced topology) with its canonical inclusion map into X.

Example 13.8. Suppose C is an arbitrary category, X ∈ C, and f :X → X. The equalizer W of f and idX
is the fixed points object of f . If C = Set, then W = {x ∈ X | x = f(x)}.

Example 13.9. Suppose C is Ab, Vectk, or ModR. The equalizer of f :X → Y and the zero morphism
0:X → Y is the kernel of f .
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14 Coequalizers

Coequalizers in C are precisely equalizers in Cop. As usual, we unfold the definition.

Definition 14.1. Suppose C is a category and f, g:X → Y is a pair of parallel morphisms in C. The
coequalizer of f and g is a morphism q:Y → Z such that qf = qg and for any other morphism q′:Y → Z ′

such that q′f = q′g there is a unique morphism h:Z → Z ′ such that hq = q′.

Remark 14.2. Coequalizers are precisely initial objects in the category Coforkf,g, defined entirely analo-
gously to Forkf,g.

Example 14.3. Any equivalence relation R on a set X gives rise to a coequalizer diagram

R
p0−−→−−→
p1

X −−→ X/R.

The universal property of coequalizers in this case boils down to precisely the universal propeprty of X/R,
i.e., functions X/R→ Z can be identified with functions f :X → Z such that f(x) = f(x′) whenever x ∼ x′

in R.

Example 14.4. In general, in the category Set the coequalizer of f and g can be computed as the quotient
map Y → Y/R, where R is the equivalence relation on Y generated by f(x) ∼ g(x) for all x ∈ X. The
universal property of the coequalizer in this case coincides with the universal property of the quotient map.

Example 14.5. The quotient topological space X/R of a topological space X with respect to an equivalence
relation R on X is defined as the set X/R equipped with the topology whose open subsets are those subsets
of X/R whose preimage under the quotient map X → X/R is open. The cofork

R
p0−−→−−→
p1

X −−→ X/R

is a coequalizer cofork in the category Top. Here R on the left is equipped with the discrete topology.

Example 14.6. In general, in the category Top the coequalizer of f and g can be computed as the quotient
topological space Y → Y/R, where R is the equivalence relation on Y generated by f(x) ∼ g(x) for all
x ∈ X. The universal property of the coequalizer again coincides with the universal property of the quotient
map.

Example 14.7. In the category Group, the coequalizer of f and g can be computed as follows. First,
observe that the homomorphism q:Y → Z must satisfy q(f(x)) = q(g(x)) for any x ∈ X, in particular,
q(f(x)g(x)−1) = 1, i.e., f(x)g(x)−1 is in the kernel of q. Thus the kernel of q must contain the normal
subgroup N generated by the elements f(x)g(x)−1, i.e., the closure of the set {f(x)g(x)−1 | x ∈ X} under
multiplication, inverses, and conjugations by arbitrary elements of the group Y . We claim that the quotient
homomorphism Y → Y/N is the desired coequalizer. Indeed, by construction, homorphisms Y/N → Z ′ are
precisely those homomorphisms q′:Y → Z ′ that are identity on N , equivalently, identity on f(x)g(x)−1, or
equivalently, q′(f(x)) = q′(g(x)).

Example 14.8. Using an entirely similar argument, the coequalizer of f and g in the categories Ban1 and
Ban can be computed as the quotient map q:Y → Y/N , where N is the norm closure of the linear span of
f(x)− g(x) for all x ∈ X.
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15 Sequential colimits

Recall that N = {0, 1, 2, . . .} denotes the set of natural numbers.

Definition 15.1. Suppose C is a category, {Xi}i∈N is an infinite family of objects in C and ti:Xi → Xi+1

are morphisms in C (sometimes referred to as transition maps). The above data can also be written as

X0
t0−−→ X1

t1−−→ X2
t2−−→ · · ·. The sequential colimit of (X, t) (denoted colimi∈I Xi) is an object U ∈ C

equipped with a family of injection morphisms ιi:Xi → U such that ιi+1ti = ιi for all i ∈ N and the
following universal property is satisfied: if U ′ ∈ C and ι′i:Xi → U ′ satisfy ι′i+1ti = ι′i, then there is a unique
morphism f :U → U ′ such that fιi = ι′i for all i ∈ N.

Remark 15.2. In complete analogy with coproducts and coequalizers, the sequential colimit of (X, t) can
be described as the initial cocone over (X, t). Here a cocone over (X, t) is a pair (U, ι), where U ∈ C and
ιi:Xi → U are such that ιi+1ti = ιi for all i ∈ N. A morphism of cocones (U, ι) → (U ′, ι′) is a morphism
f :U → U ′ in C such that fιi = ι′i for all i ∈ N.

Example 15.3. In the category Set the sequential colimit of (X, t) can be computed as the quotient of∐
i Xi with respect to the equivalence relation generated by (i, x) ∼ (i+ 1, ti(x)), where x ∈ Xi and i ∈ N.

In other words, any element of Xi for any i ∈ N gives an element in the sequential colimit (we say that
x ∈ Xi lives at stage i), and two such elements (i, x) and (j, y) are equivalent if we can send both of them
to a later stage k (k ≥ i and k ≥ j) so that (k, t(t(· · ·x))) = (k, t(t(t(· · · y)))).
Example 15.4. Continuing the previous example, if all transition maps ti:Xi → Xi+1 are inclusions of
sets, then

∐
i Xi can be computed as

⋃
i Xi, with inclusions as the injection maps.

Example 15.5. In the category Group (or any other variety of algebras) the sequential colimit of (X, t)
can be computed by computing the sequential colimit of the underlying sets, i.e., (U(X), U(t)), where
U :Group → Set is the forgetful functor and equipping it with group operations as follows. Given two
elements (i, x) and (j, y), we first replace them by equivalent elements (k, x′) and (k, y′) as explained above.
Then the product of the equivalence classes of (i, x) and (j, y) is defined as the equivalence class of (k, x′y′).
A different choice of k produces the same answer if we use the same trick one more time.

Example 15.6. In the category Top the sequential colimit of (X, t) can be computed by taking the sequential
colimit of underlying sets in Set and equipping it with the topology in which a subset is open if and only if
all of its preimages under the injection maps are open.

16 Sequential limits

Sequential limits are sequential colimits in the opposite category. As usual, we provide an unfolded
definition.

Definition 16.1. Suppose C is a category, {Xi}i∈N is an infinite family of objects in C and ti:Xi+1 → Xi

are morphisms in C (sometimes referred to as transition maps). The above data can also be written as

X0
t0←−− X1

t1←−− X2
t2←−− · · ·. The sequential limit of (X, t) (denoted limi∈I Xi) is the terminal object in the

category ConeX,t of cones over (X, t). Objects in ConeX,t are pairs (U, p), where U ∈ C and pi:Xi ← U are
such that pi = tipi+1 for all i ∈ N. Morphisms (U, p) → (U ′, p′) are morphisms f :U → U ′ in C such that
pif = p′i for all i ∈ N.

Example 16.2. In the category Set the sequential limit of (X, t) can be computed as the subset of
∐

i Xi

consisting of those families (xi)i∈I for which ti(xi+1) = xi for all i ∈ I.

Remark 16.3. If all transition maps are inclusions of sets, then the sequential limit can be computed as
the intersection.

Example 16.4. In the category Top of topological spaces the sequential limit of (X, t) can be computed as
the sequential limit of (U(X), U(t)) in sets (here U :Top → Set is the forgetful functor) equipped with the
topology generated by a subbase of sets given by the preimages of open subsets of Xi under the projection
maps pi.

We illustrate the power of sequential limits and colimits by giving a conceptual explanation of the
topology on compactly supported smooth functions.
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Example 16.5. Consider the category TopVect of topological vector spaces. Sequential limits and colimits
are computed like for vector spaces and topological spaces (taking closures of subspaces whenever quotients
are needed). The topological vector space of compactly supported smooth functions on a smooth manifold M
(e.g., an open subset of Rn) is defined as colimK⊂M limk∈N Ck

K(M,R). Here Ck
K(M,R) is the topological

vector space of k times differentiable functions on M whose support is a subset of K. The set K runs over
a countable system of compact subsets of M that covers M . (We assume M to be second countable here.
Below we will see that the above sequential colimit can be replaced by a filtered colimit over all compact
subsets K ⊂ M .) The maps tk: C

k+1
K (M,R) → Ck

K(M,R) are inclusions. The limit limk∈N Ck
K(M,R)

has C∞
K (M,R) as its underlying vector space. The topology is generated from a local subbase of open

neighborhoods of zero given by {f ∈ C∞
K (M,R) | ‖f‖k < ϵ} for all k ∈ N and ϵ > 0, where ‖ − ‖k is

the norm in Ck. The topological vector space C∞
K (M,R) is not a Banach space even though Ck

K(M,R)
is a Banach space for all k ∈ N. The maps C∞

K (M,R) → C∞
K′(M,R) for K ⊂ K ′ are inclusions. The

colimit colimK⊂M C∞
K (M,R) has C∞

cs (M,R), the space of compactly supported smooth functions on M , as
its underlying vector space. A subset of C∞

cs (M,R) is open if its intersections with C∞
K (M,R) are open for

all compact K ⊂M .

17 Limits and colimits

Definition 17.1. A diagram in a category C is a functor D: I → C, where I is the indexing category. If I
is small, finite, and so on, we talk about small diagrams, finite diagrams, and so on.

Example 17.2. Consider the discrete category on a set I: its objects are elements of I and the only
morphisms are identity morphisms. An I-indexed diagram in C is precisely the data we used to define
products and coproducts in C, i.e., an I-indexed family of objects in C.

Example 17.3. Consider the category {0 −−→−−→ 1} with two objects 0 and 1 and two nonidentity morphisms
from 0 to 1. An I-indexed diagram in C is precisely the data we used to define equalizers and coequalizers
in C, i.e., two objects X,Y ∈ C and two parallel morphisms f, g:X → Y .

Example 17.4. Turn the poset N = {0 < 1 < 2 < 3 < · · ·} of natural numbers into a category as explained
in Example 9.37. An N-indexed diagram in C is precisely the data we used to define sequential colimits

in C, i.e., X0
t0−−→ X1

t1−−→ X2
t2−−→ · · ·. Likewise, an Nop-indexed diagram in C is the data used to define

sequential limits in C, i.e., X0
t0←−− X1

t1←−− X2
t2←−− · · ·.

Definition 17.5. Given a diagram D: I → C, the category ConeD of cones over D is defined as follows.
The objects of ConeD are pairs (U, {pi}i∈I), where U ∈ C and for any object i ∈ I the projection morphism
pi:U → D(i) is a morphism in C such that for any morphism t: i → j in I we have D(t) ◦ pi = pj . A
morphism (U, p)→ (U ′, p′) is a morphism f :U → U ′ in C such that p′if = pi for all i ∈ I. Used in 11.6, 16.1, 17.5,

17.7.

Definition 17.6. The category CoconeD of cocones over a diagram D is defined analogously, using injection
morphisms ιi:D(i)→ U such that ιi = ιj ◦D(t) and morphisms of cocones satisfying fιi = ι′i. Used in 17.7.

Definition 17.7. The limit (if it exists) of a diagram D: I → C in a category C is the terminal object in the
category ConeD, typically denoted as limI D and by abuse of notation identified with its underlying object U
in C. Likewise, the colimit of D is the initial object in the category CoconeD, typically denoted as colimI D.
Used in 15.1, 16.1, 16.5, 20.2, 20.3, 20.5, 21.2, 21.3, 21.4, 23.7, 23.7*, 27.0*, 27.7, 28.2.

Example 17.8. The three types of diagrams considered above yield (co)products, (co)equalizers, and se-
quential (co)limits.
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18 Pullbacks

Consider the indexing category I = {1→ 0← 2}.
I-indexed limits are known as pullbacks.

Definition 18.1. The pullback X1 ×X0
X2 of a diagram X1

t1−−→ X0
t2←−− X2 in a category C is the limit of

associated functor I → C.

Remark 18.2. Unfolding the above definition, one notices some redundancy. Specifically, the definition of
a cone involves three morphisms p0:Y → X0, p1:Y → X1, and p2:Y → X2 such that t1p1 = p0 = t2p2. This
tells us that the data of p0 is redundant and it suffices to consider p1 and p2 such that t1p1 = t2p2. This can
be presented as a commutative square

Y
p1−−−→ X1yp2

yt1

X2
t2−−−→ X0.

Example 18.3. In the category Set we have X1×X0
X2 = {(x1, x2) ∈ X1×X2 | t1(x1) = t2(x2)}, the fiber

product of X1 and X2 over X0.

Example 18.4. Suppose t2:X2 → X0 is an inclusion of sets, i.e., X2 ⊂ X0. Then X1 ×X0
X2 can be

computed as t−1
1 (X2). The map p1: t

−1
1 (X2) → X1 is the canonical inclusion, whereas p2: t

−1
1 (X2) → X2 is

the restriction of t1.

19 Pushouts

Pushouts are pullbacks in the opposite category. Consider the indexing category I = {1← 0→ 2}.

Definition 19.1. The pushout X1 tX0
X2 of a diagram X1

t1←−− X0
t2−−→ X2 in a category C is the colimit

of associated functor I → C.

Example 19.2. In the category Set we have X1tX0
X2 = (X1tX2)/〈t1(x1) ∼ t2(x2) | (x1, x2) ∈ X1×X2〉,

where 〈· · · | · · ·〉 denotes the equivalence relation generated by a given set of pairs.

Example 19.3. In the category Group we haveX1tX0
X2 = (X1tX2)/〈t1(x1)

−1t2(x2) | (x1, x2) ∈ X1×X2〉,
where 〈· · · | · · ·〉 denotes the normal subgroup generated by given elements.

Example 19.4. In the category CRing we have X1 tX0
X2 = X1 ⊗X0

X2, the tensor product of X1 and X2

over X0.
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20 Expressing limits via equalizers and products

Proposition 20.1. For any diagram D: I → C, the equalizer E of
∏

k∈I D(k) −f−−→−−−g→
∏

γ:i→j D(j), if it
exists, is the limit of D. Here the components of f and g are fγ = pj :

∏
k∈I D(k) → D(j) and gγ =

D(γ)◦pi:
∏

k∈I D(k)→ D(j). The projection maps are given by projecting the equalizer first to
∏

k∈I D(k),
and then using the projection maps for the product.

Proof. Morphisms X → E can be identified with morphisms h:X →
∏

k∈I D(k) such that fh = gh.
Morphisms h:X →

∏
k∈I D(k) can be identified with a family of morphisms hk:X → D(k). The equality

fh = gh can be likewise decomposed into a family of equalities (fh)γ = (gh)γ for each γ: i → j. Unfolding
the definitions of f and g, this becomes pjh = D(γ)pih. Decomposing h into its components, this becomes
hj = D(γ)hi. Assembling all of this together, a morphism X → E is the same data as a family of morphisms
hk:X → D(k) such that hj = D(γ)hi for all γ: i→ j. This is precisely what a cone over D is. This completes
the proof of the fact that E with its projection maps satisfies the universal property of a limit.

Corollary 20.2. In the category Set we have limD = {x ∈
∏

k∈I D(k) | D(γ)(xi) = xj}, where γ: i → j
is an arbitrary morphism in I. The projection maps are obtained by restricting the projection maps of∏

k∈I D(k).

Corollary 20.3. In any variety of algebras, e.g., Ab, Vectk, ModR, Group, Algk (but not Field), we can
computed limD by computing limU ◦ D, i.e., the limit of the underlying sets, and equipping it with the
indexwise algebraic operations.

By applying the above results to Cop, we get analogous descriptions of colimits.

Proposition 20.4. For any diagram D: I → C, the coequalizer E of
∐

γ:i→j D(i) −f−−→−−−g→
∐

k∈I D(k),
if it exists, is the colimit of D. Here the components of f and g are fγ = ιi:D(i) →

∐
k∈I D(k) and

gγ = ιj ◦D(γ):D(i) →
∐

k∈I D(k). The injection maps are given by the injection maps for the coproduct
that are further composed with the canonical injection map to the coequalizer.

Corollary 20.5. In the category Set we have colimD =
∐

k∈I D(k)/〈D(γ)(xi) = xj | γ: i → j〉, where
〈· · · | · · ·〉 denotes the equivalence relation generated by the given set of pairs. The injection maps are
obtained from the injection maps of

∐
k∈I D(k) by composing with the quotient map.
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21 Complete and cocomplete categories

Definition 21.1. A category C is (co)complete if any small diagram D: I → C has a (co)limit

Example 21.2. The category Set is (co)complete. Indeed, previously we have seen that

limD =

{
x ∈

∏
i∈I

D(i)

∣∣∣∣ ∀γ: i→ j : D(γ)(xi) = xj

}

and

colimD =

(∐
i∈I

D(i)

)/
〈ιi(s) ∼ ιj(D(γ)(s)) | γ: i→ j, s ∈ D(i)〉.

Example 21.3. The category Group and any other variety of algebras, like Ring, CRing, Vectk, ModR, AlgR
(but not Field) is (co)complete. Indeed, previously we have seen that limD can be computed as lim(U ◦D)
(here U :Group→ Set is the forgetful functor) and equipping the result with indexwise algebraic operations.
Likewise, colimD can be computed as the quotient of the free object on colim(U ◦D) by all possible relations
present in the original objects D(i).

Example 21.4. The category Top of topological spaces is (co)complete. Both limD and colimD can be
computed by equpping lim(U ◦ D) and colim(U ◦ D) with a certain topology. Here U :Top → Set is the
forgetful functor. For limD we take the topology generated by the subbase of preimages of open subsets of
U(D(i)) under the projection map pi: lim(U ◦D)→ U(D(i)). For colimD we declare the open subsets to be
those subsets whose preimages under all injection maps ιi:U(D(i))→ colim(U ◦D) are open in D(i).

Example 21.5. The category Ban1 of Banach spaces and contractive maps is (co)complete. On the other
hand, the category Ban of Banach spaces and bounded maps is finitely (co)complete, i.e., admits finite
(co)limits, but does not admit infinite (co)products, so is not complete or cocomplete.

Example 21.6. The category Field of fields is not complete or complete, in fact, it has no intial or terminal
object and no binary (co)products.

Remark 21.7. The above examples may create an impression that if a category is complete or cocomplete,
then it is both complete and cocomplete. This is not true, but counterexamples are rather convoluted. The
reason for this is that requiring the category to be accessible, a very mild restriction, does ensure that one
of the properties implies both of them.

22 Preservation of limits and colimits by functors

Limits and colimits are the most common operations that one can perform on objects and morphisms
of a category. Thus it is natural to look at functors that preserve these operation.

Definition 22.1. Suppose D: I → C is a diagram that admits a (co)limit. We say that a functor F:C→ D
preserves this (co)limit if applying F to the components of a (co)limit (co)cone over D produces a (co)limit
(co)cone over F ◦D.

Example 22.2. The forgetful functor U :Group→ Set preserves limits and filtered colimits. This boils down
to saying that the underlying set of the limit or filtered colimit of a diagram of groups is the limit or filtered
colimit of the diagram of underlying sets. This follows immediately from the explicit constructions of these
limits and colimits.
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23 Filtered colimits

Filtered colimits are a convenient generalization of sequential colimits. We start by replacing natural
numbers with an arbitrary poset.

Definition 23.1. A poset P is directed if any finite subset of P has an upper bound. The latter condition
can be reformulated by saying that P 6= ∅ and for any x, y ∈ P there is z ∈ P such that x ≤ z and y ≤ z.

Definition 23.2. A directed diagram is a diagram D: I → C whose indexing category I is the category
associated to some directed poset as in Example 9.37.

The notion of a directed diagram can be extended slightly in a way that is convenient for various
applications.

Definition 23.3. A category I is filtered if any finite diagram D: J → I admits a cocone. This is equivalent
to the following three conditions (in which we take J to be empty, {0, 1}, or {0→→ 1}):
• I is nonempty;
• for any two objects i and j in I there is an object k ∈ I and two morphisms i→ k and j → k;
• for any two objects i and j in I and any two morphisms f, g: i → j there is an object k ∈ I and a
morphism h: j → k such that hf = hg.

Example 23.4. The category associated to any directed poset is filtered. In particular, sequential colimits
are filtered colimits.

Definition 23.5. A diagram D: I → C is filtered if I is a filtered category.

A crucial example distinguishing filtered categories from directed categories is the splitting of idempo-
tents.

Example 23.6. Consider the category I with one object ∗ and one nonidentity morphism e: ∗ → ∗ such
that e ◦ e = e. Such morphisms are known as idempotents. The category I is filtered. It is not induced by
any poset because such categories can have at most one morphism between any pair objects, whereas here we
have two. The (filtered) colimit of a D: I → C is a splitting of D(e), i.e., an object X ∈ C with an injection
map ι:D(∗)→ X and a (retraction) map r:X → D(∗) (induced by the universal property of a colimit) such
that ιr = idX and rι = e. In fact, such a triple (X, r, ι) exists if and only if D admits a colimit. This allows
us to show that I-indexed colimits are preserved by any functor because the conditions ιr = idX and rι = e
are preserved by functoriality. Furthermore, X is also the limit of the same diagram, if we take r:X → D(∗)
to be the projection map.

Another important property of filtered colimits is that they commute with finite limits in many cate-
gories, such as the category of sets, and, as explained, locally finitely presentable categories, a large class of
categories that includes varieties of algebras.

Proposition 23.7. Suppose D: I × J → Set is a diagram in the category of sets, where I is a filtered
category and J is a finite category. The canonical map M : colimI limJ D → limJ colimI D induced by the
universal property of limits and colimits is an isomorphism.

Proof. To show surjectivity we pick an arbitrary element in the right side and show it comes from the left
side. Suppose x is such an element, with components xj ∈ colimI D(−, j). An element in colimI D(−, j) is
an equivalence class of some pair (i, y ∈ D(i, j)), where i can be replaced by any i′ such that i ≤ i′. Two such
elements are equal if they can be replaced by equivalent equal elements. In particular, any finite collection
of elements can be replaced by equivalent elements with the same i, using the first two properties of filtered
categories listed above. Since J is finite, all xj simultaneously can be represented as xj = [(i, yj)], where
i ∈ I does not depend on j. If we increase i further, we can also assume that for any morphism f : j → j′

in J we have D(−, f)(yj) = yj′ . Thus the elements yj assemble together into y ∈ limJ D(−, j). The image
of (i, y) under M is precisely x.

For injectivity suppose (i, y) and (i′, y′) are two elements in colimI limJ D with the same image under M .
As before, we may assume that i = i′. Having the same image under M means the individual J-components
are equal, i.e., (i, yj) = (i, y′j) in colimI D for all j ∈ J .
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24 Sifted colimits

Representable functor theorem

25 Representable functors

Definition 25.1. Suppose C is a category and X ∈ C. The represented functor of X is a functor
Hom(−, X):Cop → Set that sends P ∈ C to Hom(P,X) ∈ Set and f :P → Q to Hom(f,X):Hom(Q,X)→
Hom(P,X). A functor F:Cop → Set is representable if it is isomorphic to a functor Hom(−, X) for some
object X ∈ C, which will be shown below to be unique up to an isomorphism, and which is referred to as the
representing object of F. Dually, we have the corepresented functor of X, namely, Hom(X,−):C→ Set, and
we say that a functor F:C→ Set is corepresentable if it is isomorphic to Hom(X,−) for some corepresenting
object X ∈ C.

Example 25.2. A representable functor Cop → Set or a corepresentable functor C → Set always preserve
limits. This is an immediate consequence of the universal property of limits in Cop (i.e., colimits in C)
and limits in C. For instance, for binary (co)products we have bijections Mor(X,A × A′) → Mor(X,A) ×
Mor(X,A′) and Mor(A tA′, X)→Mor(A,X)×Mor(A′, X).

Example 25.3. Suppose V and W are two vector spaces, i.e., objects in Vectk. (More generally, we can
work with ModR for any commutative ring R.) We define a functor F:Vectk → Set as follows. For any
A ∈ Vectk we set F (A) to be the set of k-bilinear maps V,W → A, i.e., functions b:U(V )×U(W )→ U(A)
such that for any v ∈ U(V ) the function b(v,−):U(W ) → U(A) that maps w 7→ b(v, w) is k-linear and for
any w ∈ U(W ) the function b(−, w):U(V )→ U(A) that maps v 7→ b(v, w) is also k-linear. For any morphism
f :A→ A′ we set F (f):F (A)→ F (A′) to be the function that sends b:V,W → A to its composition with f ,
i.e., v, w 7→ f(b(v, w)). We will show below that the functor F is corepresentable. Its corepresenting object
is denoted by V ⊗k W (or simply V ⊗W if no ambiguity can arise) and is known as the tensor product of V
and W over k. Elements of V ⊗kW are known as tensors. The fact that V ⊗kW is the corepresenting object
of F can be reformulated by saying that k-linear maps V ⊗k W → A are in natural bijective correspondence
with k-bilinear maps V,W → A. In particular, the identity map V ⊗kW → V ⊗kW corresponds to a bilinear
map V,W → V ⊗k W , which is known as the universal bilinear map. The image of (v, w) under this map is
denoted by v ⊗k w, or simply v ⊗ w if no ambiguity can arise.

Example 25.4. Suppose X and Y are objects in Top. Consider the functor F:Topop → Set defined as
follows. For any A ∈ Top the set F(A) consists of continuous maps A×X → Y . For any morphism A→ A′

in Top the induced function sends A×X → Y to its precomposition with A×X → A′ ×X. Below we will
see that the functor F preserves limits if and only if the functor − ×X:Top → Top, A 7→ A ×X preserves
colimits (equivalently, coequalizers). The latter in its turn holds if and only if X is core-compact : for any
open U ⊂ X we have U =

⋃
V�U V , where V � U means that any open cover of U admits a finite subcover

of V . If X is Hausdorff, it is core-compact if and only if it is locally compact. The representing object
is usually denoted Y X . By definition, continuous maps A → Y X are in bijection with continuous maps
A ×X → Y . In particular, points of Y X are continuous maps X → Y . The topology on Y X is generated
by the subbase consisting of sets OU,V = {f :X → Y | U � f−1(V )}, where U ⊂ X and V ⊂ X are open
subsets. If X and Y are Hausdorff, then this topology coincides with the compact-open topology. Thus one
can see the above universal property of Y X as a motivation for the compact-open topology.
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26 The Yoneda lemma

Suppose we have a representable functor F:Cop → Set. How could we construct its representing object?
To answer this question, we first investigate how C embeds into Fun(Cop, Set).

We start by introducing a new notation that will make it easier to write down formulas with representable
functors.

Definition 26.1. The Yoneda embedding functor Y:C→ Fun(Cop, Set) sends an object X ∈ C to its repre-
sented functor Mor(−, X):Cop → Set and a morphism X → X ′ in C to the induced natural transformation of
represented functors Mor(−, X)→Mor(−, X ′) whose components are the maps Mor(A,X)→Mor(A,X ′)
given by composition with X → X ′.

We now turn to examples of Yoneda embeddings. The examples below all have a single unifying theme:
starting from an arbitrary category C, one can construct a category of “generalized objects glued from objects
of C”. Formally, such a generalized object G is specified by defining the abstract set of maps X → G for any
X ∈ C and specifying how a map X → G can be composed with a morphism X ′ → X in C to give a map
X ′ → G. The Yoneda embedding then sends an object W ∈ C to itself, considered now as such a generalized
object: the abstract set of maps X → W can be defined as morphisms X → W in C. Of course, not every
generalized object need to come from C.

Example 26.2. If C is the category of simplices, i.e., finite nonempty linearly ordered sets and order-
preserving maps (objects are {0 < 1 < 2 < · · · < n} for all n ≥ 0 and morphisms are nondecreasing
functions), then Fun(Cop, Set) is known as sSet, the category of simplicial setsm which should be thought
of as a bunch of simplices glued together. The Yoneda embedding sends a simplex to the corresponding
simplicial set consisting of that simplex alone.

Example 26.3. If C is the category of finite-dimensional real vector spaces and infinitely-differentiable
functions between them, then Fun(Cop, Set) is the category of generalized manifolds or smooth spaces. It
contains the category of smooth manifolds as a full subcategory. The Yoneda embedding sends a vector
space to itself, now considered as a generalized manifold.

Example 26.4. If C is the category AffSch = CRingop of affine schemes, then the category Fun(Cop, Set) =
Fun(CRing, Set) is the category of “generalized schemes”. It contains the categories of schemes and alge-
braic spaces as full subcategories. The Yoneda embedding sends an affine scheme to itself, considered as a
generalized scheme.

Example 26.5. If C is the category of free commutative rings on finitely many generators, then the category
Fun(Cop, Set) is closely related to the category CRing of all commutative rings, which can be identified with
functors Cop → Set that preserve finite products. Commutative rings can be replaced with any variety of
algebras.

Consider an object X ∈ C and its incarnation Y(X) ∈ Fun(Cop, Set) as a generalized object. Given
another object W ∈ C, we can come up with two different types of “maps” from W to Y(X), namely
(Y(X))(W ) = Mor(W,X) and Y(W ) → Y(X). A priori, these two types of maps may be different, but the
Yoneda lemma shows that they are in fact exactly the same.

Lemma 26.6. (The Yoneda lemma.) For any category C, functor F:Cop → Set, and an object X ∈ C there
is an isomorphism of sets (natural in X) MorFun(Cop,Set)(Y(X), F)→ F(X).

Proof. A natural transformation Y(X) = Mor(−, X) → F has components Mor(Y,X) → F(Y ) for any
Y ∈ C. In particular, taking Y = X yields a function Mor(X,X) → F(X), which we can evaluate on
idX ∈Mor(X,X), obtaining an element of F(X). This defines the morphism from the statement.

Vice versa, an element p ∈ F(X) yields a natural transformation Mor(−, X) → F with components
Mor(Y,X)→ F(Y ) for any Y ∈ C that send a map h:Y → X to the element F(h)(p) ∈ F(Y ).

By inspection, the two natural transformations constructed above are mutually inverse, which completes
the proof.

Proposition 26.7. For any category C the Yoneda embedding functor Y:C → Fun(Cop, Set) is a fully
faithful functor.

44



Proof. Fully faithfulness means that for any X,Y ∈ C the induced map

MorC(X,Y )→MorFun(Cop,Set)(Y(X), Y(Y ))

is an isomorphism. By the Yoneda lemma, the right side can be evaluated as Y(Y )(X) = Mor(X,Y ), which
completes the proof.

27 The canonical diagram of a presheaf of sets

In this section we construct a certain diagram D: I → C from a functor F:Cop → Set such that colimD
exists if and only if F is representable, in which case colimD is a representing object of F.

Definition 27.1. The category of elements El(F) of a functor F:Cop → Set is defined as follows. Objects
are pairs (X, e), where X ∈ C and e ∈ F(X). Morphisms (X, e) → (X ′, e′) are morphisms f :X → X ′ in C
such that e = F(f)(e′). Associativity and unitality follow from the same properties of C and preservation of
compositions by F. Used in 27.2, 27.4.

Definition 27.2. The Grothendieck construction
∫
F of a functor F:Cop → Set is a functor

∫
F:El(F) → C

that sends (X, e) to X and (X, e)→ (X ′, e′) to X → X ′.

Example 27.3. If F = Mor(−, X), then
∫
F:C/X → C is the forgetful functor.

Remark 27.4. Another way to define El(F) is to say that El(F) is the comma category (defined below) C/F
with respect to the Yoneda embedding Y:C → Fun(Cop, Set). In other words, objects in El(F) are maps
Y(X)→ F and morphisms are maps X → X ′ that make the corresponding triangle commute.

Definition 27.5. The comma category D/A of a diagram D: I → C over an object A ∈ C is defined as
follows. Objects are pairs (i, f), where i ∈ I and f :D(i) → A. Morphisms (i, f) → (i′, f ′) are morphisms
γ: i→ j in I such that f ′D(γ) = f .

Remark 27.6. If D = idC, then the comma category A/D is simply the slice category A/C.

Proposition 27.7. Suppose C is a category and F:Cop → Set is a presheaf of sets on C. The functor F is
representable if and only if colim

∫
F exists. In the latter case, colim

∫
F is a representing object of F and the

cocone over colim
∫
F encodes precisely an isomorphism F→ Y(colim

∫
F).

Proof. If F is represented by X, then
∫
F:C/X → C is the forgetful functor, whose colimit can be computed

by evaluating
∫
F on the terminal object of C/X, i.e., idX :X → X.

28 Compact objects

Definition 28.1. An object X ∈ C is compact if the corepresentable functor Hom(X,−):C→ Set preserves
filtered colimits (equivalently, directed colimits).

Remark 28.2. Unfolding the definition, an object X ∈ C is compact if for any morphism f :X → colimD,
where D: I → C is a directed diagram, we can find some i ∈ I and a morphism g:X → D(i) such that f
equals the composition of g:X → D(i) and ιi:D(i)→ colimD.

Example 28.3. In the category Set, compact objects are precisely finite sets.

Example 28.4. In the category Group (or any variety of algebras), compact objects are precisely finitely
presented objects, i.e., objects specified using finitely many generators and finitely many relations between
them.

Example 28.5. In the category TopOpen of topological spaces and open maps, compact objects are precisely
compact topological spaces. This explains the choice of terminology.
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29 Locally presentable categories and the corepresentable functor theorem

Definition 29.1. A category C is locally presentable if it is cocomplete and there is a set G of small objects
such that any object in C can be presented as a colimit of a diagram D: I → C such that D(i) ∈ G for all
i ∈ I.

Remark 29.2. If C is a category such that Cop is locally presentable, we say that C is locally copresentable.
This is a fairly rare condition in practice.

Theorem 29.3. Suppose C is a locally presentable category. A functor F:C → Set is corepresentable if
and only if it is accessible (i.e., preserves λ-filtered (or λ-directed) colimits for some λ) and continuous, i.e.,
preserves all small limits.

Example 29.4. Arbitrary small limits exist in any locally presentable category.

Example 29.5. Many (if not most) forgetful functors from locally presentable categories preserve limits,
hence are representable. For instance, Group→ Set is representable by Z.

Example 29.6. Commutative differential graded algebras and commutative differential graded C∞-rings
form locally presentable categories.

Example 29.7. Sheafification.

30 Total categories and the representable functor theorem

For the representable functor theorem we need a slight strengthening of the cocompleteness condition
for categories. Recall that a category C is cocomplete if any small diagram D: I → C admits a colimit. Small
means that the class of objects in C is a set, as opposed to a proper class. Total categories, in addition to
having all small colimits, are also required to have certain (but not all) large colimits, i.e., colimits indexed
by a category whose class of objects is a proper class, not a set.

Definition 30.1. The class of connected components Π0(C) of a category C is defined as the coequalizer of
classes* Mor(C) −s−−→−−−t→ Ob(C), where s, t:Mor(C)→ Ob(C) are the source and target maps of C. In other
words, we identify objects in C that are connected by a morphism or a chain of morphisms going in any
direction. Used in 30.2, 30.3.

Definition 30.2. A category C is total if it admits colimits for all diagrams D: I → C such that for each
A ∈ C the class Π0(A/D) is a set.

Remark 30.3. Of course, if I is a small category, so is A/D and therefore Π0(A/D) is automatically a set.
Hence total categories are, in particular, cocomplete.

Remark 30.4. Every locally presentable category is total, but not every total category is locally presentable.
Thus the theorem below also holds for locally presentable categories. In this case arbitrary limits can be
replaced by small limits, i.e., F should be a continuous functor.

Example 30.5. The general linear group as an algebraic group.

Theorem 30.6. Suppose C is a total category. A functor F:Cop → Set is representable if and only if it
preserves all limits (not necessarily small).

Example 30.7. The functor Setop → Set that sends A 7→ 2A and f 7→ f−1 is represented by the set {0, 1}.

Example 30.8. The above example can be generalized to define subobject classifiers.

Example 30.9. The category of topological spaces is total. In particular, this allows us to conclude the
following. If X and Y are topological space, then a space Y X with a universal property that maps A→ Y X

* Coequalizers of classes (as opposed to sets) always exist, and can be constructed using the so-called
Scott’s trick due to Dana Scott. The traditional construction with equivalence classes no longer works
because equivalences classes can be proper classes and proper classes cannot themselves be elements of other
classes.
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are in bijection with maps A × X → Y exists if and only if the functor A 7→ A × X preserves colimits
(equivalently, coequalizers, equivalently, quotient spaces). As we have seen above, this happens if and only
if X is core-compact, e.g., locally compact and Hausdorff.

Example 30.10. The category of topological groups is total, and, more generally, groups can be replaced by
any variety of algebras. Any category monadic over the category of sets is total. (Monads will be explained
later.)

If we apply the above theorem to Cop, we get the following result.

Corollary 30.11. If D is a cototal category (i.e., Dop is total), then F:D → Set is corepresentable if and
only if it preserves all limits (not necessarily small).

Proof. By the above theorem for C = Dop, the functor F:Cop → Set is representable by an object X in C,
i.e., F(A) = MorC(A,X) = MorD(X,A), i.e., F is corepresentable by X as an object in D.

Example 30.12. The Stone–Čech compactification of a topological space X is a continuous map X → K,
where X is compact Hausdorff and for any other map X → K ′ to a compact Hausdorff space K ′ there
exists a unique continuous map K → K ′ that makes the obvious triangle compute. We construct K using
the representable functor theorem, which is applicable because compact Hausdorff spaces form a cototal
category. Thus it suffices to to show that the functor F:CompHausop → Set that sends A ∈ Top to the set
of continuous maps X → A and A → A′ to the corresponding composition map, preserves limits. Indeed,
this follows instantly from the universal property of limits in Top and the fact that the forgetful functor
Top→ CompHaus preserves limits.

Adjunctions

31 Definition of adjunction

Definition 31.1. Suppose C and D are categories. An adjunction between C and D is a triple (L,R,Ψ), where
L:C→ D is the left adjoint functor, R:D→ C is the right adjoint functor, and Ψ:Mor(L−,−)→Mor(−,R−)
is a natural isomorphism of functors Cop × D→ Set. Schematically we write

L : C −−−→←−−− D : R

or

C
L−−−→←−−−
R

D.

Remark 31.2. We can unfold the definition of Ψ as follows. For any X ∈ C and Y ∈ D we have an
isomorphism of sets ΨX,Y :Mor(LX,Y )→Mor(X,RY ). For any morphism f :X → X ′ in C and g:Y → Y ′

in D the following diagram commutes:

Mor(LX ′, Y )
h 7→g◦h◦L(f)−−−−−−−−−−−−−→ Mor(LX,Y ′)yΨX′,Y

yΨX,Y ′

Mor(X ′,RY )
h 7→R(g)◦h◦f−−−−−−−−−−−−−→ Mor(X,RY ′).

Adjunctions are omnipresent in mathematics. We start with some of the more typical examples.

Example 31.3. Take C = Set, D = Vectk, R:Vectk → Set is the forgetful functor, L: Set → Vectk is the
functor that sends a set S to the vector space with basis S and a map of sets f :S → S′ to the linear map
L(S)→ L(S′) whose restriction to basis elements is precisely f . The isomorphism ΨS,V sends a linear map
L(S) → V to its restriction S → R(V ) to the basis elements of L(S). It is a bijection because a linear map
from L(S) is determined uniquely by its values on the elements of S. Used in 32.3.

Example 31.4. The above example also works with D being Group, CRing, Ring, ModR, AlgR, or any other
variety of algebras. Instead of a vector space with basis S we now use the free object on S, e.g., free group,
free ring, etc.

Example 31.5. Take C = Vectk, D = CAlgk, R:CAlgk → Vectk is the forgetful functor, and L:Vectk →
CAlgk sends a vector space V to the symmetric algebra S(V ), i.e., polynomials in dimV variables. The
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natural transformation Ψ restricts a homomorphism of algebras S(V )→ A to a linear map V → R(A). It is
an isomorphism by the universal property of symmetric algebras.

Remark 31.6. The above situation is very typical for adjunctions: the right adjoint functor “forgets” some
structure, whereas the left adjoint functor constructs a “free” object with such a structure. The category C
need not be the category of sets, as illustrated by the example with symmetric algebras.

32 Units and counits

Definition 32.1. Consider an adjunction (C,D,L,R,Ψ). The unit of an object X ∈ C is the morphism
X → RLX that is adjoint to the identity morphism LX → LX. The counit of an object Y ∈ D is the
morphism LRY → Y that is adjoint to the identity morphism RY → RY .

Remark 32.2. The naturality of Ψ implies that the unit maps can be assembled into a natural transfor-
mation idC → RL, whereas for counits we get a natural transformation LR→ idD.

Example 32.3. In the free-forgetful adjunction of Example 31.3, the unit of a set X is the map X → RL(S)
that sends an element x ∈ X to the element of the vector space L(S) given by the indicator function S → k of
the element x: χ(x) = 1 and χ(y) = 0 if y 6= x. The counit of a vector space V is the linear map LR(V )→ V
from the free vector space of the underlying set of V to V given by sending a formal k-linear combination of
some elements of V to the corresponding element of V given by evaluation this linear combination.

Proposition 32.4. Suppose (C,D,L,R,Ψ) is an adjunction. Denote by C′ the full subcategory of C on
objects X ∈ C such that the unit map X → RLX is an isomorphism. Denote by D′ the full subcategory
of D on objects Y ∈ D such that the counit map LRY → Y is an isomorphism. Denote by L′ and R′

the restriction of functors L and R to these subcategories. We have L′(C′) ⊂ D′ and R′(D′) ⊂ C′, and the
restricted adjunction (C′,D′,L′,R′,Ψ) is an equivalence of categories.

Example 32.5. The Nullstellensatz adjunction is as follows. The category C = CAlgopk is the opposite
category of commutative algebras over an algebraically closed field k equipped with a finite set of generators.
Morphisms are homomorphisms of algebras. (There is no requirement for morphisms to preserve generators.)
The category D = AffVark is the category of affine algebraic varieties. Its objects are pairs (n, S), where
S ⊂ kn is a subset such that for some family p of polynomials with n variables and coefficients in k we have
S = {z ∈ kn | ∀i: pi(z) = 0}. Morphisms (n, S) → (n′, S′) are equivalence classes of polynomial functions
kn → kn

′
(i.e., n′-tuples of polynomial functions in n variables), where two functions are equivalent if they

coincide on S.

33 Cartesian internal hom

Definition 33.1. Consider a category C that admits finite products. Fix an object X ∈ C and consider the
functor X ×−:C→ C that sends W ∈ C to X ×W ∈ C and likewise for morphisms. The cartesian internal
hom Hom(X,Y ) = [X,Y ] (if it exists) is the value of the right adjoint functor of the functor X ×−:C→ C
on the object Y . Used in 4.32, 7.11, 7.18, 10.5, 25.1, 28.1, 33.2, 33.3, 33.4, 33.5, 33.6.

Remark 33.2. Unfolding the definition, the cartesian internal hom Hom(X,Y ) is unquely determined by
its representable functor that sends A ∈ C to Mor(X ×A, Y ) and likewise for morphisms.

Example 33.3. In the category Set, Hom(X,Y ) is the set of maps X → Y , i.e., Hom(X,Y ) = Mor(X,Y ).

Example 33.4. In the category Vectk (or ModR), Hom(X,Y ) is the vector spaces of k-linear maps X → Y ,
i.e., U(Hom(X,Y )) = Mor(X,Y ) and the vector space operations are pointwise.

Example 33.5. In the category Ban1, Hom(X,Y ) is the Banach space of bounded linear maps X → Y . In
particular, the underlying set of the unit ball of Hom(X,Y ) is precisely Mor(X,Y ).

Example 33.6. In the category LocMeas, the cartesian internal hom Hom(X,Y ) does not exist in many
cases.
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