
Submit your solutions in writing not much later than March 19 or present them orally during my office
hours (MWF 3–4 in 19D).

1. Which of the following assignments of a set F (U) to an open subset U ⊂ X of a topological space X
defines a sheaf on X? (As usual you must fill in all the missing data, e.g., the restriction maps are not
specified explicitly if they are obvious.) Below U denotes an arbitrary open subset of X.

• X = R, F (U) is the set of continuous functions U → R.
• X = R, F (U) is the set of bounded continuous functions U → R.
• X = C, F (U) is the set of holomorphic functions U → C.
• X = R, F (U) is the set of Borel measurable functions U → R.
• X = R, F (U) is the set of constant functions U → R.
• X = R, F (U) is the set of locally constant functions U → R.
• X = R, F (U) is the set of increasing functions U → R (x ≤ y implies f(x) ≤ f(y)).
• X = R, F (U) is the set of integrable measurable functions U → R (with finite integral).
• X = R, F (U) is the set of convex functions U → R in the following sense: for any x, y ∈ U such that
x ≤ y and [x, y] ⊂ U and for any 0 ≤ t ≤ 1 we have f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

2. Recall that a base B of a topological space X is a set of open subsets of X such that any open subset
of X can be represented as a union of sets in the base. Below we consider B to be a category whose objects
are elements of B and morphisms are inclusions (i.e., the set of morphisms between any two objects is either
empty or consists of a single element). A sheaf on a topological space X with respect to a base B of X
(or simply a sheaf on B) is a functor Bop → Set that satisfies the gluing property, which is formulated in
exactly the same way as for sheaves on X, but using elements of B everywhere instead of arbitrary open
sets. Morphisms of sheaves on B are natural transformations of functors.
• Prove that any sheaf on X restricts to a sheaf of B.
• Prove that any sheaf on X can be reconstructed (up to an isomorphism) from its restriction to B.
• Prove that the category of sheaves on X is equivalent to the category of sheaves on B.

3. A idempotent ring is a ring R such that x2 = x for any x ∈ R. (Rings are assumed to be associative and
unital, homomorphisms of rings preserve units.)
• Show that any idempotent ring is commutative: xy = yx for all x and y.
• Show that the relation x ≤ y := (x = xy) defines a partial order on R.
• Show that given a set X, equipping 2X (the set of subsets of X) with the following operations: 0 := ∅,
x+ y := (x \ y) ∪ (y \ x), −x := X \ x, 1 := X, xy := x ∩ y produces an idempotent ring.

• Recall that the supremum of a subset A ⊂ R, if it exists, is the unique element s ∈ R such that for all
a ∈ A we have a ≤ s and if s′ is another element with the same property, then s ≤ s′. Show that in the
idempotent ring 2X every subset has a supremum.

• An atom in an idempotent ring is an element a ∈ R such that a 6= 0 and if 0 ≤ b ≤ a for some b ∈ R,
then b = 0 or b = a. Show that in the idempotent ring 2X every element can be represented as the
supremum of a set of atoms.

• Show that the assignment X 7→ 2X can be extended to a contravariant functor 2(−) from the category
of sets to the category whose objects are idempotent rings in which every subset has a supremum and
every element is the supremum of a set of atoms, and morphisms are homomorphisms of rings that
preserve suprema (f : R → R′ preserves suprema if for any S ⊂ R we have sup f(S) = f(supS)).

• Construct a contravariant functor going in the opposite direction. (Hint: it is useful to keep the example
of the idempotent ring 2X when constructing this functor.)

• Prove that the two functors together form an equivalence of categories.

4. Recall that topological space X is connected if it is nonempty and the only subsets of X that are
both closed and open are ∅ and X. A topological space is locally connected if it admits a base consisting
of connected open subsets. The purpose of this exercise is to demonstrate an alternative theory of the
fundamental group, which is applicable to all locally connected topological spaces, as opposed to the much
more narrow class of locally path connected semilocally simply connected topological spaces.

A connected base for a locally connected topological space X is a base B such that for any P ∈ B the
space P is a connected open subset of X and if Q ⊂ P is a connected open subset of P , then Q ∈ B. Given
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a connected base B, we define a category as follows. Objects are elements of B. Morphisms X → Y (for
some X,Y ∈ B) are finite sequences C0, C1, . . . , Cn ∈ B of elements of B, where X = C0, Y = Cn, n ≥ 0
is arbitrary, and Ci ∩ Ci+1 is connected for any 0 ≤ i < n (recall that Ci are also connected by definition
of a connected base). The composition of B0, . . . , Bm (a morphism B0 → Bm) and C0, . . . , Cn (a morphism
C0 → Cn) is the concatenation with the middle duplicate element removed: B0, . . . , Bm = C0, C1, . . . , Cn

(recall that we must have Bm = C0 for the composition to be defined). For n = 0 we get the identity
morphism on X = Y .
• Prove that the above data defines a category ChainB . Prove that any morphism in ChainB can be
presented as a composition of chains with n = 1.
Consider the equivalence relation R on morphisms X → Y of ChainB generated by the following two

types of equivalences. First, we postulate that a sequence X = B0, . . . , Bn = Y is equivalent to the sequence
X = C0, . . . , Cn = Y if for all i we have Bi ⊂ Ci. Secondly, we postulate that any sequence B0, . . . , Bn is
equivalent to the same sequence, but with the element Bi for some i repeated twice: B0, . . . , Bi, Bi, . . . , Bn.
• Prove that this relation defines a congruence on ChainB (see Definition 4.28 in the lecture notes) and
therefore we have the quotient category ΠB : = ChainB/R.

• Prove that nonidentity morphisms in ChainB are noninvertible. Prove that every morphism in ΠB is
invertible, i.e., ΠB is a groupoid.
As it turns out, fixing some connected base B is not enough because the answer may turn out to be

trivial.
• Prove that if X ∈ B (in particular, X is connected), then ΠB is equivalent to the trivial group (a single
object with a single identity morphism).
We resolve this defect by allowing arbitrary refinements of bases. We define a category ConBaseX whose

objects are connected bases of X as defined above, and morphism B1 → B2 between two bases B1 and B2

are functions b:B1 → B2 such that for any P ∈ B1 we have P ⊂ b(P ) (here both P and b(P ) are some
connected open subsets of X).
• Given a morphism b:B1 → B2, define a functor Πb:ΠB1 → ΠB2 .
• Prove that the previous construction extends to a functor Π:ConBase → Cat (recall that Cat is the
category of small categories).
We now define a new category ΠX that does not depend on the choice of B. Its objects p are given

by the following data: for every base B we specify an object p(B) of ΠB (i.e., an element of B). This data
must satisfy the following condition: for any morphism b:B1 → B2 of bases we have Πb(p(B1)) = p(B2). Its
morphisms f : p → q are given by the following data: for every base B we specify a morphism f(B): p(B) →
q(B) in ΠB . This data must satisfy the following condition: for any morphism b:B1 → B2 of bases we have
Πb(f(B1)) = f(B2).
• Prove that the above construction defines a category ΠX .
It may not be obvious why such a category should at all be related to π≤1(X) defined in the traditional

way using homotopy equivalence classes of paths.
• Prove that if X is locally compact, then any object of ΠX canonically defines a point in X. Show that
any point in X arises from some object of ΠX (not necessarily unique). Show that any path in X arises
from some morphism in ΠX (not necessarily unique).

• Look up the Hahn–Mazurkiewicz theorem and prove that any morphism in ΠX defines a (noncanonical)
path in X. Assume X to be second countable and locally compact.
This construction allows one to develop the theory of covering spaces for locally connected spaces, a

much bigger class than locally path-connected semilocally simply connected spaces. Such a generality is
necessary for Grothendieck’s Galois theory. We will return to this later in the course.

5. Prove that any continuous function defined on a closed subset of a compact Hausdorff space can be
extended to a continuous function defined on the entire space. (This is meant to be proved using what we
have learned about various equivalences of categories in functional analysis, not by referencing the Urysohn
lemma or the Tietze extension theorem.)

6. Recall that any Hilbert space H admits an isomorphism H ∼= H∗, which equips H with a weak-* topology
(alias weak topology). Suppose we are given an operator P :H → H that becomes continuous if we equip its
source with the weak topology and its target with the norm topology. Prove that H decomposes as a direct
sum of eigenspaces of P .
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