
Mathematics 5365 (Analysis of Algorithms)
Midterm 1

You may use the randomized binary search tree algorithms without reimplementing them. There is no
guarantee that any problem can benefit from these, though.

1. Input data: S:Order, n:N, x:S[n]≤, s:S, s ̸= x[i] for all i ∈ [0, n). Output data: a:N such that a ∈ [0, n],
x[i] < s for all i ∈ [0, a), and x[i] > s for all i ∈ [a, n). Requirements: the average number of comparisons
performed by the algorithm must be as small as possible. Each of the n + 1 values of a is equally likely to
occur (with probability 1/(n+ 1)).

2. Input data: S:Set, f :S → S, s:S. Output data: p:N, t:N such that p > 0, fk(s) = fk+p(s) for all
k ≥ t and p and t are the smallest numbers with this property. The input data is such that p and t always
exist. Running time: O(p+ t). The only allowed operations on elements of S are (1) compute f(a) for some
a:S; (2) check whether a = b for some a:S, b:S. Notice that the element s is given to you so that you have
something to apply f to.

3. Input data: S:OrderAb (ordered abelian group, e.g., Z, Q, R, etc.; the available operations are abelian
group operations and comparison), m,n:N, x:S[m]≤, y:S[n]≤, s:S. Output data: a, b:N such that x[a] +
y[b] ≥ s and x[a] + y[b] − s is as small as possible (with respect to the given order on S). Running time:
O(m+ n).

4. Input data: n:N, x:N[n], x is a permutation of [0, n), i.e., for any j ∈ [0, n) there is exactly one i ∈ [0, n)
such that x[i] = j. Output data: x is transformed into another permutation y (in place) such that y[x[i]] = i
and x[y[i]] = i for all i ∈ [0, n), i.e., y is the inverse of x. Additional memory: O(1) (i.e., y must be computed
in place of x, without any new arrays). Running time: O(n).

5. Input data: S:Order, n:N, x:S[n]≤. Output data: m:N, y:N[m]< (strictly increasing), y[i] ∈ [0, n) for
all i ∈ [0,m), x[y[i]] < x[y[j]] if i < j, i, j ∈ [0,m), and m is the largest number with these properties. In
other words, throw away as few elements of x as possible so that the remaining array is strictly increasing.
Running time O(n log n).

6. Abstract persistent state: S:Set, ∗:S (a special element of S), x:S[N] (an abstract infinite array indexed
by natural numbers). Initial state: x[i] = ∗ for all i ∈ N. Operations:
• read(i:N): returns x[i]. Running-time (worst-case or randomized average, your choice): O(log n),
n = #{i ∈ N | x[i] ̸= ∗}.
• insert(i:N, s:S): first, x[k+ 1]← x[k] for all k ∈ [i, j) in decreasing order of k, where j = minl≥i,x[l]=∗;
then x[i]← s. Running time: same as above.

Explanation: ∗ means “empty”; when inserting an element s in position i, we first move the entire block
starting at i and ending before the first empty position one position to the right, so that x[i] is now empty
and can be changed to s.

7. Recall the algorithm that turns a given array x:S[n] into a binary heap (meaning x[⌈i/2⌉ − 1] ≤ x[i] for
all i ∈ (0, n)), namely, for all j ∈ [0, n) in decreasing order, start with k ← j and while x[k] is greater than
x[k′], k′ being the index of the smaller son (if it exists), exchange x[k] with x[k′] and k ← k′. In the lecture,
we proved that this algorithm runs in O(n) time. Compute the average number of comparisons done by
this algorithm if x is a random permutation (meaning each permutation occurs with equal probability). For
simplicity, assume that n = 2a − 1 for some a:N, so that the tree is “full”.

1


