Mathematics 5365 (Analysis of Algorithms)

Midterm 1

You may use the randomized binary search tree algorithms without reimplementing them. There is no guarantee that any problem can benefit from these, though.

1. Input data: S: Order, $n: \mathbf{N}, x: S[n]_{\leq}, s: S, s \neq x[i]$ for all $i \in [0, n)$. Output data: $a: \mathbf{N}$ such that $a \in [0, n]$, x[i] < s for all $i \in [0, a)$, and x[i] > s for all $i \in [a, n)$. Requirements: the average number of comparisons performed by the algorithm must be as small as possible. Each of the n + 1 values of a is equally likely to occur (with probability 1/(n + 1)).

2. Input data: $S: \mathsf{Set}$, $f: S \to S$, s: S. Output data: $p: \mathbf{N}$, $t: \mathbf{N}$ such that p > 0, $f^k(s) = f^{k+p}(s)$ for all $k \ge t$ and p and t are the smallest numbers with this property. The input data is such that p and t always exist. Running time: O(p+t). The only allowed operations on elements of S are (1) compute f(a) for some a: S; (2) check whether a = b for some a: S, b: S. Notice that the element s is given to you so that you have something to apply f to.

3. Input data: S: OrderAb (ordered abelian group, e.g., \mathbf{Z} , \mathbf{Q} , \mathbf{R} , etc.; the available operations are abelian group operations and comparison), $m, n: \mathbf{N}, x: S[m]_{\leq}, y: S[n]_{\leq}, s: S$. Output data: $a, b: \mathbf{N}$ such that $x[a] + y[b] \geq s$ and x[a] + y[b] - s is as small as possible (with respect to the given order on S). Running time: O(m+n).

4. Input data: $n: \mathbf{N}, x: \mathbf{N}[n], x$ is a permutation of [0, n), i.e., for any $j \in [0, n)$ there is exactly one $i \in [0, n)$ such that x[i] = j. Output data: x is transformed into another permutation y (in place) such that y[x[i]] = i and x[y[i]] = i for all $i \in [0, n)$, i.e., y is the inverse of x. Additional memory: O(1) (i.e., y must be computed in place of x, without any new arrays). Running time: O(n).

5. Input data: S: Order, $n: \mathbf{N}, x: S[n]_{\leq}$. Output data: $m: \mathbf{N}, y: \mathbf{N}[m]_{<}$ (strictly increasing), $y[i] \in [0, n)$ for all $i \in [0, m), x[y[i]] < x[y[j]]$ if $i < j, i, j \in [0, m)$, and m is the largest number with these properties. In other words, throw away as few elements of x as possible so that the remaining array is strictly increasing. Running time $O(n \log n)$.

6. Abstract persistent state: S:Set, *: S (a special element of S), x: S[N] (an abstract infinite array indexed by natural numbers). Initial state: x[i] = * for all $i \in \mathbb{N}$. Operations:

- read(*i*: **N**): returns x[i]. Running-time (worst-case or randomized average, your choice): $O(\log n)$, $n = \#\{i \in \mathbf{N} \mid x[i] \neq *\}$.
- insert(*i*: **N**, *s*: *S*): first, $x[k+1] \leftarrow x[k]$ for all $k \in [i, j)$ in decreasing order of *k*, where $j = \min_{l \ge i, x[l] = *}$; then $x[i] \leftarrow s$. Running time: same as above.

Explanation: * means "empty"; when inserting an element s in position i, we first move the entire block starting at i and ending before the first empty position one position to the right, so that x[i] is now empty and can be changed to s.

7. Recall the algorithm that turns a given array x: S[n] into a binary heap (meaning $x[\lceil i/2 \rceil - 1] \le x[i]$ for all $i \in (0, n)$), namely, for all $j \in [0, n)$ in decreasing order, start with $k \leftarrow j$ and while x[k] is greater than x[k'], k' being the index of the smaller son (if it exists), exchange x[k] with x[k'] and $k \leftarrow k'$. In the lecture, we proved that this algorithm runs in O(n) time. Compute the average number of comparisons done by this algorithm if x is a random permutation (meaning each permutation occurs with equal probability). For simplicity, assume that $n = 2^a - 1$ for some $a: \mathbf{N}$, so that the tree is "full".