Mathematics 5365 (Analysis of Algorithms)

Assignment 2: Divide et impera

Submit your solutions typeset in T_EX or calligraphed no later than Tuesday, September 11.

Acceptable modes of collaboration: discussing problems with your classmates orally or using a black-board. You must indicate your collaborators in your submissions.

Unacceptable modes of collaboration:

- looking at or copying from a written solution of your classmate or somebody else;
- writing down something that you collaborator told you, but you do not understand.

1 Background

Abstract data structures:

- Set: binary relation = such that x = y and y = z implies x = z; x = x for all x; x = y implies y = x;
- Poset: binary relation \leq such that $x \leq y$ and $y \leq z$ implies $x \leq z$; $x \leq x$ for all x; $x \leq y$ and $y \leq x$ implies x = y;
- Order: a poset such that $x \leq y$ or $y \leq x$ for any x and y;
- abelian group (Ab): nullary operation 0, unary operation -, binary operation + such that x + (y + z) = (x + y) + z, 0 + x = x + 0 = x, x + (-x) = (-x) + x = 0, x + y = y + x;
- Ring: abelian group equipped with multiplication, i.e., nullary operation 1, binary operation \cdot such that $x \cdot (y \cdot z) = (x \cdot y) \cdot z$, $1 \cdot x = x \cdot 1 = x$, $x \cdot (y + z) = x \cdot y + x \cdot z$, $(x + y) \cdot z = x \cdot z + y \cdot z$;
- monoid (Monoid): nullary operation 1 and binary operation \cdot such that $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ and $x \cdot 1 = 1 \cdot x = x$. Example: $\mathbf{Z} \cup \{\infty\}$ with ∞ and min as the nullary and binary operation.
- commutative monoid (CommMonoid): a monoid such that $x \cdot y = y \cdot x$.
- ordered abelian group (Ab_{\leq}): an abelian group equipped with a compatible order structure: $a \leq b$ implies $a + c \leq b + c$ for all c. Examples: \mathbf{Z} , \mathbf{Q} .

Each of the above operations uses O(1) time.

If D denotes an abstract data structure, then D[m] denotes the type of an array of m elements of type D indexed by integers in [0, m). We say that an array x : D[m] is increasing if D is equipped with a structure of a poset (and possibly other structures) and $x[i] \le x[j]$ whenever $i \le j$. The type of increasing arrays is denoted $D[m]_{<}$. We say that x is strictly increasing if i < j implies x[i] < x[j].

We denote $\mathbf{N} = \{0, 1, 2, \ldots\}, \mathbf{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}, \text{ and } \mathbf{B} = \{0, 1\}.$

2 Problems

- **1.** Input data: $S : \mathsf{Order}, n : \mathbf{N}, x : S[n]_{\leq}, a : S$. Output data: $k : \mathbf{N}, l : \mathbf{N}$ such that elements with indices in [0, k) are strictly less than a, elements with indices in [k, l) are equal to a, and elements with indices in [l, n) are strictly greater than a. Worst-case runing time: $O(\log n)$.
- **2.** Input data: A : Ab, n : N, x : A[n]. Output data: x (transformed as described below). Worst-case running time: O(n). Additional memory: O(1). Transform the array x in place so that the new value y of x satisfies $y[k] = \sum_{k-2^a < i \le k} x[i]$, where 2^a is the largest power of 2 that divides k+1. (For example, if n=4, then x=[a,b,c,d] would be replaced by [a,a+b,c,a+b+c+d].)
- **3.** Input data: $A : \mathsf{Ab}$, $n : \mathbf{N}$, y : A[n], $k, l : \mathbf{N}$, $0 \le k \le l \le n$. Output data: r : A, where $r = \sum_{k \le i < l} x[i]$, where x denotes the array from which y was obtained as in the previous problem. (The algorithm is only allowed to use y, not x.) Worst-case running time: $O(\log n)$. Additional memory: O(1).
- **4.** Input data: M: Monoid, n: **N**, x: M[n], q: **N**, a,b: **N**[q], $0 \le a[i] \le b[i] \le n$. Output data: r: M[q], where $r[p] = \sum_{i \in [a[p],b[p])} x[i]$. (Remember that M is not necessarily a group, only a monoid, so there is no subtraction. A good example to keep in mind is $M = (\mathbf{Z} \cup \{\infty\}, \infty, \min)$, so r[p] is the minimum of a on the interval [a[p],b[p]).) Worst-case running time: $O(n+q\log n)$.
- 5. Input data: M: CommMonoid, n: N, q: N, a,b: N[q], w: M[q], $0 \le a[i] \le b[i] \le n$. Output data: r: A[q]. Worst-case running time: $O(q \log n)$. The algorithm should compute the following: define x: M[n], assign $x[j] \leftarrow 1$ for all $j \in [0,n]$. Then for each $i \in [0,q)$ do the following: (1) Assign $r[i] \leftarrow \prod_{j \in [a[i],b[i])} x[j]$; (2) Assign $x[j] \leftarrow x[j] \cdot w[i]$ for all $j \in [a[i],b[i])$. (Of course, interpreting these formulas as is would produce an algorithm with running time O(qn), which is too slow, so instead you should seek to emulate these operations in a different way.)
- **6.** Input data: $R : \text{Ring}, n : \mathbf{N}, p : R[n], x : R, x^n = 1, n = 2^a \text{ for some } a : \mathbf{N}.$ Output data: u : R[n], where $u[i] = p(x^i) = \sum_{j \in [0,n)} p[j] x^{i \cdot j}$. Worst-case running time $O(n \log n)$. (Don't forget that R need not be commutative: $x \cdot y \neq y \cdot x$, e.g., for the ring of matrices.) Hint: in the expression $\sum_{0 \leq j < n} p[j] x^{i \cdot j}$ group together terms with even and odd j respectively. At this point the fact that $n = 2^a$ becomes crucial because n/2 is an integer and $x^n = (x^2)^{n/2} = 1$, so one can solve a similar problem with parameters n/2 and x^2 instead of n and x.
- 7. Input/output data: same as in the previous problem, but u and p exchange their roles. In the ring R all elements $n \cdot 1_R$, where $n \in \mathbf{Z}$, $n \neq 0$, are invertible. Explain how to recover p from u, in the same time. Hint: what happens when you apply the previous algorithm twice, i.e., apply it the output data u? Using this algorithm, explain how to compute $p \cdot q$ for two polynomials p and q, assuming R is commutative $(x \cdot y = y \cdot x)$, with the worst-case running time $O(n \log n)$.
- **8.** Input data: $n : \mathbf{N}, x : \mathbf{N}[n], b : \mathbf{N}, x[i] \in [0, 2^b)$. Output data: x (transformed as described below). Reorder the elements of x so that $i \le j$ implies $x[i] \le x[j]$. Worst-case running time O(bn). Additional memory: O(1).