
Mathematics 5365 (Analysis of Algorithms)
Assignment 2: Divide et impera

Submit your solutions typeset in TEX or calligraphed no later than Tuesday, September 11.

Acceptable modes of collaboration: discussing problems with your classmates orally or using a black-
board. You must indicate your collaborators in your submissions.

Unacceptable modes of collaboration:

• looking at or copying from a written solution of your classmate or somebody else;

• writing down something that you collaborator told you, but you do not understand.

1 Background

Abstract data structures:

• Set: binary relation = such that x = y and y = z implies x = z; x = x for all x; x = y implies y = x;

• Poset: binary relation ≤ such that x ≤ y and y ≤ z implies x ≤ z; x ≤ x for all x; x ≤ y and y ≤ x
implies x = y;

• Order: a poset such that x ≤ y or y ≤ x for any x and y;

• abelian group (Ab): nullary operation 0, unary operation −, binary operation + such that x+(y+ z) =
(x+ y) + z, 0 + x = x+ 0 = x, x+ (−x) = (−x) + x = 0, x+ y = y + x;

• Ring: abelian group equipped with multiplication, i.e., nullary operation 1, binary operation · such that
x · (y · z) = (x · y) · z, 1 · x = x · 1 = x, x · (y + z) = x · y + x · z, (x+ y) · z = x · z + y · z;
• monoid (Monoid): nullary operation 1 and binary operation · such that x · (y · z) = (x · y) · z and
x · 1 = 1 · x = x. Example: Z ∪ {∞} with ∞ and min as the nullary and binary operation.

• commutative monoid (CommMonoid): a monoid such that x · y = y · x.
• ordered abelian group (Ab≤): an abelian group equipped with a compatible order structure: a ≤ b
implies a+ c ≤ b+ c for all c. Examples: Z, Q.

Each of the above operations uses O(1) time.

If D denotes an abstract data structure, then D[m] denotes the type of an array of m elements of type D
indexed by integers in [0,m). We say that an array x : D[m] is increasing if D is equipped with a structure
of a poset (and possibly other structures) and x[i] ≤ x[j] whenever i ≤ j. The type of increasing arrays is
denoted D[m]≤. We say that x is strictly increasing if i < j implies x[i] < x[j].

We denote N = {0, 1, 2, . . .}, Z = {. . . ,−2,−1, 0, 1, 2, . . .}, and B = {0, 1}.

1



2 Problems

1. Input data: S : Order, n : N, x : S[n]≤, a : S. Output data: k : N, l : N such that elements with indices
in [0, k) are strictly less than a, elements with indices in [k, l) are equal to a, and elements with indices in
[l, n) are strictly greater than a. Worst-case runing time: O(log n).

2. Input data: A : Ab, n : N, x : A[n]. Output data: x (transformed as described below). Worst-case
running time: O(n). Additional memory: O(1). Transform the array x in place so that the new value y of x
satisfies y[k] =

∑
k−2a<i≤k x[i], where 2a is the largest power of 2 that divides k+1. (For example, if n = 4,

then x = [a, b, c, d] would be replaced by [a, a+ b, c, a+ b+ c+ d].)

3. Input data: A : Ab, n : N, y : A[n], k, l : N, 0 ≤ k ≤ l ≤ n. Output data: r : A, where r =
∑

k≤i<l x[i],
where x denotes the array from which y was obtained as in the previous problem. (The algorithm is only
allowed to use y, not x.) Worst-case running time: O(log n). Additional memory: O(1).

4. Input data: M : Monoid, n : N, x : M [n], q : N, a, b : N[q], 0 ≤ a[i] ≤ b[i] ≤ n. Output data: r : M [q],
where r[p] =

∑
i∈[a[p],b[p]) x[i]. (Remember that M is not necessarily a group, only a monoid, so there is no

subtraction. A good example to keep in mind is M = (Z∪{∞},∞,min), so r[p] is the minimum of a on the
interval [a[p], b[p]).) Worst-case running time: O(n+ q log n).

5. Input data: M : CommMonoid, n : N, q : N, a, b : N[q], w : M [q], 0 ≤ a[i] ≤ b[i] ≤ n. Output data:
r : A[q]. Worst-case running time: O(q log n). The algorithm should compute the following: define x : M [n],
assign x[j]← 1 for all j ∈ [0, n]. Then for each i ∈ [0, q) do the following: (1) Assign r[i]←

∏
j∈[a[i],b[i]) x[j];

(2) Assign x[j]← x[j] ·w[i] for all j ∈ [a[i], b[i]). (Of course, interpreting these formulas as is would produce
an algorithm with running time O(qn), which is too slow, so instead you should seek to emulate these
operations in a different way.)

6. Input data: R : Ring, n : N, p : R[n], x : R, xn = 1, n = 2a for some a : N. Output data: u : R[n],
where u[i] = p(xi) =

∑
j∈[0,n) p[j]x

i·j . Worst-case running time O(n log n). (Don’t forget that R need not

be commutative: x · y ̸= y · x, e.g., for the ring of matrices.) Hint: in the expression
∑

0≤j<n p[j]x
i·j group

together terms with even and odd j respectively. At this point the fact that n = 2a becomes crucial because
n/2 is an integer and xn = (x2)n/2 = 1, so one can solve a similar problem with parameters n/2 and x2

instead of n and x.

7. Input/output data: same as in the previous problem, but u and p exchange their roles. In the ring R
all elements n · 1R, where n ∈ Z, n ̸= 0, are invertible. Explain how to recover p from u, in the same
time. Hint: what happens when you apply the previous algorithm twice, i.e., apply it the output data u?
Using this algorithm, explain how to compute p · q for two polynomials p and q, assuming R is commutative
(x · y = y · x), with the worst-case running time O(n log n).

8. Input data: n : N, x : N[n], b : N, x[i] ∈ [0, 2b). Output data: x (transformed as described below).
Reorder the elements of x so that i ≤ j implies x[i] ≤ x[j]. Worst-case running time O(bn). Additional
memory: O(1).

2


