Mathematics 5365 (Analysis of Algorithms)

Assignment 3: Structurize this!

Submit your solutions typeset in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ or calligraphed no later than Tuesday, September 18.

1 Background

See Homework 2 for most of the conventions, which remain unchanged here.
Data structures are collections of algorithms that share an (abstract) persistent state, a collection of variables that are remain in the memory when different algorithms are run. For example, here is how a traditional array of length n with values in V could be represented as a data structure:

Persistent state: $x: V[n]$. Operations (the first set of arguments denotes the input data, the second set of arguments denotes the output data, i.e., what is computed by the algorithm):

- $\operatorname{get}(i: \mathbf{N})(v: V): v \leftarrow x[i]$;
- $\operatorname{set}(i: \mathbf{N}, v: V)(): x[i] \leftarrow v$.

The persistent state is not directly accessible to the calling program (e.g., the calling program cannot use the expression $x[i]$, only get (i)). Furthermore, the data structure itself need not store its internal state in the given form (e.g., the algorithms that implement get and set need not actually use an array $x: V[n]$, but rather may choose a radically different form of organization, such as a binary search tree, etc.).

2 Problems

1. Persistent state: $n: \mathbf{N}, x: \mathbf{B}[n]$ (here x represents a subset $X=\{i \in[0, n) \mid x[i]=1\} \subset[0, n)$). Operations, with worst-case running time:

- clear ()()$: n \leftarrow 0 ; O(n)$;
- belongs $(i: \mathbf{N})(a: \mathbf{B}): a \leftarrow x[i] ; O(1)$;
- $\operatorname{add}(i: \mathbf{N})(): x[i] \leftarrow 1 ; O(1)$;
- delete $(i: \mathbf{N})(): x[i] \leftarrow 0 ; O(n)$;
- $\min ()(i: \mathbf{N}): i \leftarrow \min _{j \in[0, n), x[j]=1} j ; O(1)$;
- isempty ()$(a: \mathbf{B}): a \leftarrow[n=0] ; O(1)$.

2. Same persistent state and operations as above, but the delete operation must use $O(1)$ time, whereas the add operation may use $O(n)$ time.
3. Persistent state: S : Order, $x \subset S$ (here x represents a finite subset of S, where S could be any ordered set, e.g., the real numbers). (This is an example of the abstractness of persistent state: we must model the set x using some other representation.) (The last two problems are a special case of this problem for $S=\mathbf{B}$.) We denote the (finite) cardinality of x by $n=\# x$. Operations, with worst-case running time:

- clear()(): $x \leftarrow \emptyset ; O(1)$;
- belongs $(s: S)(a: \mathbf{B}): a \leftarrow[s \in x] ; O(\log n)$;
- $\operatorname{add}(s: S)(): x \leftarrow x \cup\{s\} ; O(n)$;
- delete $(s: S)(): x \leftarrow x \backslash\{s\} ; O(n)$;
- $\min ()(s: S): s \leftarrow \min x ; O(1)$;
- isempty ()$(a: \mathbf{B}): a \leftarrow[n=0] ; O(1)$.

4. Denote by S the free monoid on $\mathbf{B}=\{0,1\}$, i.e., the set of all finite sequences of zeros and ones. Persistent state and operations: same as in the previous problem, but without min and isempty. Worst-case running time: clear: $O(1)$; the other three must run in $O(|s|)$, where $|s|$ denotes the length of a finite sequence $s \in S$. Available memory: $O(N)$, where N is the sum of lengths of all sequences in x.
5. Persistent state: $S:$ Order, $n: \mathbf{N}, x: S[n]$. Operations, with worst-case running time:

- clear $(s: S)(): x[i] \leftarrow s$ for all $i \in[0, n) ; O(n)$;
- $\operatorname{get}(i: \mathbf{N})(s: S): s \leftarrow x[i] ; O(1)$;
- $\operatorname{set}(i: \mathbf{N}, s: S)(): x[i] \leftarrow s ; O(\log n)$;
- findmin ()$(i: \mathbf{N}): i \leftarrow \min \left\{k: \mathbf{N} \mid x[k]=\min _{j \in[0, n)} x[j]\right\} ; O(\log n)$.

6. Persistent state: M : Monoid, $l, m, n: \mathbf{N}, x: M[l][m][n]$. (Remember that M is not necessarily a group, only a monoid, so there is no subtraction.) Operations, with worst-case running time:

- clear $(s: M)(): x[i][j][k] \leftarrow s$ for all $(i, j, k) \in[0, l) \times[0, m) \times[0, n) ; O(l m n) ;$
- $\operatorname{get}(i, j, k: \mathbf{N})(s: M): s \leftarrow x[i][j][k] ; O(1)$;
- $\operatorname{set}(i, j, k: \mathbf{N}, s: M)(): x[i][j][k] \leftarrow s ; O((\log l)(\log m)(\log n))$;
- $\operatorname{sum}\left(l_{0}, l_{1}, m_{0}, m_{1}, n_{0}, n_{1}: \mathbf{N}\right)(s: M): s \leftarrow \sum_{(i, j, k) \in\left[l_{0}, l_{1}\right) \times\left[m_{0}, m_{1}\right) \times\left[n_{0}, n_{1}\right)} ; O((\log l)(\log m)(\log n))$.

