Mathematics 5365 (Analysis of Algorithms)

Assignment 2: Divide et impera

Submit your solutions typeset in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ or calligraphed no later than Tuesday, September 11.
Acceptable modes of collaboration: discussing problems with your classmates orally or using a blackboard. You must indicate your collaborators in your submissions.

Unacceptable modes of collaboration:

- looking at or copying from a written solution of your classmate or somebody else;
- writing down something that you collaborator told you, but you do not understand.

1 Background

Abstract data structures:

- Set: binary relation $=$ such that $x=y$ and $y=z$ implies $x=z ; x=x$ for all $x ; x=y$ implies $y=x$;
- Poset: binary relation \leq such that $x \leq y$ and $y \leq z$ implies $x \leq z ; x \leq x$ for all $x ; x \leq y$ and $y \leq x$ implies $x=y$;
- Order: a poset such that $x \leq y$ or $y \leq x$ for any x and y;
- abelian group (Ab) : nullary operation 0 , unary operation - , binary operation + such that $x+(y+z)=$ $(x+y)+z, 0+x=x+0=x, x+(-x)=(-x)+x=0, x+y=y+x ;$
- Ring: abelian group equipped with multiplication, i.e., nullary operation 1 , binary operation \cdot such that $x \cdot(y \cdot z)=(x \cdot y) \cdot z, 1 \cdot x=x \cdot 1=x, x \cdot(y+z)=x \cdot y+x \cdot z,(x+y) \cdot z=x \cdot z+y \cdot z ;$
- monoid (Monoid): nullary operation 1 and binary operation \cdot such that $x \cdot(y \cdot z)=(x \cdot y) \cdot z$ and $x \cdot 1=1 \cdot x=x$. Example: $\mathbf{Z} \cup\{\infty\}$ with ∞ and min as the nullary and binary operation.
- commutative monoid (CommMonoid): a monoid such that $x \cdot y=y \cdot x$.
- ordered abelian group $\left(\mathrm{Ab}_{\leq}\right)$: an abelian group equipped with a compatible order structure: $a \leq b$ implies $a+c \leq b+c$ for all c. Examples: Z, Q.

Each of the above operations uses $O(1)$ time.
If D denotes an abstract data structure, then $D[m]$ denotes the type of an array of m elements of type D indexed by integers in $[0, m)$. We say that an array $x: D[m]$ is increasing if D is equipped with a structure of a poset (and possibly other structures) and $x[i] \leq x[j]$ whenever $i \leq j$. The type of increasing arrays is denoted $D[m]_{\leq}$. We say that x is strictly increasing if $i<j$ implies $x[i]<x[j]$.

We denote $\mathbf{N}=\{0,1,2, \ldots\}, \mathbf{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$, and $\mathbf{B}=\{0,1\}$.

2 Problems

1. Input data: $S:$ Orden, $n: \mathbf{N}, x: S[n]_{\leq}, a: S$. Output data: $k: \mathbf{N}, l: \mathbf{N}$ such that elements with indices in $[0, k)$ are strictly less than a, elements with indices in $[k, l)$ are equal to a, and elements with indices in $[l, n)$ are strictly greater than a. Worst-case runing time: $O(\log n)$.
2. Input data: $A: \widehat{\mathbf{A b}}, n: \mathbf{N}, x: A[n]$. Output data: x (transformed as described below). Worst-case running time: $O(n)$. Additional memory: $O(1)$. Transform the array x in place so that the new value y of x satisfies $y[k]=\sum_{k-2^{a}<i<k} x[i]$, where 2^{a} is the largest power of 2 that divides $k+1$. (For example, if $n=4$, then $x=[a, b, c, d]$ would be replaced by $[a, a+b, c, a+b+c+d]$.)
3. Input data: $A: \boxed{A b}, n: \mathbf{N}, y: A[n], k, l: \mathbf{N}, 0 \leq k \leq l \leq n$. Output data: $r: A$, where $r=\sum_{k \leq i<l} x[i]$, where x denotes the array from which y was obtained as in the previous problem. (The algorithm is only allowed to use y, not x.) Worst-case running time: $O(\log n)$. Additional memory: $O(1)$.
4. Input data: M : Monoid, $n: \mathbf{N}, x: M[n], q: \mathbf{N}, a, b: \mathbf{N}[q], 0 \leq a[i] \leq b[i] \leq n$. Output data: $r: M[q]$, where $r[p]=\sum_{i \in[a[p], b[p])} x[i]$. (Remember that M is not necessarily a group, only a monoid, so there is no subtraction. A good example to keep in mind is $M=(\mathbf{Z} \cup\{\infty\}, \infty, \min)$, so $r[p]$ is the minimum of a on the interval $[a[p], b[p])$.) Worst-case running time: $O(n+q \log n)$.
5. Input data: M : CommMonoid, $n: \mathbf{N}, q: \mathbf{N}, a, b: \mathbf{N}[q], w: M[q], 0 \leq a[i] \leq b[i] \leq n$. Output data: $r: A[q]$. Worst-case running time: $O(q \log n)$. The algorithm should compute the following: define $x: M[n]$, assign $x[j] \leftarrow 1$ for all $j \in[0, n]$. Then for each $i \in[0, q)$ do the following: (1) Assign $r[i] \leftarrow \prod_{j \in[a[i], b[i])} x[j]$; (2) Assign $x[j] \leftarrow x[j] \cdot w[i]$ for all $j \in[a[i], b[i]$). (Of course, interpreting these formulas as is would produce an algorithm with running time $O(q n)$, which is too slow, so instead you should seek to emulate these operations in a different way.)
6. Input data: R : Ring, $n: \mathbf{N}, p: R[n], x: R, x^{n}=1, n=2^{a}$ for some $a: \mathbf{N}$. Output data: $u: R[n]$, where $u[i]=p\left(x^{i}\right)=\sum_{j \in[0, n)} p[j] x^{i \cdot j}$. Worst-case running time $O(n \log n)$. (Don't forget that R need not be commutative: $x \cdot y \neq y \cdot x$, e.g., for the ring of matrices.) Hint: in the expression $\sum_{0 \leq j<n} p[j] x^{i \cdot j}$ group together terms with even and odd j respectively. At this point the fact that $n=2^{a}$ becomes crucial because $n / 2$ is an integer and $x^{n}=\left(x^{2}\right)^{n / 2}=1$, so one can solve a similar problem with parameters $n / 2$ and x^{2} instead of n and x.
7. Input/output data: same as in the previous problem, but u and p exchange their roles. In the ring R all elements $n \cdot 1_{R}$, where $n \in \mathbf{Z}, n \neq 0$, are invertible. Explain how to recover p from u, in the same time. Hint: what happens when you apply the previous algorithm twice, i.e., apply it the output data u ? Using this algorithm, explain how to compute $p \cdot q$ for two polynomials p and q, assuming R is commutative $(x \cdot y=y \cdot x)$, with the worst-case running time $O(n \log n)$.
8. Input data: $n: \mathbf{N}, x: \mathbf{N}[n], b: \mathbf{N}, x[i] \in\left[0,2^{b}\right)$. Output data: x (transformed as described below). Reorder the elements of x so that $i \leq j$ implies $x[i] \leq x[j]$. Worst-case running time $O(b n)$. Additional memory: $O(1)$.
