Mathematics 5324 (Topology)

Final exam

If you are unable to do the case of an arbitrary abelian group A of coefficients, you may assume that $A = \mathbf{Z}$, with a reduction of points awarded.

1. Consider the 2-simplex σ with all three vertices identified, i.e., $d_1d_2(\sigma) = d_0d_2(\sigma) = d_0d_1(\sigma)$.

- Draw a picture of the resulting simplicial set X.
- Compute the homology and cohomology of X with coefficients in an arbitrary abelian group A.

2. Consider the 2-sphere with its north and south pole identified.

- Write down a simplicial set X that models such a construction.
- Compute the homology and cohomology of X with coefficients in an arbitrary abelian group A.

3. The orange slice with n carpel slices $(n \ge 1)$ is defined as follows. There are n generating 2-simplices, denoted t_i $(i \in \mathbf{Z}/n\mathbf{Z})$. The relations are as follows: $d_1(t_i) = d_2(t_{i+1})$ $(i \in \mathbf{Z}/n\mathbf{Z})$.

• Draw a picture of the orange slice for n = 3.

We now add the following relations: $d_0(t_i) = d_0(t_{i+1})$ $(i \in \mathbb{Z}/n\mathbb{Z})$.

- Draw a picture of the resulting simplicial set X_n for n = 3. (Identifications that are difficult to visualize may be denoted using letters, like for the real projective plane.)
- Compute the homology and cohomology with coefficients in an arbitrary abelian group A of the resulting simplicial set X_n for all $n \ge 1$. (If you are unable to do the general case, you may assume n = 3, with a reduction of points.)

4. The (solid) orange with n carpels $(n \ge 1)$ is defined as follows. There are n generating 3-simplices, denoted c_i $(i \in \mathbf{Z}/n\mathbf{Z})$. The relations are as follows: $d_2(c_i) = d_3(c_{i+1})$.

• Draw a picture of an orange with 3 carpels.

We now add the following relations: $d_1(c_i) = d_0(c_{i+s})$, where $s \in \mathbf{Z}/n\mathbf{Z}$ is a generator (i.e., the elements s, s + s, s + s, etc., exhaust the entire group $\mathbf{Z}/n\mathbf{Z}$).

- Draw a picture of the resulting simplicial set X_n for n = 3. (Identifications that are difficult to visualize may be denoted using letters, like for the real projective plane.)
- Compute the homology and cohomology with coefficients in an arbitrary abelian group A of the resulting simplicial set X_n for all $n \ge 1$ and an arbitrary generator $s \in \mathbb{Z}/n\mathbb{Z}$. (If you are unable to do the general case, you may assume n = 3 and s = 1, with a reduction of points.)

5. Consider $X = S^1 \times S^2$ and the simplicial subset $Y \subset X$ given by $Y = (S^1 \times *) \cup (* \times S^2)$, where * denotes the 0-simplices of S^1 and S^2 .

• Draw a picture of Y, X, and the inclusion $Y \subset X$.

Consider the coequalizer Q of $f, g: Y \rightrightarrows X$, where f is the inclusion $Y \subset X$ and g is the composition $Y \to \Delta^0 \to S^1 \times S^2$, where the second map is unique because its target has only one 0-simplex.

• Compute the homology of the map $X \to Q$ with coefficients in A.

6. Suppose that $f: X \to Y$ is a simplicial map and $n \ge 0$ is such that $H_n(X) \cong \mathbb{Z}$ and $H_n(Y) \cong 0$. We are interested in the existence of a simplicial map $g: Y \to X$ such that $g \circ f = \mathrm{id}_X$. Determine which of the following possibilities is true and prove your claim.

- The map g always exists.
- The map g never exists.
- For some choices of f the map g exists, and for some it does not.

7. Prove or disprove: if A and B are simplicial sets with finitely many nondegenerate simplices (so that $\chi(A)$ and $\chi(B)$ are defined), then $\chi(A \times B) = \chi(A)\chi(B)$.

8. Compute the group homology $H_1(\mathbf{Z}/3\mathbf{Z})$.