## Mathematics 5324 (Topology)

## Final exam

If you are unable to do the case of an arbitrary abelian group $A$ of coefficients, you may assume that $A=\mathbf{Z}$, with a reduction of points awarded.

1. Consider the 2 -simplex $\sigma$ with all three vertices identified, i.e., $\mathrm{d}_{1} \mathrm{~d}_{2}(\sigma)=\mathrm{d}_{0} \mathrm{~d}_{2}(\sigma)=\mathrm{d}_{0} \mathrm{~d}_{1}(\sigma)$.

- Draw a picture of the resulting simplicial set $X$.
- Compute the homology and cohomology of $X$ with coefficients in an arbitrary abelian group $A$.

2. Consider the 2 -sphere with its north and south pole identified.

- Write down a simplicial set $X$ that models such a construction.
- Compute the homology and cohomology of $X$ with coefficients in an arbitrary abelian group $A$.

3. The orange slice with $n$ carpel slices $(n \geq 1)$ is defined as follows. There are $n$ generating 2 -simplices, denoted $t_{i}(i \in \mathbf{Z} / n \mathbf{Z})$. The relations are as follows: $\mathrm{d}_{1}\left(t_{i}\right)=\mathrm{d}_{2}\left(t_{i+1}\right)(i \in \mathbf{Z} / n \mathbf{Z})$.

- Draw a picture of the orange slice for $n=3$.

We now add the following relations: $\mathrm{d}_{0}\left(t_{i}\right)=\mathrm{d}_{0}\left(t_{i+1}\right)(i \in \mathbf{Z} / n \mathbf{Z})$.

- Draw a picture of the resulting simplicial set $X_{n}$ for $n=3$. (Identifications that are difficult to visualize may be denoted using letters, like for the real projective plane.)
- Compute the homology and cohomology with coefficients in an arbitrary abelian group $A$ of the resulting simplicial set $X_{n}$ for all $n \geq 1$. (If you are unable to do the general case, you may assume $n=3$, with a reduction of points.)

4. The (solid) orange with $n$ carpels ( $n \geq 1$ ) is defined as follows. There are $n$ generating 3 -simplices, denoted $c_{i}(i \in \mathbf{Z} / n \mathbf{Z})$. The relations are as follows: $\mathrm{d}_{2}\left(c_{i}\right)=\mathrm{d}_{3}\left(c_{i+1}\right)$.

- Draw a picture of an orange with 3 carpels.

We now add the following relations: $\mathrm{d}_{1}\left(c_{i}\right)=\mathrm{d}_{0}\left(c_{i+s}\right)$, where $s \in \mathbf{Z} / n \mathbf{Z}$ is a generator (i.e., the elements $s$, $s+s, s+s+s$, etc., exhaust the entire group $\mathbf{Z} / n \mathbf{Z})$.

- Draw a picture of the resulting simplicial set $X_{n}$ for $n=3$. (Identifications that are difficult to visualize may be denoted using letters, like for the real projective plane.)
- Compute the homology and cohomology with coefficients in an arbitrary abelian group $A$ of the resulting simplicial set $X_{n}$ for all $n \geq 1$ and an arbitrary generator $s \in \mathbf{Z} / n \mathbf{Z}$. (If you are unable to do the general case, you may assume $n=3$ and $s=1$, with a reduction of points.)

5. Consider $X=\mathrm{S}^{1} \times \mathrm{S}^{2}$ and the simplicial subset $Y \subset X$ given by $Y=\left(\mathrm{S}^{1} \times *\right) \cup\left(* \times \mathrm{S}^{2}\right)$, where $*$ denotes the 0 -simplices of $\mathrm{S}^{1}$ and $\mathrm{S}^{2}$.

- Draw a picture of $Y, X$, and the inclusion $Y \subset X$.

Consider the coequalizer $Q$ of $f, g: Y \rightrightarrows X$, where $f$ is the inclusion $Y \subset X$ and $g$ is the composition $Y \rightarrow \Delta^{0} \rightarrow \mathrm{~S}^{1} \times \mathrm{S}^{2}$, where the second map is unique because its target has only one 0 -simplex.

- Compute the homology of the map $X \rightarrow Q$ with coefficients in $A$.

6. Suppose that $f: X \rightarrow Y$ is a simplicial map and $n \geq 0$ is such that $\mathrm{H}_{n}(X) \cong \mathbf{Z}$ and $\mathrm{H}_{n}(Y) \cong 0$. We are interested in the existence of a simplicial map $g: Y \rightarrow X$ such that $g \circ f=\operatorname{id}_{X}$. Determine which of the following possibilities is true and prove your claim.

- The map $g$ always exists.
- The map $g$ never exists.
- For some choices of $f$ the map $g$ exists, and for some it does not.

7. Prove or disprove: if $A$ and $B$ are simplicial sets with finitely many nondegenerate simplices (so that $\chi(A)$ and $\chi(B)$ are defined), then $\chi(A \times B)=\chi(A) \chi(B)$.
8. Compute the group homology $\mathrm{H}_{1}(\mathbf{Z} / 3 \mathbf{Z})$.
