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1 Introduction.

The main result of this paper can be formulated as follows.

Theorem 1.1. For any von Neumann algebra M and for any d and e in R≥0 the category of right
Ld(M)-modules is equivalent to the category of right Ld+e(M)-modules. The equivalences are implemented
by the algebraic tensor product and the algebraic internal hom with Le(M). In particular, all categories of
right Ld(M)-modules are equivalent to each other and to the category of representations of M on Hilbert
spaces.

Here an Ld(M)-module is an algebraic M -module equipped with an inner product valued in L2d(M)
satisfying a natural set of properties, as defined by Junge and Sherman [JuSh]. For any fixed d ∈ R≥0 the
category of Ld(M)-modules is a W*-category, and as we explain below, Ld(M)-modules are tightly related
to the noncommutative Ld-spaces of certain W*-categories (the linking categories of Ld(M)-modules).

We pause briefly to explain the smooth commutative analog of this result, which is a good source of
intuition for the noncommutative case.

Consider a smooth bundle V of complex Hilbert spaces over a smooth manifold X. The inner product
on V can be expressed as a morphism of bundles V̄ ⊗ V → Dens0(X), where V̄ denotes the conjugate
bundle of V . We consider vector bundles equipped with a more general type of inner product with values
in Dens2d(X) for some d ∈ R. Here it is essential that d is real because we need Dens+2d(X) for the positivity
property. Such an inner product equips every fiber Vx of V with an inner product with values in the
one-dimensional vector space Dens2d(TxX) and we require that all fibers are complete with respect to this
inner product. In particular, all fibers are Hilbertable, i.e., their topology is induced by some C-valued inner
product, but unless d = 0 there is no canonical way to choose such an inner product. We refer to such
bundles as d-bundles. In particular, for d = 0 the space Dens2d(U) is canonically isomorphic to C and we
get the usual smooth bundles of complex Hilbert spaces.

Examples of d-bundles abound in differential geometry. For example, the Dirac operator on a conformal
spin n-manifold is a differential operator from a (1− 1/n)/2-bundle to a (1+ 1/n)/2-bundle as explained by
Stephan Stolz and Peter Teichner in [StTe, Definition 2.3.9 in the article version, Definition 2.22 in the book
version].

The easiest example of a d-bundle is supplied by the bundle Densa(X), where <a = d. The inner product
is given by the composition Densa(X)⊗Densa(X) → Densā(X)⊗Densa(X) → Densa+ā(X) = Dens2d(X).
Other examples can be obtained by tensoring a bundle of Hilbert spaces with Densd(X). In fact, these
examples exhaust all possible d-bundles, for if V is a d-bundle, then V ⊗ Dens−d(X) = Hom(Densd(X), V )
is a 0-bundle.

More generally, if V is a d-bundle, then V ⊗ Dense(X) is a (d + e)-bundle for any e ∈ R. This
correspondence extends to a functor, which establishes an equivalence between the categories of d-bundles
and (d+e)-bundles. In particular, all categories of d-bundles for various values of d are canonically equivalent
to each other.

Just as compactly supported smooth sections of the bundle of d-densities of X can be completed to the
space Ld(X), compactly supported smooth sections of an arbitrary d-bundle on X can be completed to an
Ld(X)-module, provided that d ≥ 0.

More precisely, if M is a von Neumann algebra and d ∈ R≥0, then a right Ld(M)-module is an algebraic
right M -module V equipped with an inner product with values in L2d(M) satisfying the usual algebraic
properties (bilinearity, positivity, nondegeneracy) that is complete in the measurable topology, which is the
weakest topology on V such that the maps y ∈ V 7→ (x, y) ∈ L2d(M) are continuous for all x ∈ V , where
L2d(M) is equipped with the measurable topology. A morphism of Ld(M)-modules is a continuous morphism
of algebraic M -modules. P. Ghez, Ricardo Lima, and John Roberts in [GhLiRo, Example 1.4] equip the
category of representations of M on Hilbert spaces with a structure of a W*-category. As we will see later,
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this category is equivalent to the category of Ld(M)-modules for any d as a *-category, thus Ld(M)-modules
also form a W*-category.

Suppose X is a smooth manifold. Then L0(X) (the algebra of bounded measurable functions on the
underlying measurable space of X) is a von Neumann algebra and by an Ld(X)-module we mean an
Ld(L0(X))-module. The measurable topology on the space of compactly supported smooth sections of a
d-bundle V is the weakest topology such that the maps y ∈ C∞

cs (V ) 7→ (x, y) ∈ C∞
cs (Dens2d(X)) are continu-

ous for all x ∈ C∞
cs (V̄ ), where C∞

cs (Dens2d(X)) is equipped with the measurable topology. Completing this
space gives us an Ld(X)-module with the measurable topology. Every Ld-module over any commutative von
Neumann algebra can be obtained in this way.

Combining together equivalences of categories of d-bundles and facts about algebraic tensor products and
internal homs of spaces La(M) we arrive at the following statement, which is the second main result of this
paper: (1) If V is a right Ld(M)-module, then V ⊗MLe(M) can be equipped in a natural way with a structure
of a right Ld+e(M)-module, in particular it is automatically complete; (2) If V is a right Ld+e(M)-module,
then HomM (Le(M), V ) is naturally a right Ld(M)-module, in particular it is automatically complete; (3) The
above constructions can be extended to an adjoint unitary W*-equivalence of W*-categories. Here d and e
are arbitrary elements of R≥0. The above results can be summarized as follows.

Theorem 1.2. For any von Neumann algebra M and for any d and e in R≥0 the category of right
Ld(M)-modules is equivalent to the category of right Ld+e(M)-modules. The equivalences are implemented
by the algebraic tensor product and the algebraic internal hom with Le(M). In particular, all categories of
right Ld(M)-modules are equivalent to each other and to the category of representations of M on Hilbert
spaces.

This theorem can also be extended to bimodules. An M -Ld(N)-bimodule is a right Ld(N)-module V
equipped with a morphism of von Neumann algebras M → End(V ). Here End(V ) denotes the von Neumann
algebra of all continuous N -linear endomorphisms of V . An Ld(M)-N -bimodule is defined similarly.

Theorem 1.3. For any von Neumann algebras M and N the category of Ld(M)-N -bimodules, the category
of M -Ld(N)-bimodules, and the category of birepresentations of M and N (i.e., commuting representations
of Mop and N) on Hilbert spaces are all equivalent to each other. The equivalences for different values
of d are implemented by the algebraic tensor product and the algebraic internal hom with the relevant
space Le(M). The equivalence between Ld(M)-N -bimodules and M -Ld(N)-bimodules is implemented by
passing from an Ld(M)-N -bimodule to an L1/2(M)-N -bimodule, then reinterpreting the latter module as
an M -N -birepresentation,
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2 W*-categories and their linking algebras.

Our reference for W*-categories is the paper by Ghez, Lima, and Roberts [GhLiRo].

Intuitively, *-categories, Banach *-categories, C*-categories, and W*-categories should be thought of as
many-objects versions (horizontal categorifications) of *-algebras, Banach *-algebras, C*-algebras, and von
Neumann algebras. In particular, in the case when the set of objects has one element these notions coincide
with the corresponding notions of algebras, provided that we either ignore 2-morphisms on the categorical
side or add intertwining elements as 2-morphisms on the algebraic side. A *-category is a category enriched
over the symmetric monoidal category of complex vector spaces with the algebraic tensor product, equipped
with a contravariant complex-antilinear involution on morphisms: ∗: Hom(X,Y ) → Hom(Y,X) for any pair
of objects X and Y . The involution has to satisfy the usual identities: id∗X = idX for any object X
and (fg)∗ = g∗f∗ for any composable morphisms f and g. A Banach *-category is a *-category whose
spaces of morphisms Hom(X,Y ) are equipped with Banach norms such that ‖idX‖ = 1 for any object X,
‖fg‖ ≤ ‖f‖·‖g‖ for any composable morphisms f and g, and ‖f∗‖ = ‖f‖ for any morphism f . Alternatively,
one can define a Banach *-category as a category enriched over the symmetric monoidal category of complex
Banach spaces and contractive linear maps (maps of norm at most 1) with the projective tensor product
and equipped with a compatible involution. A C*-category is a Banach *-category that for any morphism f
satisfies the C*-identity ‖f∗f‖ = ‖f‖2 and the positivity condition f∗f ≥ 0 (as an element of the C*-algebra
End(X), which is a C*-algebra because of the C*-identity). The positivity condition does not follow from the
other properties. Just as for C*-algebras, norms of morphisms in a C*-category can be recovered uniquely
from the categorical structure. Finally, a W*-category is a C*-category such that the Banach space of
morphisms between any pair of objects has a predual, which is necessarily unique.

Functors between *-categories are enriched functors that commute with the involution. For a functor
between Banach *-categories we require that all maps of spaces of morphisms are contractive. In the
framework of enrichment over Banach spaces these are simply enriched functors that commute with the
involution. For C*-categories the contractivity condition is satisfied automatically. Finally, for W*-categories
we require functors to be continuous in the ultraweak topology (the weak topology induced by the unique
predual) on morphisms. Equivalently, we can require maps of spaces of morphisms to possess a predual.

No additional conditions have to be satisfied for natural transformations between *-categories. For
Banach *-categories, C*-categories, and W*-categories we require that the norms of component morphisms
of a natural transformation are uniformly bounded. This condition follows naturally once we consider the
enriched functor category for the enrichment defined above.

The above definitions can also be motivated by the fact that functors between small categories of one
of the above types again form a small category of the same type. For example, functors between small
W*-categories form a small W*-category. More generally, we can substitute the appropriate version of
(local) presentability or accessibility for smallness. For example, we will see below that the W*-category
of modules over a von Neumann algebra is W*-presentable, hence functors between such categories form a
W*-category, which in fact is equivalent to the W*-category of bimodules (correspondences) between these
algebras.

Thus we obtained four bicategories, whose objects are *-categories, Banach *-categories, C*-categories,
and W*-categories respectively. The words ‘functor’ and ‘natural transformation’ are always used in the
sense defined above when applied to a category of the type discussed above.

We now explain how the concept of linking algebras allows us to reduce the theory of small W*-categories
to the theory of von Neumann algebras. This reduction can be seen as a complement of the obvious reduction
from von Neumann algebras to small W*-categories (every von Neumann algebra can be thought of as a
W*-category with one object). From now on we concentrate on W*-categories, although the theory of linking
algebras can take place in any of the four settings mentioned above.

A linking algebra is a pair (A, p), where A is a von Neumann algebra and p: I → A is a family of
projections in A indexed by a set (not a proper class) I such that

∑
i∈I pi = 1 ∈ A and pipj = 0 for all i ∈ I

and j ∈ I such that i 6= j.

Consider a small W*-category C. The linking algebra of C is the pair (A, p) defined as follows. The
indexing set I of p is the set of objects of C. The von Neumann algebra A consists of square matrices with
indexing set I. The entry with index (X,Y ) has to belong to Hom(Y,X) (recall that X and Y are objects
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of C). For example, in the case of two objects we have matrices of the form(
End(X) Hom(Y,X)

Hom(X,Y ) End(Y )

)
.

If I is infinite, we require the matrix to be bounded in the sense that norms of finite square submatrices have
to be uniformly bounded. Alternatively, one can require that the matrix acts as a bounded operator on the
Hilbert space constructed from Haagerup’s standard forms of Hom(Y,X). The identity element is given by
the diagonal matrix with identity morphisms on the diagonal. Multiplication obeys the matrix rules, with
products of individual elements coming from the composition in C. The involution transposes the matrix
and applies the involution in C to individual elements. For an object X in C we define the projection pX ∈ A
to be the matrix whose entries are all zero except for the diagonal entry indexed by X, which is idX . We
have

∑
X pX = 1 and pXpY = 0 for all X 6= Y , hence (A, p) is indeed a linking algebra.

The crucial property of W*-categories is that the algebra A constructed above is indeed a von Neumann
algebra. In fact, the opposite is also true, the structure of a small W*-category can be recovered from its
linking algebra. Given a linking algebra (A, p) we construct from it a small W*-category C as follows. The
set of objects of C is the indexing set of p. Individual spaces of morphisms are the corresponding corners of A:
Hom(X,Y ) := pY ApX . We have idX = pX , composition is induced by the multiplication on A, involution is
induced by the involution on A, norms on spaces of morphisms are induced from the norm on A, the predual
of pY ApX is pXA∗pY . The properties of a W*-category are satisfied because A is a von Neumann algebra.

The above correspondence can be extended to functors between W*-categories whose induced map on
objects is injective. In a certain sense we do not lose anything by restricting ourselves to injective functors,
because we can always “pump” the set of objects in such a way that we have enough freedom to replace
every functor by an isomorphic injective functor.

More precisely, consider a small full subbicategory U of the bicategory of small W*-categories. For
example, in the framework of Grothendieck universes one can take all bicategories whose sets of objects
are elements of the given Grothendieck universe. We will construct another small full subbicategory V
of the bicategory of small W*-categories with the following properties. Denote by W the subbicategory
of V consisting of all objects, injective functors, and all natural transformations. We will construct explicit
biequivalences I:U → W , W → V , V → U that induce isomorphisms on the sets of objects. The biequiva-
lence W → V is simply the inclusion of W into V . In other words, we can use the functor I to “pump” the
sets of objects of W*-categories in U to get a biequivalent bicategory V whose constituent W*-categories
have big enough sets of objects for injective functors to represent all functors.

The full subbicategory V is constructed as follows. For every W*-category C in U we explain how to
construct the corresponding W*-category D = I(C) in V . Denote by Q the cartesian product∏

C∈Ob(U)

FM(Ob(C)).

Here FM(X) denotes the free monoid on a set X. In other words, an element of Q contains a finite tuple
of objects of C for each W*-category C in U . The set of objects of D is defined to be Ob(C) × Q. The
structure of a W*-category of D is obtained by pulling back the structure of a W*-category of C along the
projection Ob(C) ×Q → Ob(C). The second component Q is only needed to ensure injectivity of functors
later. We have a canonical equivalence D → C induced by the above projection on objects. Furthermore,
we have a canonical equivalence C → D induced by the map on objects that simply adds an element of Q
consisting of empty tuples.

The functor I:U → W has already been defined on objects. Given a functor F :C → D in U , the object
map Ob(I(F )):Ob(C) × Q → Ob(D) × Q of the functor I(F ) is defined as follows. The first component
Ob(C)×Q → Ob(D) is the composition Ob(C)×Q → Ob(C) → Ob(D), where the first map is a projection.
The second component Ob(C) × Q → Q is the canonical injection given by inserting an element of Ob(C)
at the beginning of the tuple of elements of Ob(C). The second component guarantees the injectivity of the
resulting map Ob(C)×Q → Ob(D)×Q. Finally, a natural transformation between two functors F and G
from C to D immediately induces a natural transformation between I(F ) and I(G).

As we already mentioned above, the functor W → V is simply the inclusion of W into V . Finally,
the functor V → U is defined as follows. On objects it is given by the inverse of the map Ob(I). Given a
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functor G in V , we can represent its domain and target in the form I(C) and I(D) respectively (the functor
itself need not be in the image of I). Composing G with the equvialences C → I(C) and I(D) → D defined
above gives us the corresponding functor from C to D in U . This construction also defines the map on
natural transformations.

The cyclic composition U → W → V → U is simply the identity map. The other two cyclic compositions
induce the identity maps on objects and are fully faithful on 2-morphisms, but they are only essentially
surjective on 1-morphisms. Thus all three cyclic compositions are biequivalences, hence the original three
functors are also biequivalences.

Without the smallness condition we run into cardinality problems, and in fact the corresponding bicat-
egories are not biequivalent.

A morphism (A, p) → (B, q) of linking algebras with indexing sets I and J respectively is a pair (f, u),
where f :A → rBr is a morphism of von Neumann algebras, u: I → J is an injection such that f(api) =
f(a)qu(i) and f(pia) = qu(i)f(a) for all a ∈ A and i ∈ I, and r := cosupp(f, u) :=

∑
i∈I qu(i) ∈ B is the

“cosupport” of (f, u).

The linking morphism of an injective functor between small W*-categories is the morphism between
their linking algebras given by the pair (f, u), where u is the underlying injective map on objects and f is
induced by applying the functor to individual matrix entries. Vice versa, any morphism of linking algebras
of some small W*-categories is the linking morphism of an injective functor between them.

If (f, u): (A, p) → (B, q) and (g, v): (A, p) → (B, q) are two morphisms of linking algebras, then a
2-morphism h: (f, u) → (g, v) is an element h ∈ sBr such that hf(a) = g(a)h for all a ∈ A, where r :=
cosupp(f, u) and s := cosupp(g, v).

The linking intertwining element of a natural transformation between injective functors is given by the
matrix whose nonzero elements are the components of the natural transformation. More precisely, given a
natural transformation H:F → G between functors F,G:C → D with linking morphisms

(f, u), (g, v): (A, p) → (B, q),

the linking intertwining element of H has HX in the column u(X) and row v(X) for any object X of C and
zeros elsewhere. Again, the injectivity of F and G is crucial for this construction. Vice versa, all 2-morphisms
between the linking morphisms of some injective functors come from natural transformations.

Given a subbicategory W of the bicategory of small W*-categories such that all 1-morphisms of W
are injective functors, the above linking constructions assemble into a functor from W to the bicategory of
linking von Neumann algebras.

Altogether, the above constructions assemble into a fully faithful functor from any small subbicategory U
of the bicategory of small W*-categories to the bicategory of linking von Neumann algebras, their morphisms,
and 2-morphisms. This functor is defined to be the composition of the pumping functor I:U → W con-
structed above and the linking functor for W .
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3 La-spaces of W*-categories.

In this section we extend the theory of modular algebras and La-spaces to W*-categories. Applica-
tions of this theory include the theory of La-modules, which can be reduced to the theory of La-spaces of
W*-categories using the notion of the linking W*-category of an L0-module.

The extension is done using the theory of linking algebras developed in the previous section by passing
from a W*-category to its linking algebra, applying the relevant construction to the resulting von Neumann
algebra, and enforcing compatibility with the given family of projections as appropriate. In particular, we
can immediately lift the entire theory of modular algebras to the setting of W*-categories. The resulting
theory is functorial with respect to the W*-categorical analog of operator valued weights, which we define
below. As usual, operator valued weights come in two flavors: positive unbounded and (not necessarily
positive or even self-adjoint) bounded. The former are usually simply referred to as operator valued weights.
We start with bounded operator valued weights, because they are easier to deal with.

Definition 3.1. A bounded operator valued weight associated to a morphism of linking algebras

(f, u): (A, p) → (B, q)

is a bounded operator valued weight T associated to f :A → rBr, where r = cosupp(f, u).

Remark 3.2. The above definition immediately allows us to derive that T (qu(i)bqu(j)) = piT (b)pj for all
b ∈ rBr, i ∈ I, j ∈ I. Thus a bounded operator valued weight respects the additional structure of linking
algebras.

Definition 3.3. Given a functor F :C → D of small W*-categories we define a bounded operator valued
weight associated to F as a bounded operator valued weight T associated to the linking morphism

(g, h): (A, p) → (B, q)

of F .

Remark 3.4. Here we assume that either F is injective or the pumping machinery of the previous section
is applied first.

Definition 3.5. An operator valued weight associated to a morphism of linking algebras (f, u): (A, p) →
(B, q) is an operator valued weight T associated to f :A → rBr, where r = cosupp(f, u).

Remark 3.6. Similarly to the bounded case, the above definition implies that T (qu(i)bqu(i)) = piT (b)pi for
all b ∈ rBr, i ∈ I and T ((yqu(i) + zqu(j))

∗b(yqu(i) + zqu(j))) = (ypi + zpj)
∗T (b)(ypi + zpj) for all b ∈ rBr,

i ∈ I, j ∈ I, y ∈ C, z ∈ C, which means that operator valued weights also respect the additional structure
of linking algebras.

Definition 3.7. Given a functor F :C → D of small W*-categories we define an operator valued weight
associated to F as an operator valued weight T associated to the linking morphism (f, u): (A, p) → (B, q)
of F .

Remark 3.8. Although an operator valued weight associated to a functor between W*-categories does
induce an operator valued weight between the corresponding von Neumann algebras of endomorphisms of
objects, in particular, it induces a map between their extended positive cones, the same cannot be said about
spaces of morphisms between different objects. This is due to the fact that arbitrary operator valued weights
are defined only on extended positive cones, and a nonzero morphism between different objects is never
positive (or even self-adjoint) in the linking algebra. Even if we rectify the problem with self-adjointness by
considering a pair of morphisms f :X → Y and g:Y → X such that the matrix

(
0 g
f 0

)
is a self-adjoint element

(i.e., f = g∗) in the von Neumann linking algebra of the full W*-subcategory spanned by X and Y , this
matrix is positive if and only if f = g = 0. However, bounded operator valued weights do give maps between
all spaces of morphisms, as explained above.

Remark 3.9. Although the above definitions are easy to obtain using the linking machinery of the previous
section, they become less elegant when the functor F is not injective, in which case we have to run the
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pumping machinery to convert F to an injective functor first. This can be done canonically by applying the
pumping machinery to the full subbicategory of the bicategory of small W*-categories spanned by the source
and target of F . However, one gets additional issues when one starts composing operator valued weights.
Furthermore, the above definitions only work for small categories. To resolve these problems we use the
insight provided by the above definitions to construct new definitions that work for all functors.

Definition 3.10. A bounded operator valued weight associated to a functor F :C → D of W*-categories
is given by specifying for every pair of objects X and Y of C an ultraweakly continuous linear map (or
a map with a predual) TX,Y : HomD(F (X), F (Y )) → HomC(X,Y ) such that for any f :X → Y we have
TX,Y (fF (g)) = TX,Y (f)g for all g:W → X and TX,Y (F (g)f) = gTX,Y (f) for all g:Y → Z. Furthermore,
the individual components TX,Y must assemble into a bounded operator-valued weight on any linking algebra
composed of objects in C.

Definition 3.11. An operator valued weight associated to a functor F :C → D of W*-categories is given
by specifying for every finite family R: I → Ob(C) of objects in C an operator valued weight TR associated
to the morphism of von Neumann algebras L(R∗F ): L(R∗C) → L(R∗D), where R∗C and R∗D denote the
W*-categories with I as the set of objects obtained by pulling back the structures of W*-categories on
C and D via the map R, R∗F denotes the functor induced from F by pulling back along R (here R∗F
induces the identity map on objects), and L denotes the linking functor. Given an arbitrary injection
ρ: J → I we require that TR restricts to TRρ.

Remark 3.12. The above definition is more complicated than the definition for bounded operator valued
weights because arbitrary operator valued weights can only be evaluated on elements in extended positive
cones, which necessitates the usage of 2 × 2 matrices. To ensure compatibility with conjugation we need
3× 3 matrices. Bigger matrices are necessary for positivity.

Remark 3.13. The above definition makes sense for nonsmall categories, because for any (proper) class C
finite families of elements of C again form a (proper) class. We could have also taken arbitrary set-indexed
families.

Remark 3.14. Operator valued weights whose components are bounded are precisely positive bounded
operator valued weights. Here a bounded operator valued weight T is positive if the map TR is positive for
any finite family R: I → Ob(C), where TR is given by the matrix whose entry with index (X,Y ) is TX,Y .

Remark 3.15. A unitary isomorphism between two objects in a W*-category C identifies the correspoding
components of a (bounded or positive unbounded) operator valued weight associated to a functor F :C → D.
This follows from the multiplicative respectively conjugation property of bounded respectively unbounded
operator valued weights.

Definition 3.16. Given two W*-categories C and D, two functors F and G from C to D, and two bounded
operator valued weights T and U associated to F and G respectively, a natural transformation from (F, T )
to (G,U) is a pair (H,V ), whereH is a natural transformation from F to G and V : Ob(C)×Ob(C) → Mor(C)
is a function that sends a pair of objects (X,Y ) in C to the map VX,Y : HomD(FX,GY ) → HomC(X,Y )
such that

Remark 3.17. W*-categories, functors with associated bounded operator valued weights, and natural trans-
formations form a bicategory. Identity and composition are specified componentwise.

Definition 3.18. A (bounded or positive unbounded) operator valued weight is faithful respectively semifi-
nite if its individual components are faithful respectively semifinite. Bounded weights are automatically
semifinite.

4 Linking categories.

Recall that a (Banach/C/W) *-category with one object is precisely a (Banach/C/W) *-algebra, once
we deal with 2-morphisms properly.
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5 La-modules.

In this section we prove the main theorem of this paper. The case of densities 0 and 1/2 (without
automatic completeness or continuity) is covered by Theorem 2.2 in Baillet, Denizeau, and Havet [BaDeHa];
many ideas were already present in Rieffel [Ri].

Remark 5.1. If M is a complex *-algebra and X is an algebraic right M -module, then denote by X♯ the
algebraic left M -module whose underlying abelian group is that of X and the left multiplication map is the
composition M ⊗X → M ⊗X → X ⊗M → X, where the first map is the tensor product of the involution
on M and the identity map on X, the second map is the braiding map, and the third map is the right
multiplication map on M . There is a canonical complex antilinear isomorphism of vector spaces X → X♯,
which equals the identity on the underlying abelian groups. Henceforth we denote this isomorphism by
x 7→ x♯. The functor X 7→ X♯ is an equivalence of the categories of right and left algebraic M -modules.
Whenever we equip M -modules with additional structures or properties we extend the functor X 7→ X♯ to
the new category of modules without explicitly mentioning it.

Definition 5.2. (Junge and Sherman, [JuSh].) Suppose d ∈ R≥0 and M is an arbitrary von Neumann
algebra. A right pre-Ld(M)-module is an algebraic right M -module X together with an M -M -bilinear inner
product µ:X♯ ⊗X → L2d(M) such that for all u and v in X we have (u, v)∗ = (v, u) and for all w ∈ X we
have (w,w) ≥ 0 and (w,w) = 0 implies w = 0. Here (x, y) := µ(x♯⊗y). Left pre-Ld(M)-modules are defined
similarly.

Remark 5.3. A canonical example of a right Ld(M)-module is given by the space La(M), where <a = d
and the inner product is given by (x, y) := x∗y. Observe that d has to be real because the notion of positive
element in La(M) only makes sense for a ∈ R≥0.

Definition 5.4. Suppose d ∈ R≥0, M is a von Neumann algebra, and X and Y are right pre-Ld(M)-mod-
ules. A morphism f from X to Y is a morphism of the underlying algebraic right M -modules of X and Y
that is continuous in the topologies given by the quasinorm x ∈ X 7→ ‖(x, x)1/2‖ ∈ R≥0 on X and likewise
for Y . See Proposition 3.2 in Junge and Sherman [JuSh] for a proof that this is a quasinorm.

Definition 5.5. Suppose M is a von Neumann algebra and d ∈ R≥0. A right Ld(M)-module is a
right pre-Ld(M)-module X such that every bounded (in the corresponding quasinorms) morphism from X
to L2d(M) has the form y ∈ X 7→ (x, y) ∈ L2d(M) for some x ∈ X. The category of right Ld(M)-modules
is the full subcategory of the category of right pre-Ld(M)-modules consisting of Ld(M)-modules. We also
refer to right L0(M)-modules as W*-modules over M .

Proposition 5.6. Suppose M is a von Neumann algebra and d ∈ R≥0. The full subcategory of right
Ld(M)-modules in the category of right pre-Ld(M)-modules is reflective. The reflector (i.e., the left adjoint
to the inclusion functor) sends a right pre-Ld(M)-module to its completion in the measurable topology (which
can also be described algebraically as CHom(X,L2d(M))♯) and a morphism of right pre-Ld(M)-module to
its unique extension to completed modules, which admits a similar algebraic description. The unit of the
adjunction embeds a right pre-Ld(M)-module into its completion. This embedding of categories is exact (the
reflector preserves finite products) and bireflective (the unit of the adjunction is both a monomorphism and
an epimorphism).

Proposition 5.7. SupposeM is a von Neumann algebra and d ∈ R≥0. Consider the contravariant endofunc-
tor ∗ on the category of right Ld(M)-modules that sends every object to itself and every morphism f :X → Y
of right Ld(M)-modulesX and Y to the morphism f∗ given by the composition Y → CHomM (Y,L2d(M))♯ →
CHomM (X,L2d(M))♯ → X, where the middle morphism is given by the precomposition with f and the other
two isomorphisms come from the definition of right Ld(M)-modules. Here CHom denotes morphisms that
are continuous in the quasinorm topology (i.e., bounded). This functor is an involutive contravariant endoe-
quivalence of the category of right Ld(M)-modules, i.e., the category of right Ld(M)-modules is a *-category.
Moreover, the morphism f∗ is uniquely characterized by the equation (f(x), y) = (x, f∗(y)) for all x ∈ X
and y ∈ Y .

Proof. If there is another such map g, then we have (x, (f∗ − g)(y)) = 0 for all x ∈ X and y ∈ Y , in
particular, for x = (f∗ − g)(y) we have ((f∗ − g)(y), (f∗ − g)(y)) = 0, hence (f∗ − g)(y) = 0 for all y ∈ Y ,
therefore f∗ = g.
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Denote the three morphisms in the above composition by v, h, and u. Observe that (x, f∗(y)) =
(x, uhv(y)) = (uhv(y), x)∗ = h(v(y))(x♯)∗ = v(y)(f ♯(x♯))∗ = v(y)(f(x)♯)∗ = (y, f(x))∗ = (f(x), y), as
desired.

The map f 7→ f∗ preserves identities and composition, hence it defines a contravariant endofunctor.
Now (x, f∗∗(y)) = (f∗(x), y) = (y, f∗(x))∗ = (f(y), x)∗ = (x, f(y)) for all x ∈ X, hence f∗∗(y) = f(y) for
all y ∈ X, thus f∗∗ = f and the functor ∗ is an involutive equivalence. Since it is also C-antilinear on
morphisms, it turns the category of right Ld(M)-modules into a *-category.

Proposition 5.8. Suppose M is a von Neumann algebra, d ∈ R≥0, and e ∈ R≥0. If X is a right
Ld(M)-module with the inner product µ:X♯ ⊗ X → L2d(M), then X ⊗M Le(M) has an inner prod-
uct ν given by the composition (X ⊗M Le(M))♯ ⊗ (X ⊗M Le(M)) → Le(M)♯ ⊗M X♯ ⊗ X ⊗M Le(M) →
Le(M)♯ ⊗M L2d(M) ⊗M Le(M) → L2(d+e)(M), where the first map comes from the functor ♯, the second
map is the inner product on X tensored with identity maps, and the last map is the multiplication map com-
bined with the canonical isomorphism Le(M)♯ → Le(M) given by the involution. This inner product turns
X ⊗M Le(M) into a right Ld+e(M)-module. Furthermore, a morphism f :X → Y of right Ld(M)-modules
induces a morphism f ⊗M idLe(M):X ⊗M Le(M) → Y ⊗M Le(M) of right Ld+e(M)-modules. The above
constructions combine into a *-functor from the category of right Ld(M)-modules to the category of right
Ld+e(M)-modules.

Proof. First we prove that the morphism ν defined above is an inner product on X⊗M Le(M). By the rank 1
theorem every element of X⊗MLe(M) can be represented in the form x⊗M u for some x ∈ X and u ∈ Le(M).
We have (x⊗M u, y⊗M v)∗ = (u∗(x, y)v)∗ = v∗(x, y)∗u = v∗(y, x)u = (y⊗M v, x⊗M u) for all x and y in X
and u and v in Le(M). Moreover, (x ⊗M u, x ⊗M u) = u∗(x, x)u ≥ 0 because (x, x) ≥ 0 and conjugation
preserves positivity. Finally, if (x ⊗M u, x ⊗M u) = u∗(x, x)u = 0, then p∗(x, x)p = 0, where p is the left
support of u, hence p∗(x, x)p = (x ⊗M p, x ⊗M p) = (xp, xp) = 0, therefore xp = 0, which implies that
x⊗M u = x⊗M pu = xp⊗M u = 0⊗M u = 0.

The module X ⊗M Le(M) is complete because every bounded map from it to L2d+2e(M) is given by an
inner product with some element.

Recall that a morphism f :X → Y of algebraic right M -modules is continuous if and only if it has an
adjoint. For f ⊗M idLe(M) we have ((f ⊗M idLe(M))(x⊗M u), y ⊗M v) = u∗(f(x), y)v = u∗(x, f∗(y))v(x⊗M

u, f∗(y)⊗M v) = (x⊗M u, (f∗ ⊗M idLe(M))(y ⊗M v)) for all x ∈ X, y ∈ Y , u and v in Le(M), therefore the
adjoint of f ⊗M idLe(M) is f

∗ ⊗M idLe(M), hence f ⊗M idLe(M) is continuous.
Finally, the map f 7→ f ⊗M idLe(M) preserves the involution and therefore is a *-functor: ((f ⊗M

idLe(M))(x ⊗M u), y ⊗M v) = (f(x) ⊗M u, y ⊗M v) = u∗(f(x), y)v = u∗(x, f∗(y))v = (x ⊗M u, (f∗ ⊗M

idLe(M))(y ⊗M v) for all x ∈ X, y ∈ Y , and u and v in Le(M), hence (f ⊗M idLe(M))
∗ = (f∗ ⊗M idLe(M)).

Proposition 5.9. Suppose M is a von Neumann algebra, d ∈ R≥0, and e ∈ R≥0. Denote by MHom
the algebraic internal hom of left M -modules. If X is a right Ld+e(M)-module with the inner product
µ:X♯ ⊗X → L2d+2e(M), then HomM (Le(M), X) has an inner product ν given by the composition

HomM (Le(M), X)♯ ⊗HomM (Le(M), X) → MHom(Le(M)♯, X♯)⊗HomM (Le(M), X)

→ MHomM (Le(M)♯ ⊗ Le(M), X♯ ⊗X)

→ MHomM (Le(M)♯ ⊗ Le(M),L2d+2e(M))

→ HomM (Le(M),MHom(Le(M)♯,L2d+2e(M)))

→ HomM (Le(M),L2d+e(M))

→ L2d(M),

where the first map comes from the functor ♯, the second map is the tensor product of morphisms, the
third map is the composition with the inner product on X, the fourth map is the usual tensor-hom adjunc-
tion map, the fifth map is given by the algebraic hom isomorphism theorem combined with the canonical
isomorphism Le(M)♯ → Le(M) given by the involution, and the last map is again given by the algebraic
hom isomorphism theorem. Alternatively, if x and y are in HomM (Le(M), X), then their inner product
is the unique element w ∈ L2d(M) such that (x(u), y(v)) = u∗wv for all u and v in Le(M). This in-
ner product turns HomM (Le(M), X) into a right Ld(M)-module. Furthermore, a morphism f :X → Y
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of right Ld+e(M)-modules induces via composition a morphism HomM (Le(M), f): HomM (Le(M), X) →
HomM (Le(M), Y ) of right Ld+e(M)-modules. The above constructions combine into a *-functor from the
category of right Ld+e(M)-modules to the category of right Ld(M)-modules.

Proof. Suppose that x and y are in HomM (Le(M), X). We have u∗(x, y)v = (x(u), y(v)) for all u and v
in Le(M), therefore v∗(x, y)∗u = (y(v), x(u)), hence by the alternative definition of the inner product we
have (x, y)∗ = (y, x). If x ∈ HomM (Le(M), X), then u∗(x, x)u = (x(u), x(u)) ≥ 0 for all u ∈ Le(M). An
element of L2d(M) whose conjugation by any element of Le(M) is positive must itself be positive, hence
(x, x) ≥ 0. Finally, if (x, x) = 0, then (x(u), x(u)) = u∗(x, x)u = 0, hence x(u) = 0 for all u ∈ Le(M),
therefore x = 0.

The module HomM (Le(M), X) is complete because every bounded map from it to the module Ld(M)
comes from an inner product with some element.

The morphism HomM (Le(M), f) is continuous for every morphism f , because

u∗(HomM (Le(M), f)(x), y)v = (f(x(u)), y(v)) = (x(u), f∗(y(v))) = u∗(x,HomM (Le(M), f∗)(y))v

for all x ∈ X, y ∈ Y , u and v in Le(M), therefore the adjoint of HomM (Le(M), f) is HomM (Le(M), f∗),
and maps that admit an adjoint are continuous.

Finally, the map f 7→ HomM (Le(M), f) preserves the involution: u∗(HomM (Le(M), f)(x), y)v =
(f(x(u)), y(v)) = (x(u), f∗(y(v))) = u∗(x,HomM (Le(M), f∗)(y))v for all u and v in Le(M), hence we have
(HomM (Le(M), f)(x), y) = (x,HomM (Le(M), f∗)(y)) and HomM (Le(M), f)∗ = HomM (Le(M), f∗) for all
f :X → Y , x ∈ X, and y ∈ Y .

Proposition 5.10. Suppose M is a von Neumann algebra, d ∈ R≥0, and e ∈ R≥0. If X is a right
Ld+e(M)-module, then the evaluation map ev:HomM (Le(M), X)⊗M Le(M) → X is a unitary isomorphism.
Moreover, these maps combine into a unitary natural isomorphism of *-functors.

Proof. The alternative definition of the inner product on HomM (Le(M), X) immediately proves that the eval-
uation map preserves the inner product, in particular it is injective: (ev(x⊗Mu), ev(y⊗M v)) = (x(u), y(v)) =
u∗(x, y)v = (x⊗M u, y ⊗M v) for all x and y in X and u and v in Le(M).

Consider an arbitrary element x ∈ X and denote by Z the closed submodule of X generated by x.
The map q from the algebraic submodule of Z generated by x to the algebraic right submodule of Ld+e(M)
generated by (x, x)1/2 given by sending an element of the form xp ∈ X for some p ∈ M to the element
(x, x)1/2p ∈ Ld+e(M) is well-defined with respect to the choice of p and preserves the inner product, hence
it extends to an isomorphism from Z to sLd+e(M), where s ∈ M is the right support of x, i.e., the support
of (x, x)1/2. The restriction of ev to the map of the form HomM (Le(M), Z)⊗MLe(M) → Z is an isomorphism.
Indeed, the map sLd(M) ⊗M Le(M) → HomM (Le(M), sLd+e(M)) ⊗M Le(M) → HomM (Le(M), Z) ⊗M

Le(M) → Z → sLd+e(M) is given by the multiplication map, which is an isomorphism, hence the above
restriction of ev is an isomorphism and therefore ev is a surjection.

Proposition 5.11. Suppose M is a von Neumann algebra, d ∈ R≥0, and e ∈ R≥0. If X is a right
Ld(M)-module, then the left multiplication map lm:X → HomM (Le(M), X⊗M Le(M)) is a unitary isomor-
phism. Moreover, these maps combine into a unitary natural isomorphism of *-functors.

Proof. The left multiplication map preserves the inner product, hence it is injective: u∗(lm(x), lm(y))v =
(lm(x)(u), lm(y)(v)) = (x ⊗M u, y ⊗M v) = u∗(x, y)v for all x and y in X and u and v in Le(M). Since
u and v are arbitrary, it follows that (lm(x), lm(y)) = (x, y). Finally, the left multiplication map is surjective
and hence it is an isomorphism.

Theorem 5.12. Suppose M is a von Neumann algebra, d ∈ R≥0, and e ∈ R≥0. The *-category of right
Ld(M)-modules is a W*-category. Moreover, the functors of tensor product and internal hom with Le(M)
between the categories of right Ld(M)-modules and Ld+e(M)-modules together with the unitary natural iso-
morphisms of evaluation and left multiplication form an adjoint unitary W*-equivalence of the W*-categories
of right Ld(M)-modules and right Ld+e(M)-modules.

Proof. The above propositions establish that the functors and natural isomorphisms under consideration
constitute a unitary *-equivalence of the corresponding *-categories. The *-category of right L0(M)-modules
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is a W*-category, hence the *-category of right Ld(M)-modules is also a W*-category. A *-equivalence of
W*-categories is automatically normal, i.e., it is a W*-equivalence, and a unitary natural transformation
is automatically bounded, i.e., it is a unitary W*-natural transformation. Thus we only have to prove the
adjunction property. This amounts to checking the unit-counit equations. For equivalences, one of the
equations implies the other one, but here we check them both.

The first property states that the composition of the morphisms

X ⊗M Le(M) → HomM (Le(M), X ⊗M Le(M))⊗M Le(M)

(the tensor product of the left multiplication map of X and the identity morphism of Le(M)) and

HomM (Le(M), X ⊗M Le(M))⊗M Le(M) → X ⊗M Le(M)

(the evaluation map of X ⊗M Le(M)) is the identity morphism of X ⊗M Le(M). The first map sends an
element x⊗M u ∈ X ⊗M Le(M) to the element (v ∈ Le(M) 7→ x⊗M v ∈ X ⊗M Le(M))⊗M u, which is then
evaluated to x⊗M u.

The second property states that the composition of the morphism

HomM (Le(M), X) → HomM (Le(M),HomM (Le(M), X)⊗M Le(M))

(the left multiplication map of the module HomM (Le(M), X)) and the morphism

HomM (Le(M),HomM (Le(M), X)⊗M Le(M)) → HomM (Le(M), X)

(the composition with the evaluation map of X) is the identity morphism of HomM (Le(M), X). The first
map sends an element f ∈ HomM (Le(M), X) to u ∈ Le(M) 7→ f ⊗M u ∈ HomM (Le(M), X) ⊗M Le(M),
which is then mapped to (u ∈ Le(M) 7→ f(u) ∈ X) = f .

Definition 5.13. Suppose M and N are von Neumann algebras and d ∈ R≥0. An M -Ld(N)-bimodule is
a right Ld(N)-module X equipped with a morphism of von Neumann algebras M → End(X). A morphism
of M -Ld(N)-bimodules is a morphism of the underlying right Ld(N)-modules that commutes with the left
action of M . Similarly, an Ld(M)-N -bimodule is a left Ld(M)-module X equipped with a morphism of von
Neumann algebras N → End(X). We also refer to right M -L0(N)-bimodules as right M -N -W*-bimodules
and similarly for left bimodules.

Theorem 5.14. For any von Neumann algebras M and N and any d ∈ R≥0 and e ∈ R≥0 there are canonical
adjoint unitary W*-equivalences of the W*-categories of M -Ld(N)-bimodules and M -Le(N)-bimodules.

Proof. All functors and natural isomorphisms under consideration are W*-functors and unitary W*-natural
isomorphisms and therefore they preserve the left action of M and give an adjoint unitary equivalence of the
corresponding W*-categories.

We briefly review the equivalence of L1/2(M)-modules and representations of M on a Hilbert space. See
Example 3.4.(ii) in Junge and Sherman [JuSh].

Definition 5.15. A right representation of a von Neumann algebra M on a Hilbert space H is a morphism
of von Neumann algebras M → B(H)op, where multiplication of elements of B(H) corresponds to the
composition of operators in the usual reverse order (i.e., xy means apply y first, then apply x). We denote
the W*-category of right representations of M and their bounded intertwiners by RepM . Likewise, a left
representation is a morphism M → B(H) and all left representations form a category MRep. Finally, a
birepresentation of von Neumann algebras M and N on a Hilbert space H is a pair of morphisms M → B(H)
and N → B(H)op with commuting images.

Definition 5.16. For every von Neumann algebra M we define a W*-functor F :ModL1/2(M) → RepM : if X
is a right L1/2(M)-module, then we turn it into a Hilbert space with the inner product given by composing
the L1(M)-valued inner product on X with the Haagerup trace L1(M) → C. We also define a W*-functor
going in the opposite direction RepM → ModL1/2(M): if X is a right representation of M , then for a pair of
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elements u and v in X the value of L1(M)-valued inner product (u, v) evaluated at p ∈ M is 〈u, vp〉. Observe
that we have unitary W*-natural isomorphisms id → GF and FG → id.

Theorem 5.17. Two W*-functors defined above together with the corresponding W*-natural isomorphisms
form an adjoint unitary W*-equivalence of W*-categories of right L1/2(M)-modules and right representations
of M . Likewise for left modules and representations. Moreover, the above adjoint unitary W*-equivalences of
W*-categories yield adjoint unitary W*-equivalences of the W*-categories of M -L1/2(N)-bimodules, birep-
resentations of M and N , and L1/2(M)-N -bimodules.

Corollary 5.18. There are adjoint unitary W*-equivalences of the W*-categories of M -Ld(N)-bimodules,
Ld(M)-N -bimodules, and birepresentations of M and N for all von Neumann algebras M and N and for all
d ∈ R≥0.

If we pass from an M -Ld(N)-bimodule X to the corresponding Ld(M)-N -bimodule Y , then X is gen-
erally not isomorphic to Y as an algebraic M -N -bimodule unless d = 1/2. For example, take d = 0,
M = C, N = B(H), X = B(H) for some infinite dimensional Hilbert space H. Then Y = L1/2(B(H)) as a
L1/2(C)-B(H)-bimodule and Y is not isomorphic to X as an algebraic right B(H)-module.
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