The geometric cobordism hypothesis Lecture 5a: The leftovers

Daniel Grady, Dmitri Pavlov (Texas Tech University, Lubbock, TX)

These slides: https://dmitripavlov.org/lecture-5a.pdf

Overview

- Tuesday: definitions
- Wednesday: locality and how to use it to prove one half of the GCH
- Thursday: the framed GCH (the other half)
- Today: contractibility of moduli spaces of cuts and its applications to GCH

Homotopy cocontinuity of $\mathfrak{B o r d}_{d}$

Proposition (G.-P. (formal))

Given $d \geq 0$, we have a left Quillen functor

$$
\operatorname{sPSh}\left(\mathrm{FEmb}_{d}\right)_{\mathrm{inj}} \rightarrow \mathrm{sPSh}\left(\mathrm{Cart} \times \Gamma \times \Delta^{\times d}\right)_{\mathrm{loc}}, \quad \mathcal{S} \mapsto \mathfrak{B o r d}_{d}^{\mathcal{S}}
$$

Theorem (G.-P.)

Given $d \geq 0$, the left derived functor of the left Quillen functor $\operatorname{sPSh}\left(\mathrm{FEmb}_{d}\right)_{\text {inj }} \rightarrow \operatorname{sPSh}\left(\text { Cart } \times \Gamma \times \Delta^{\times d}\right)_{\text {loc }}, \quad \mathcal{S} \mapsto \mathfrak{B o r d}{ }_{d}^{\mathcal{S}}$ sends Čech nerves of open covers in FEmb_{d} to weak equivalences.

The codescent property

Theorem (G.-P.)

Given $d \geq 0$, the left derived functor of the left Quillen functor

$$
\operatorname{sPSh}\left(\mathrm{FEmb}_{d}\right)_{\mathrm{inj}} \rightarrow \operatorname{sPSh}\left(\mathrm{Cart} \times \Gamma \times \Delta^{\times d}\right)_{\mathrm{loc}}, \quad \mathcal{S} \mapsto \mathfrak{B o r d}_{d}^{\mathcal{S}}
$$

sends the Čech nerve of an open cover $\left\{W_{a} \rightarrow U_{a}\right\}_{a \in A}$ of $(W \rightarrow U) \in \mathrm{FEmb}_{d}$ to a weak equivalence:

$$
\underset{n \in \Delta^{\mathrm{op}}}{\operatorname{hocolim}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \xrightarrow{\sim} \mathfrak{B o r d}_{d}^{W} \rightarrow U,
$$

where $W_{\alpha}=W_{\alpha_{0}} \cap \cdots \cap W_{\alpha_{n}}$.

The codescent property: main steps

$$
\underset{n \in \Delta^{\circ \mathrm{p}}}{\operatorname{hocolim}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \xrightarrow{\sim} \mathfrak{B o r d}_{d}^{W} \rightarrow U
$$

The codescent property: main steps

$$
\underset{n \in \Delta^{\circ \mathrm{p}}}{\operatorname{hocolim}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \xrightarrow{\sim} \mathfrak{B o r d}_{d}^{W} \rightarrow U
$$

Step 1 Replace hocolim by colim

The codescent property: main steps

$$
\underset{n \in \Delta^{\mathrm{op}}}{\operatorname{hocolim}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \xrightarrow{\sim} \mathfrak{B o r d}_{d}^{W} \rightarrow U
$$

Step 1 Replace hocolim by colim (use Reedy cofibrancy of the diagram):

$$
\underset{n \in \Delta^{\mathrm{op}}}{\operatorname{hocolim}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \underset{n \in \Delta^{\mathrm{op}}}{\sim} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}}
$$

The codescent property: main steps

$$
\underset{n \in \Delta^{\circ \mathrm{p}}}{\operatorname{hocolim}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \xrightarrow{\sim} \mathfrak{B o r d}_{d}^{W} \rightarrow U
$$

Step 1 Replace hocolim by colim
Step 2 Pass to n-dimensional stalks on Cart for all $n \geq 0$.

The codescent property: main steps

$$
\underset{n \in \Delta^{\circ \mathrm{p}}}{\operatorname{hocolim}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \xrightarrow{\sim} \mathfrak{B o r d}_{d}^{W} \rightarrow U
$$

Step 1 Replace hocolim by colim
Step 2 Pass to n-dimensional stalks on Cart for all $n \geq 0$.
Step 3 Introduce a filtration (on n-dimensional stalks)

$$
\operatorname{colim}_{n \in \Delta^{\mathrm{op}}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \rightarrow B_{0} \rightarrow \cdots \rightarrow B_{d} \rightarrow \mathfrak{B o r d}_{d}^{W} \rightarrow U .
$$

The codescent property: main steps

$$
\underset{n \in \Delta^{\circ \mathrm{p}}}{\operatorname{hocolim}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \xrightarrow{\sim} \mathfrak{B o r d}_{d}^{W} \rightarrow U
$$

Step 1 Replace hocolim by colim
Step 2 Pass to n-dimensional stalks on Cart for all $n \geq 0$.
Step 3 Introduce a filtration (on n-dimensional stalks)

$$
\operatorname{colim}_{n \in \Delta^{\circ} \mathrm{p}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \rightarrow B_{0} \rightarrow \cdots \rightarrow B_{d} \rightarrow \mathfrak{B o r d}{ }_{d}^{W} \rightarrow U .
$$

Step 4 Prove all maps in the filtration are weak equivalences.

The codescent property: filtration

$$
\underset{n \in \Delta^{\mathrm{op}}}{\operatorname{colim}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \rightarrow B_{0} \rightarrow \cdots \rightarrow B_{d} \rightarrow \mathfrak{B o r d}_{d}^{W} \rightarrow U .
$$

Definition

Given $d \geq 0$ and $\left(W=\mathbf{R}^{d} \times U \rightarrow U\right) \in \mathrm{FEmb}_{d}^{\mathrm{op}}$, the set $\mathfrak{B o r d}{ }_{d}^{\mathbf{R}^{d} \times U \rightarrow U}(V,\langle\ell\rangle, \mathbf{m})_{n}$ has elements:

- a smooth manifold M;
- a V-family of embeddings $M \rightarrow \mathbf{R}^{d}$;
- a $V \times \boldsymbol{\Delta}^{n}$-family of cut tuples with $m_{1} \times \cdots \times m_{d}$ cells;
- $P: M \rightarrow\langle\ell\rangle$;
- smooth map $V \rightarrow U$;

Filtration: Step 0

Filtration: Step 0

$$
\operatorname{colim}_{n \in \Delta^{\mathrm{op}}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \rightarrow B_{0} \rightarrow \cdots \rightarrow B_{d} \rightarrow \mathfrak{B o r d}_{d}^{W} \rightarrow U
$$

Filtration: Step 0

$$
\underset{n \in \Delta^{\mathrm{op}}}{\operatorname{colim}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \rightarrow B_{0} \rightarrow \cdots \rightarrow B_{d} \rightarrow \mathfrak{B o r d}_{d}^{W} \rightarrow U .
$$

■ colim: the entire bordism factors through some $W_{a} \subset W$.

- B_{0} : every connected component of the bordism factors through some $W_{a} \subset W$.

Filtration: Step 0

$$
\underset{n \in \Delta^{\mathrm{op}}}{\operatorname{colim}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \rightarrow B_{0} \rightarrow \cdots \rightarrow B_{d} \rightarrow \mathfrak{B o r d}_{d}^{W} \rightarrow U .
$$

■ colim: the entire bordism factors through some $W_{a} \subset W$.

- B_{0} : every connected component of the bordism factors through some $W_{a} \subset W$.

Proposition (Formal)

The map colim $\rightarrow B_{0}$ is a weak equivalence in $\operatorname{sPSh}\left(\Gamma \times \Delta^{\times d}\right)_{\text {loc }}$.

Filtration: Step 1

Filtration: Step 1

■ B_{0} : every connected component of the bordism factors through some $W_{a} \subset W$.

- B_{i} : bordisms that can be chopped in the i th direction so that every piece belongs to B_{i-1}.

Filtration: Step 1

■ B_{0} : every connected component of the bordism factors through some $W_{a} \subset W$.

- B_{i} : bordisms that can be chopped in the i th direction so that every piece belongs to B_{i-1}.

Proposition

The map $B_{i-1} \rightarrow B_{i}$ is a weak equivalence in $\operatorname{sPSh}\left(\Gamma \times \Delta^{\times d}\right)_{\text {loc }}$ for every $i>0$.

Filtration: Step 1

Proposition

The map $B_{i-1} \rightarrow B_{i}$ is a weak equivalence in $\operatorname{sPSh}\left(\Gamma \times \Delta^{\times d}\right)_{\text {loc }}$ for every $i>0$.

Proof.

Filtration: Step 1

Proposition

The map $B_{i-1} \rightarrow B_{i}$ is a weak equivalence in $\operatorname{sPSh}\left(\Gamma \times \Delta^{\times d}\right)_{\text {loc }}$ for every $i>0$.

Proof.

- Evaluate $B_{i-1} \rightarrow B_{i}$ on an arbitrary object X of $\Gamma \times \Delta^{\times(d-1)}$, obtaining a map $B_{i-1}(X) \rightarrow B_{i}(X)$ in $\operatorname{sPSh}(\Delta)$;

Filtration: Step 1

Proof.

- Evaluate $B_{i-1} \rightarrow B_{i}$ on an arbitrary object X of $\Gamma \times \Delta^{\times(d-1)}$, obtaining a map $B_{i-1}(X) \rightarrow B_{i}(X)$ in $\operatorname{sPSh}(\Delta)$;
- Extract the k th simplicial degree (for some $k \geq 0$), obtaining a map in $\operatorname{PSh}(\Delta)=\mathrm{sSet}$;

Filtration: Step 1

Proof.

- Evaluate $B_{i-1} \rightarrow B_{i}$ on an arbitrary object X of $\Gamma \times \Delta^{\times(d-1)}$, obtaining a map $B_{i-1}(X) \rightarrow B_{i}(X)$ in $\operatorname{sPSh}(\Delta)$;
- Extract the k th simplicial degree (for some $k \geq 0$), obtaining a map in $\operatorname{PSh}(\Delta)=$ sSet;
- The resulting simplicial set has
- vertices: germs of cuts (embedded in W);

■ edges: bordisms between cuts (embedded in W);

- 2-simplices: composition of bordisms;
- everything is in smooth families indexed by Δ^{k};

■ bordisms must belong to B_{i-1} respectively B_{i}.
Want to show: $B_{i-1} \rightarrow B_{i}$ is a categorical weak equivalence in the Joyal model structure on simplicial sets.

Intermission: Necklace categories

Intermission: Necklace categories

■ $X \rightarrow Y$: a map of simplicial sets (not necessarily quasicategories).

Intermission: Necklace categories

■ $X \rightarrow Y$: a map of simplicial sets (not necessarily quasicategories).
■ $X_{0} \rightarrow Y_{0}$ an isomorphism of sets.

Intermission: Necklace categories

■ $X \rightarrow Y$: a map of simplicial sets (not necessarily quasicategories).

- $X_{0} \rightarrow Y_{0}$ an isomorphism of sets.

■ Want to know whether $X \rightarrow Y$ is a categorical weak equivalence.

Intermission: Necklace categories

■ $X \rightarrow Y$: a map of simplicial sets (not necessarily quasicategories).
■ $X_{0} \rightarrow Y_{0}$ an isomorphism of sets.
■ Want to know whether $X \rightarrow Y$ is a categorical weak equivalence.

- Fix vertices $x, y \in X_{0}$.

Intermission: Necklace categories

■ $X \rightarrow Y$: a map of simplicial sets (not necessarily quasicategories).
■ $X_{0} \rightarrow Y_{0}$ an isomorphism of sets.
■ Want to know whether $X \rightarrow Y$ is a categorical weak equivalence.

- Fix vertices $x, y \in X_{0}$.
- Want a model for the simplicial map
$\operatorname{Map}_{X}(x, y) \rightarrow \operatorname{Map}_{Y}(x, y)$.

Intermission: Necklace categories

■ $X \rightarrow Y$: a map of simplicial sets (not necessarily quasicategories).

- $X_{0} \rightarrow Y_{0}$ an isomorphism of sets.

■ Want to know whether $X \rightarrow Y$ is a categorical weak equivalence.

- Fix vertices $x, y \in X_{0}$.
- Want a model for the simplicial map
$\operatorname{Map}_{X}(x, y) \rightarrow \operatorname{Map}_{Y}(x, y)$.
■ Answer: Dugger-Spivak necklace categories.

Intermission: Necklace categories

Intermission: Necklace categories

- X : a simplicial set (not necessarily a quasicategory).

Intermission: Necklace categories

- X : a simplicial set (not necessarily a quasicategory).
\square Fix vertices $x, y \in X_{0}$.

Intermission: Necklace categories

■ X : a simplicial set (not necessarily a quasicategory).

- Fix vertices $x, y \in X_{0}$.
- The simplicial set $\operatorname{Map}_{X}(x, y)$ is the nerve of the necklace category $N_{x, y}$.

Intermission: Necklace categories

■ X : a simplicial set (not necessarily a quasicategory).
\square Fix vertices $x, y \in X_{0}$.

- The simplicial set $\operatorname{Map}_{X}(x, y)$ is the nerve of the necklace category $N_{x, y}$.
■ Objects (necklaces from x to y): simplicial maps $\Delta^{n_{1}} \vee \cdots \vee \Delta^{n_{k}} \rightarrow X$, endpoints map to x and y.

Intermission: Necklace categories

■ X : a simplicial set (not necessarily a quasicategory).
■ Fix vertices $x, y \in X_{0}$.

- The simplicial set $\operatorname{Map}_{X}(x, y)$ is the nerve of the necklace category $N_{x, y}$.
■ Objects (necklaces from x to y): simplicial maps $\Delta^{n_{1}} \vee \cdots \vee \Delta^{n_{k}} \rightarrow X$, endpoints map to x and y.
■ Morphisms: commutative triangles.

Intermission: Necklace categories

■ X: a simplicial set (not necessarily a quasicategory).
\square Fix vertices $x, y \in X_{0}$.

- The simplicial set $\operatorname{Map}_{X}(x, y)$ is the nerve of the necklace category $N_{x, y}$.
■ Objects (necklaces from x to y): simplicial maps $\Delta^{n_{1}} \vee \cdots \vee \Delta^{n_{k}} \rightarrow X$, endpoints map to x and y.
■ Morphisms: commutative triangles.
- Morphism 1: $\Delta^{a} \vee \Delta^{b} \rightarrow \Delta^{a+b}$ (endpoint-preserving).

Intermission: Necklace categories

■ X : a simplicial set (not necessarily a quasicategory).
\square Fix vertices $x, y \in X_{0}$.

- The simplicial set $\operatorname{Map}_{X}(x, y)$ is the nerve of the necklace category $N_{x, y}$.
■ Objects (necklaces from x to y): simplicial maps $\Delta^{n_{1}} \vee \cdots \vee \Delta^{n_{k}} \rightarrow X$, endpoints map to x and y.
■ Morphisms: commutative triangles.
- Morphism 1: $\Delta^{a} \vee \Delta^{b} \rightarrow \Delta^{a+b}$ (endpoint-preserving).

■ Morphism 2: $\Delta^{a} \rightarrow \Delta^{b}$ (endpoint-preserving).

Intermission: Necklace categories of bordisms

Intermission: Necklace categories of bordisms

■ $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[/] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).

Intermission: Necklace categories of bordisms

■ $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[/] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).
■ Fix vertices $x, y \in X_{0}$, i.e., germs of cuts embedded into W.

Intermission: Necklace categories of bordisms

■ $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[/] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).
■ Fix vertices $x, y \in X_{0}$, i.e., germs of cuts embedded into W.

- Necklaces from x to y : composable chains of bordisms in B_{i-1} (or B_{i}) joined together by joint cuts.

Intermission: Necklace categories of bordisms

■ $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[/] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).
■ Fix vertices $x, y \in X_{0}$, i.e., germs of cuts embedded into W.

- Necklaces from x to y : composable chains of bordisms in B_{i-1} (or B_{i}) joined together by joint cuts.
■ Morphism 1: $\Delta^{a} \vee \Delta^{b} \rightarrow \Delta^{a+b}$: convert a joint cut to an ordinary cut (only if allowed by B_{i-1}).

Intermission: Necklace categories of bordisms

■ $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[/] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).
■ Fix vertices $x, y \in X_{0}$, i.e., germs of cuts embedded into W.

- Necklaces from x to y : composable chains of bordisms in B_{i-1} (or B_{i}) joined together by joint cuts.
■ Morphism 1: $\Delta^{a} \vee \Delta^{b} \rightarrow \Delta^{a+b}$: convert a joint cut to an ordinary cut (only if allowed by B_{i-1}).
- Morphism 2: $\Delta^{a} \rightarrow \Delta^{b}$: insert new compatible ordinary cuts.

Intermission: Necklace categories of bordisms

- $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[/] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).
■ Fix vertices $x, y \in X_{0}$, i.e., germs of cuts embedded into W.
- Necklaces from x to y : composable chains of bordisms in B_{i-1} (or B_{i}) joined together by joint cuts.
■ Morphism 1: $\Delta^{a} \vee \Delta^{b} \rightarrow \Delta^{a+b}$: convert a joint cut to an ordinary cut (only if allowed by B_{i-1}).
- Morphism 2: $\Delta^{a} \rightarrow \Delta^{b}$: insert new compatible ordinary cuts.

■ Observation: the ambient composed bordism never changes \Longrightarrow can fix it in advance.

Necklace categories of bordisms have contractible nerves: 1

Necklace categories of bordisms have contractible nerves: 1

■ $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[/] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).

Necklace categories of bordisms have contractible nerves: 1

■ $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).
■ Fix vertices $x, y \in X_{0}$ together with a bordism M from x to y (in B_{i}, but not necessarily in B_{i-1}).

Necklace categories of bordisms have contractible nerves: 1

■ $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).
■ Fix vertices $x, y \in X_{0}$ together with a bordism M from x to y (in B_{i}, but not necessarily in B_{i-1}).

- Claim: the category of necklaces from x to y that compose to M has a contractible nerve (in B_{i-1} and in B_{i}).

Necklace categories of bordisms have contractible nerves: 1

■ $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).

- Fix vertices $x, y \in X_{0}$ together with a bordism M from x to y (in B_{i}, but not necessarily in B_{i-1}).
- Claim: the category of necklaces from x to y that compose to M has a contractible nerve (in B_{i-1} and in B_{i}).
■ Proof: B_{i} : formal; B_{i-1} : Morse theory on M.

Necklace categories of bordisms have contractible nerves: 1

■ $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).

- Fix vertices $x, y \in X_{0}$ together with a bordism M from x to y (in B_{i}, but not necessarily in B_{i-1}).
- Claim: the category of necklaces from x to y that compose to M has a contractible nerve (in B_{i-1} and in B_{i}).
■ Proof: B_{i} : formal; B_{i-1} : Morse theory on M.
■ This implies $B_{i-1} \rightarrow B_{i}$ is a weak equivalence.

The big picture

Necklace categories of bordisms have contractible nerves: 2

Necklace categories of bordisms have contractible nerves: 2

■ Proof: Morse theory on M.

Necklace categories of bordisms have contractible nerves: 2

■ Proof: Morse theory on M.

- Pick a Morse function on M with distinct critical values.

Necklace categories of bordisms have contractible nerves: 2

■ Proof: Morse theory on M.

- Pick a Morse function on M with distinct critical values.

■ Cut out a small neighborhood of each critical point.

Necklace categories of bordisms have contractible nerves: 2

■ Proof: Morse theory on M.

- Pick a Morse function on M with distinct critical values.

■ Cut out a small neighborhood of each critical point.
■ Chop up the remaining cylinders into small bumps.

Necklace categories of bordisms have contractible nerves: 2

■ Proof: Morse theory on M.

- Pick a Morse function on M with distinct critical values.
- Cut out a small neighborhood of each critical point.
- Chop up the remaining cylinders into small bumps.
- All neighborhoods can be chosen to be subordinate to the open cover of W.

Necklace categories of bordisms have contractible nerves: 2

- Proof: Morse theory on M.
- Pick a Morse function on M with distinct critical values.
- Cut out a small neighborhood of each critical point.
- Chop up the remaining cylinders into small bumps.

■ All neighborhoods can be chosen to be subordinate to the open cover of W.

- How does this help us to show contractibility of necklace categories?

Necklace categories of bordisms have contractible nerves: 3

Necklace categories of bordisms have contractible nerves: 3

> Theorem (Simplicial Whitehead theorem)
> A Kan complex X is contractible if and only if any map $\partial \Delta^{n} \rightarrow X$ can be simplicially homotoped to a map that extends along $\partial \Delta^{n} \rightarrow \Delta^{n}$.

Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map $\partial \Delta^{n} \rightarrow X$ can be simplicially homotoped to a map that extends along $\partial \Delta^{n} \rightarrow \Delta^{n}$.

- Apply this theorem to the fibrant replacement X of the nerve of the necklace category of B_{i-1} (or B_{i}) from x to y.

Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map $\partial \Delta^{n} \rightarrow X$ can be simplicially homotoped to a map that extends along $\partial \Delta^{n} \rightarrow \Delta^{n}$.

- Apply this theorem to the fibrant replacement X of the nerve of the necklace category of B_{i-1} (or B_{i}) from x to y.
■ Pick some map $\partial \Delta^{n} \rightarrow X$; its data is given by a collection of cut tuples in the bordism M.

Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map $\partial \Delta^{n} \rightarrow X$ can be simplicially homotoped to a map that extends along $\partial \Delta^{n} \rightarrow \Delta^{n}$.

- Apply this theorem to the fibrant replacement X of the nerve of the necklace category of B_{i-1} (or B_{i}) from x to y.
■ Pick some map $\partial \Delta^{n} \rightarrow X$; its data is given by a collection of cut tuples in the bordism M.
- Chop up M as explained on the previous slide.

Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map $\partial \Delta^{n} \rightarrow X$ can be simplicially homotoped to a map that extends along $\partial \Delta^{n} \rightarrow \Delta^{n}$.

- Apply this theorem to the fibrant replacement X of the nerve of the necklace category of B_{i-1} (or B_{i}) from x to y.
■ Pick some map $\partial \Delta^{n} \rightarrow X$; its data is given by a collection of cut tuples in the bordism M.
- Chop up M as explained on the previous slide.
- By induction on the Morse decomposition, push the cuts past each small region in the Morse decomposition, with some cutting and gluing of cuts.

Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map $\partial \Delta^{n} \rightarrow X$ can be simplicially homotoped to a map that extends along $\partial \Delta^{n} \rightarrow \Delta^{n}$.

- Apply this theorem to the fibrant replacement X of the nerve of the necklace category of B_{i-1} (or B_{i}) from x to y.
■ Pick some map $\partial \Delta^{n} \rightarrow X$; its data is given by a collection of cut tuples in the bordism M.
- Chop up M as explained on the previous slide.
- By induction on the Morse decomposition, push the cuts past each small region in the Morse decomposition, with some cutting and gluing of cuts.
- At the final step, all cuts have been collapsed to the source cut of M.

How is this used in the framed GCH?

$$
B_{-1} \rightarrow B_{0} \rightarrow B_{1} \rightarrow B_{2} \rightarrow \cdots \rightarrow B_{d}=\mathfrak{B o r v}{ }_{d}^{\mathrm{R}^{d} \times U \rightarrow U}
$$

How is this used in the framed GCH?

$$
B_{-1} \rightarrow B_{0} \rightarrow B_{1} \rightarrow B_{2} \rightarrow \cdots \rightarrow B_{d}=\mathfrak{B o v o}{ }_{d}^{\mathrm{R}^{d} \times U \rightarrow U}
$$

- B_{k} : bordisms have a Morse function with critical points of index at most k;

How is this used in the framed GCH?

$$
B_{-1} \rightarrow B_{0} \rightarrow B_{1} \rightarrow B_{2} \rightarrow \cdots \rightarrow B_{d}=\mathfrak{B o r o}{ }_{d}^{\mathrm{R}^{d} \times U \rightarrow U}
$$

- B_{k} : bordisms have a Morse function with critical points of index at most k;
- want to compute $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}{ }_{d}^{\mathbf{R}^{d} \times U \rightarrow U}, \mathcal{V}\right)$;

How is this used in the framed GCH?

$$
B_{-1} \rightarrow B_{0} \rightarrow B_{1} \rightarrow B_{2} \rightarrow \cdots \rightarrow B_{d}=\mathfrak{B o r o}{ }_{d}^{\mathrm{R}^{d} \times U \rightarrow U}
$$

- B_{k} : bordisms have a Morse function with critical points of index at most k;
- want to compute $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}{ }_{d}^{\mathbf{R}^{d} \times U \rightarrow U}, \mathcal{V}\right)$;
$■$ base: $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}{ }_{d}^{\mathbf{R}^{d} \times U \rightarrow U}, \mathcal{V}\right)=\mathbf{R} \operatorname{Map}\left(B_{d}, \mathcal{V}\right)$;

How is this used in the framed GCH?

$$
B_{-1} \rightarrow B_{0} \rightarrow B_{1} \rightarrow B_{2} \rightarrow \cdots \rightarrow B_{d}=\mathfrak{B o v o}{ }_{d}^{\mathrm{R}^{d} \times U \rightarrow U}
$$

- B_{k} : bordisms have a Morse function with critical points of index at most k;
- want to compute $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}{ }_{d}^{\mathbf{R}^{d} \times U \rightarrow U}, \mathcal{V}\right)$;

■ base: $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}{ }_{d}^{\mathbf{R}^{d} \times U \rightarrow U}, \mathcal{V}\right)=\mathbf{R} \operatorname{Map}\left(B_{d}, \mathcal{V}\right)$;

- index $k-1$ (counit) and index k (unit) handles form an adjunction in B_{k};

How is this used in the framed GCH?

$$
B_{-1} \rightarrow B_{0} \rightarrow B_{1} \rightarrow B_{2} \rightarrow \cdots \rightarrow B_{d}=\mathfrak{B o r d}_{d}^{\mathrm{R}^{d} \times U \rightarrow U}
$$

- B_{k} : bordisms have a Morse function with critical points of index at most k;
- want to compute $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}{ }_{d}^{\mathbf{R}^{d} \times U \rightarrow U}, \mathcal{V}\right)$;

■ base: $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}{ }_{d}^{\mathbf{R}^{d} \times U \rightarrow U}, \mathcal{V}\right)=\mathbf{R} \operatorname{Map}\left(B_{d}, \mathcal{V}\right)$;

- index $k-1$ (counit) and index k (unit) handles form an adjunction in B_{k};
- everything except for the index k handle is in B_{k-1};

How is this used in the framed GCH?

$$
B_{-1} \rightarrow B_{0} \rightarrow B_{1} \rightarrow B_{2} \rightarrow \cdots \rightarrow B_{d}=\mathfrak{B o v o}{ }_{d}^{\mathrm{R}^{d} \times U \rightarrow U}
$$

- B_{k} : bordisms have a Morse function with critical points of index at most k;
- want to compute $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}{ }_{d}^{\mathbf{R}^{d} \times U \rightarrow U}, \mathcal{V}\right)$;

■ base: $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}{ }_{d}^{\mathbf{R}^{d} \times U \rightarrow U}, \mathcal{V}\right)=\mathbf{R} \operatorname{Map}\left(B_{d}, \mathcal{V}\right)$;
■ index $k-1$ (counit) and index k (unit) handles form an adjunction in B_{k};

- everything except for the index k handle is in B_{k-1};
$■ \Longrightarrow$ the value on the index k handle is unique up to a contractible choice;

How is this used in the framed GCH?

- B_{k} : bordisms have a Morse function with critical points of index at most k;
■ want to compute $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}_{d}^{\mathbf{R}^{d} \times U \rightarrow U}, \mathcal{V}\right)$;
■ base: $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}{ }_{d}^{\mathbf{R}^{d} \times U \rightarrow U}, \mathcal{V}\right)=\mathbf{R} \operatorname{Map}\left(B_{d}, \mathcal{V}\right)$;
■ index $k-1$ (counit) and index k (unit) handles form an adjunction in B_{k};
■ everything except for the index k handle is in B_{k-1};
$■ \Longrightarrow$ the value on the index k handle is unique up to a contractible choice;
■ hence, $\mathbf{R} \operatorname{Map}\left(B_{k}, \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)_{\text {unit }}$;

How is this used in the framed GCH?

- B_{k} : bordisms have a Morse function with critical points of index at most k;
■ want to compute $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}_{d}^{\mathbf{R}^{d} \times U \rightarrow U}, \mathcal{V}\right)$;
■ base: $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}{ }_{d}^{\mathbf{R}^{d} \times U \rightarrow U}, \mathcal{V}\right)=\mathbf{R} \operatorname{Map}\left(B_{d}, \mathcal{V}\right)$;
- index $k-1$ (counit) and index k (unit) handles form an adjunction in B_{k};
■ everything except for the index k handle is in B_{k-1};
$■ \Longrightarrow$ the value on the index k handle is unique up to a contractible choice;
■ hence, $\mathbf{R} \operatorname{Map}\left(B_{k}, \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)_{\text {unit }}$;
■ exchange principle: the index $k-1$ handle in B_{k-1} maps to a unit in \mathcal{V}, if $k-1 \geq 1$;

How is this used in the framed GCH?

- B_{k} : bordisms have a Morse function with critical points of index at most k;
■ want to compute $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}_{d}^{\mathbf{R}^{d} \times U \rightarrow U}, \mathcal{V}\right)$;
- base: $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d} \mathbf{R}_{d}^{d} \times U \rightarrow U, \mathcal{V}\right)=\mathbf{R} \operatorname{Map}\left(B_{d}, \mathcal{V}\right)$;

■ index $k-1$ (counit) and index k (unit) handles form an adjunction in B_{k};
■ everything except for the index k handle is in B_{k-1};
$■ \Longrightarrow$ the value on the index k handle is unique up to a contractible choice;
■ hence, $\mathbf{R} \operatorname{Map}\left(B_{k}, \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)_{\text {unit }}$;

- exchange principle: the index $k-1$ handle in B_{k-1} maps to a unit in \mathcal{V}, if $k-1 \geq 1$;
■ hence, $\mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)_{\text {unit }} \simeq \mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)$ if $k-1 \geq 1$;

How is this used in the framed GCH?

- B_{k} : bordisms have a Morse function with critical points of index at most k;
■ want to compute $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}_{d}^{\mathbf{R}^{d} \times U \rightarrow U}, \mathcal{V}\right)$;
- base: $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}{ }_{d}^{\mathbf{R}^{d} \times U \rightarrow U}, \mathcal{V}\right)=\mathbf{R} \operatorname{Map}\left(B_{d}, \mathcal{V}\right)$;

■ index $k-1$ (counit) and index k (unit) handles form an adjunction in B_{k};
■ everything except for the index k handle is in B_{k-1};
$■ \Longrightarrow$ the value on the index k handle is unique up to a contractible choice;

- hence, $\mathbf{R} \operatorname{Map}\left(B_{k}, \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)_{\text {unit }}$;
- exchange principle: the index $k-1$ handle in B_{k-1} maps to a unit in \mathcal{V}, if $k-1 \geq 1$;
■ hence, $\mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)_{\text {unit }} \simeq \mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)$ if $k-1 \geq 1$;
■ combine: $\mathbf{R} \operatorname{Map}\left(B_{d}, \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(B_{0}, \mathcal{V}\right)_{\text {unit }}$;

How is this used in the framed GCH?

- want to compute $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}_{d}^{\mathbf{R}^{d} \times U \rightarrow U}, \mathcal{V}\right)$;
- base: $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r v} \boldsymbol{R}_{d}^{d} \times U \rightarrow U, \mathcal{V}\right)=\mathbf{R} \operatorname{Map}\left(B_{d}, \mathcal{V}\right)$;

■ index $k-1$ (counit) and index k (unit) handles form an adjunction in B_{k};
■ everything except for the index k handle is in B_{k-1};
$■ \Longrightarrow$ the value on the index k handle is unique up to a contractible choice;

- hence, $\mathbf{R} \operatorname{Map}\left(B_{k}, \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)_{\text {unit }}$;
- exchange principle: the index $k-1$ handle in B_{k-1} maps to a unit in \mathcal{V}, if $k-1 \geq 1$;
\square hence, $\mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)_{\text {unit }} \simeq \mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)$ if $k-1 \geq 1$;
- combine: $\mathbf{R} \operatorname{Map}\left(B_{d}, \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(B_{0}, \mathcal{V}\right)_{\text {unit }}$;
- index 0 handles fall off: $\mathbf{R} \operatorname{Map}\left(B_{0}, \mathcal{V}\right)_{\text {unit }} \simeq$ $\mathbf{R} \operatorname{Map}\left(B_{-1}, \mathcal{V}\right) \times\left\{\right.$ units $\left.F(\emptyset) \rightarrow F\left(S^{d-1}\right)\right\} ;$

How is this used in the framed GCH?

- base: $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}{\underset{d}{\mathbf{R}} \times U \rightarrow U}^{\boldsymbol{R}} \mathcal{V}\right)=\mathbf{R} \operatorname{Map}\left(B_{d}, \mathcal{V}\right)$;

■ index $k-1$ (counit) and index k (unit) handles form an adjunction in B_{k};

- everything except for the index k handle is in B_{k-1};
$■ \Longrightarrow$ the value on the index k handle is unique up to a contractible choice;
\square hence, $\mathbf{R} \operatorname{Map}\left(B_{k}, \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)_{\text {unit }}$;
- exchange principle: the index $k-1$ handle in B_{k-1} maps to a unit in \mathcal{V}, if $k-1 \geq 1$;
- hence, $\mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)_{\text {unit }} \simeq \mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)$ if $k-1 \geq 1$;
- combine: $\mathbf{R} \operatorname{Map}\left(B_{d}, \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(B_{0}, \mathcal{V}\right)_{\text {unit }}$;

■ index 0 handles fall off: $\mathbf{R} \operatorname{Map}\left(B_{0}, \mathcal{V}\right)_{\text {unit }} \simeq$ $\mathbf{R} \operatorname{Map}\left(B_{-1}, \mathcal{V}\right) \times\left\{\right.$ units $\left.F(\emptyset) \rightarrow F\left(S^{d-1}\right)\right\} ;$

- cylinders are source-contractible: $B_{-1} \simeq \operatorname{const}\left(B_{-1}([0])\right)$;

How is this used in the framed GCH?

- base: $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r v} \boldsymbol{R}_{d}^{d} \times U \rightarrow U, \mathcal{V}\right)=\mathbf{R} \operatorname{Map}\left(B_{d}, \mathcal{V}\right)$;

■ index $k-1$ (counit) and index k (unit) handles form an adjunction in B_{k};

- everything except for the index k handle is in B_{k-1};
$■ \Longrightarrow$ the value on the index k handle is unique up to a contractible choice;
\square hence, $\mathbf{R} \operatorname{Map}\left(B_{k}, \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)_{\text {unit }}$;
■ exchange principle: the index $k-1$ handle in B_{k-1} maps to a unit in \mathcal{V}, if $k-1 \geq 1$;
- hence, $\mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)_{\text {unit }} \simeq \mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)$ if $k-1 \geq 1$;
- combine: $\mathbf{R} \operatorname{Map}\left(B_{d}, \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(B_{0}, \mathcal{V}\right)_{\text {unit }}$;

■ index 0 handles fall off: $\mathbf{R} \operatorname{Map}\left(B_{0}, \mathcal{V}\right)_{\text {unit }} \simeq$ $\mathbf{R} \operatorname{Map}\left(B_{-1}, \mathcal{V}\right) \times\left\{\right.$ units $\left.F(\emptyset) \rightarrow F\left(S^{d-1}\right)\right\} ;$

- cylinders are source-contractible: $B_{-1} \simeq \operatorname{const}\left(B_{-1}([0])\right)$;
- get rid of the d th direction: $B_{-1}([0]) \simeq \mathfrak{B o r d}{ }_{d-1}^{l_{d-1}\left(\mathbf{R}^{d} \times U \rightarrow U\right)}$;

How is this used in the framed GCH?

- base: $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r v} \boldsymbol{R}_{d}^{d} \times U \rightarrow U, \mathcal{V}\right)=\mathbf{R} \operatorname{Map}\left(B_{d}, \mathcal{V}\right)$;

■ index $k-1$ (counit) and index k (unit) handles form an adjunction in B_{k};
■ everything except for the index k handle is in B_{k-1};

- hence, $\mathbf{R} \operatorname{Map}\left(B_{k}, \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)_{\text {unit }}$;

■ exchange principle: the index $k-1$ handle in B_{k-1} maps to a unit in \mathcal{V}, if $k-1 \geq 1$;
\square hence, $\mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)_{\text {unit }} \simeq \mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)$ if $k-1 \geq 1$;

- combine: $\mathbf{R} \operatorname{Map}\left(B_{d}, \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(B_{0}, \mathcal{V}\right)_{\text {unit }}$;

■ index 0 handles fall off: $\mathbf{R} \operatorname{Map}\left(B_{0}, \mathcal{V}\right)_{\text {unit }} \simeq$ $\mathbf{R} \operatorname{Map}\left(B_{-1}, \mathcal{V}\right) \times\left\{\right.$ units $\left.F(\emptyset) \rightarrow F\left(S^{d-1}\right)\right\} ;$

- cylinders are source-contractible: $B_{-1} \simeq \operatorname{const}\left(B_{-1}([0])\right)$;

- inductive assumption:

$$
\mathbf{R} \operatorname{Map}\left(B_{-1}, \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(\iota_{d-1}\left(\mathbf{R}^{d} \times U \rightarrow U\right), \mathcal{V}_{d-1}^{\times}\right)
$$

How is this used in the framed GCH?

- base: $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r v} \boldsymbol{R}_{d}^{d} \times U \rightarrow U, \mathcal{V}\right)=\mathbf{R} \operatorname{Map}\left(B_{d}, \mathcal{V}\right)$;

■ index $k-1$ (counit) and index k (unit) handles form an adjunction in B_{k};
■ everything except for the index k handle is in B_{k-1};

- hence, $\mathbf{R} \operatorname{Map}\left(B_{k}, \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)_{\text {unit }}$;
- exchange principle: the index $k-1$ handle in B_{k-1} maps to a unit in \mathcal{V}, if $k-1 \geq 1$;
\square hence, $\mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)_{\text {unit }} \simeq \mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)$ if $k-1 \geq 1$;
- combine: $\mathbf{R} \operatorname{Map}\left(B_{d}, \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(B_{0}, \mathcal{V}\right)_{\text {unit }}$;

■ index 0 handles fall off: $\mathbf{R} \operatorname{Map}\left(B_{0}, \mathcal{V}\right)_{\text {unit }} \simeq$ $\mathbf{R} \operatorname{Map}\left(B_{-1}, \mathcal{V}\right) \times\left\{\right.$ units $\left.F(\emptyset) \rightarrow F\left(S^{d-1}\right)\right\} ;$

- cylinders are source-contractible: $B_{-1} \simeq \operatorname{const}\left(B_{-1}([0])\right)$;
- get rid of the d th direction: $B_{-1}([0]) \simeq \mathfrak{B o r d}_{d-1}^{\iota_{d-1}\left(\mathbf{R}^{d} \times U \rightarrow U\right)}$;
- $\mathbf{R} \operatorname{Map}\left(B_{-1}, \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(\iota_{d-1}\left(\mathbf{R}^{d} \times U \rightarrow U\right), \mathcal{V}_{d-1}^{\times}\right)$;
$■ \mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}{\underset{d}{\mathbf{R}^{d}} \times U \rightarrow U}^{\operatorname{V}} \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}_{d-1}^{\mathbf{R}^{d-1} \times U \rightarrow U}, \mathrm{ev}_{d} \mathcal{V}\right)$.

How is this used in the framed GCH?

- base: $\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r v} \boldsymbol{R}_{d}^{d} \times U \rightarrow U, \mathcal{V}\right)=\mathbf{R} \operatorname{Map}\left(B_{d}, \mathcal{V}\right)$;

■ index $k-1$ (counit) and index k (unit) handles form an adjunction in B_{k};
■ everything except for the index k handle is in B_{k-1};

- hence, $\mathbf{R} \operatorname{Map}\left(B_{k}, \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)_{\text {unit }}$;
- exchange principle: the index $k-1$ handle in B_{k-1} maps to a unit in \mathcal{V}, if $k-1 \geq 1$;
\square hence, $\mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)_{\text {unit }} \simeq \mathbf{R} \operatorname{Map}\left(B_{k-1}, \mathcal{V}\right)$ if $k-1 \geq 1$;
- combine: $\mathbf{R} \operatorname{Map}\left(B_{d}, \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(B_{0}, \mathcal{V}\right)_{\text {unit }}$;

■ index 0 handles fall off: $\mathbf{R} \operatorname{Map}\left(B_{0}, \mathcal{V}\right)_{\text {unit }} \simeq$ $\mathbf{R} \operatorname{Map}\left(B_{-1}, \mathcal{V}\right) \times\left\{\right.$ units $\left.F(\emptyset) \rightarrow F\left(S^{d-1}\right)\right\} ;$

- cylinders are source-contractible: $B_{-1} \simeq \operatorname{const}\left(B_{-1}([0])\right)$;
- get rid of the d th direction: $B_{-1}([0]) \simeq \mathfrak{B o r d}_{d-1}^{\iota_{d-1}\left(\mathbf{R}^{d} \times U \rightarrow U\right)}$;
- $\mathbf{R} \operatorname{Map}\left(B_{-1}, \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(\iota_{d-1}\left(\mathbf{R}^{d} \times U \rightarrow U\right), \mathcal{V}_{d-1}^{\times}\right)$;
$■ \mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}{\underset{d}{\mathbf{R}^{d}} \times U \rightarrow U}^{\operatorname{V}} \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}_{d-1}^{\mathbf{R}^{d-1} \times U \rightarrow U}, \mathrm{ev}_{d} \mathcal{V}\right)$.

Cutting out handles

Theorem (G.-P.)

For any $d \geq 0$ and $0 \leq k \leq d$, the following squares are homotopy cocartesian in $\mathrm{C}^{\infty} \mathrm{Cat}_{\infty, d}^{\otimes, \vee}$:

- H_{k} : index $k-1$ (counit) and index k (unit) handles;
- O_{k-1} : index $k-1$ (counit) handle;
$\square \bar{H}, \bar{O}$: same, with tails attached in the $(d-2)$ nd direction;
- $\widetilde{H}, \widetilde{O}$: same, with tails attached in the $(d-1)$ st direction.
- left two squares: insert cuts close to the handle;
- right square: invoke the same proof as for locality, using a new open cover.

Nebulous visions of the future. . .

■ Prequantum/classical: the book "Natural operations in differential geometry" (Kolář-Michor-Slovák) constructs a lot of functorial field theories...

- Quantum: quantization and path integrals (for fully extended FFTs) via the GCH;
■ Further compute the right hand side of GCH via ∞-Lie theory;
Explore possible value categories:
- geometric factorization algebras (Peña, based on Carmona-Flores-Muro);
- closed symmetric monoidal category with duals of complete vector spaces (?).

