The geometric cobordism hypothesis Lecture 5a: The leftovers

Daniel Grady, Dmitri Pavlov (Texas Tech University, Lubbock, TX)

These slides: https://dmitripavlov.org/lecture-5a.pdf

- Tuesday: definitions
- Wednesday: locality and how to use it to prove one half of the GCH
- Thursday: the framed GCH (the other half)
- Today: contractibility of moduli spaces of cuts and its applications to GCH

Proposition (G.–P. (formal))

$$\begin{split} & \text{Given } d \geq 0, \text{ we have a left } Quillen \text{ functor} \\ & \mathrm{sPSh}(\mathsf{FEmb}_d)_{\mathsf{inj}} \to \mathrm{sPSh}(\mathsf{Cart} \times \Gamma \times \Delta^{\times d})_{\mathsf{loc}}, \qquad \mathcal{S} \mapsto \mathfrak{Bord}_d^{\mathcal{S}}. \end{split}$$

Theorem (G.–P.)

Given $d \ge 0$, the left derived functor of the left Quillen functor $\mathrm{sPSh}(\mathsf{FEmb}_d)_{inj} \to \mathrm{sPSh}(\mathsf{Cart} \times \Gamma \times \Delta^{\times d})_{\mathsf{loc}}, \qquad S \mapsto \mathfrak{Bord}_d^S$ sends Čech nerves of open covers in FEmb_d to weak equivalences.

Theorem (G.–P.)

Given $d \ge 0$, the left derived functor of the left Quillen functor

 $\mathrm{sPSh}(\mathsf{FEmb}_d)_{\mathsf{inj}} \to \mathrm{sPSh}(\mathsf{Cart} \times \Gamma \times \Delta^{\times d})_{\mathsf{loc}}, \qquad \mathcal{S} \mapsto \mathfrak{Botd}_d^{\mathcal{S}}$

sends the Čech nerve of an open cover $\{W_a \to U_a\}_{a \in A}$ of $(W \to U) \in FEmb_d$ to a weak equivalence:

$$\operatorname{hocolim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\xrightarrow{\sim}\mathfrak{Bord}_d^{W\to U},$$

where $W_{\alpha} = W_{\alpha_0} \cap \cdots \cap W_{\alpha_n}$.

$$\operatornamewithlimits{hocolim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\xrightarrow{\sim}\mathfrak{Bord}_d^{W\to U}$$

$$\operatornamewithlimits{hocolim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\xrightarrow{\sim}\mathfrak{Bord}_d^{W\to U}$$

Step 1 Replace hocolim by colim

$$\operatornamewithlimits{hocolim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\xrightarrow{\sim}\mathfrak{Bord}_d^{W\to U}$$

Step 1 Replace hocolim by colim (use Reedy cofibrancy of the diagram):

$$\underset{n \in \Delta^{\mathrm{op}}}{\operatorname{hocolim}} \coprod_{\alpha:[n] \to A} \mathfrak{Bord}_d^{W_{\alpha} \to U_{\alpha}} \xrightarrow{\sim} \underset{n \in \Delta^{\mathrm{op}}}{\operatorname{colim}} \coprod_{\alpha:[n] \to A} \mathfrak{Bord}_d^{W_{\alpha} \to U_{\alpha}}$$

$$\operatornamewithlimits{hocolim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\xrightarrow{\sim}\mathfrak{Bord}_d^{W\to U}$$

Step 1 Replace hocolim by colim

Step 2 Pass to *n*-dimensional stalks on Cart for all $n \ge 0$.

$$\operatornamewithlimits{hocolim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\xrightarrow{\sim}\mathfrak{Bord}_d^{W\to U}$$

Step 1 Replace hocolim by colim Step 2 Pass to *n*-dimensional stalks on Cart for all $n \ge 0$. Step 3 Introduce a filtration (on *n*-dimensional stalks)

$$\operatorname{colim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\to B_0\to\dots\to B_d\to\mathfrak{Bord}_d^{W\to U}.$$

$$\operatornamewithlimits{hocolim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\xrightarrow{\sim}\mathfrak{Bord}_d^{W\to U}$$

Step 1 Replace hocolim by colimStep 2 Pass to *n*-dimensional stalks on Cart for all $n \ge 0$.Step 3 Introduce a filtration (on *n*-dimensional stalks)

$$\operatornamewithlimits{colim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\to B_0\to\dots\to B_d\to\mathfrak{Bord}_d^{W\to U}.$$

Step 4 Prove all maps in the filtration are weak equivalences.

The codescent property: filtration

$$\operatorname{colim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\to B_0\to\dots\to B_d\to\mathfrak{Bord}_d^{W\to U}.$$

Definition

Given
$$d \ge 0$$
 and $(W = \mathbf{R}^d \times U \to U) \in \mathsf{FEmb}_d^{\mathrm{op}}$, the set $\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}(V, \langle \ell \rangle, \mathbf{m})_n$ has elements:

- a smooth manifold M;
- a V-family of embeddings $M \to \mathbf{R}^d$;
- a $V \times \Delta^n$ -family of cut tuples with $m_1 \times \cdots \times m_d$ cells;
- $P: M \to \langle \ell \rangle;$
- smooth map $V \to U$;

$\operatorname{colim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\to B_0\to\dots\to B_d\to\mathfrak{Bord}_d^{W\to U}.$

$\operatornamewithlimits{colim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\to B_0\to\dots\to B_d\to\mathfrak{Bord}_d^{W\to U}.$

- colim: the entire bordism factors through some $W_a \subset W$.
- B_0 : every connected component of the bordism factors through some $W_a \subset W$.

$$\operatorname{colim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\to B_0\to\dots\to B_d\to\mathfrak{Bord}_d^{W\to U}.$$

- colim: the entire bordism factors through some $W_a \subset W$.
- B_0 : every connected component of the bordism factors through some $W_a \subset W$.

Proposition (Formal)

The map $\operatorname{colim} \to B_0$ is a weak equivalence in $\operatorname{sPSh}(\Gamma \times \Delta^{\times d})_{\mathsf{loc}}$.

- B_0 : every connected component of the bordism factors through some $W_a \subset W$.
- B_i: bordisms that can be chopped in the *i*th direction so that every piece belongs to B_{i-1}.

- B_0 : every connected component of the bordism factors through some $W_a \subset W$.
- B_i: bordisms that can be chopped in the *i*th direction so that every piece belongs to B_{i-1}.

Proposition

The map $B_{i-1} \to B_i$ is a weak equivalence in $\operatorname{sPSh}(\Gamma \times \Delta^{\times d})_{\mathsf{loc}}$ for every i > 0.

Proposition

The map $B_{i-1} \rightarrow B_i$ is a weak equivalence in $\operatorname{sPSh}(\Gamma \times \Delta^{\times d})_{\mathsf{loc}}$ for every i > 0.

Proof.

Proposition

The map $B_{i-1} \rightarrow B_i$ is a weak equivalence in $\operatorname{sPSh}(\Gamma \times \Delta^{\times d})_{\mathsf{loc}}$ for every i > 0.

Proof.

• Evaluate $B_{i-1} \to B_i$ on an arbitrary object X of $\Gamma \times \Delta^{\times (d-1)}$, obtaining a map $B_{i-1}(X) \to B_i(X)$ in $\mathrm{sPSh}(\Delta)$;

Proof.

- Evaluate $B_{i-1} \to B_i$ on an arbitrary object X of $\Gamma \times \Delta^{\times (d-1)}$, obtaining a map $B_{i-1}(X) \to B_i(X)$ in $\mathrm{sPSh}(\Delta)$;
- Extract the kth simplicial degree (for some k ≥ 0), obtaining a map in PSh(Δ) = sSet;

Proof.

- Evaluate $B_{i-1} \to B_i$ on an arbitrary object X of $\Gamma \times \Delta^{\times (d-1)}$, obtaining a map $B_{i-1}(X) \to B_i(X)$ in $\mathrm{sPSh}(\Delta)$;
- Extract the kth simplicial degree (for some k ≥ 0), obtaining a map in PSh(Δ) = sSet;
- The resulting simplicial set has
 - vertices: germs of cuts (embedded in W);
 - edges: bordisms between cuts (embedded in W);
 - 2-simplices: composition of bordisms;
 - everything is in smooth families indexed by Δ^k ;
 - bordisms must belong to B_{i-1} respectively B_i .

Want to show: $B_{i-1} \rightarrow B_i$ is a categorical weak equivalence in the Joyal model structure on simplicial sets.

Intermission: Necklace categories

■ *X* → *Y*: a map of simplicial sets (not necessarily quasicategories).

- *X* → *Y*: a map of simplicial sets (not necessarily quasicategories).
- $X_0 \rightarrow Y_0$ an isomorphism of sets.

- *X* → *Y*: a map of simplicial sets (not necessarily quasicategories).
- $X_0 \rightarrow Y_0$ an isomorphism of sets.
- Want to know whether $X \rightarrow Y$ is a categorical weak equivalence.

- X → Y: a map of simplicial sets (not necessarily quasicategories).
- $X_0 \rightarrow Y_0$ an isomorphism of sets.
- Want to know whether $X \rightarrow Y$ is a categorical weak equivalence.
- Fix vertices $x, y \in X_0$.

- X → Y: a map of simplicial sets (not necessarily quasicategories).
- $X_0 \rightarrow Y_0$ an isomorphism of sets.
- Want to know whether $X \rightarrow Y$ is a categorical weak equivalence.
- Fix vertices $x, y \in X_0$.
- Want a model for the simplicial map $\operatorname{Map}_X(x, y) \to \operatorname{Map}_Y(x, y)$.

- X → Y: a map of simplicial sets (not necessarily quasicategories).
- $X_0 \rightarrow Y_0$ an isomorphism of sets.
- Want to know whether $X \rightarrow Y$ is a categorical weak equivalence.
- Fix vertices $x, y \in X_0$.
- Want a model for the simplicial map $\operatorname{Map}_X(x, y) \to \operatorname{Map}_Y(x, y).$
- Answer: Dugger–Spivak necklace categories.

Intermission: Necklace categories

• X: a simplicial set (not necessarily a quasicategory).

X: a simplicial set (not necessarily a quasicategory).
Fix vertices x, y ∈ X₀.

- X: a simplicial set (not necessarily a quasicategory).
- Fix vertices $x, y \in X_0$.
- The simplicial set $Map_X(x, y)$ is the nerve of the necklace category $N_{x,y}$.

- X: a simplicial set (not necessarily a quasicategory).
- Fix vertices $x, y \in X_0$.
- The simplicial set Map_X(x, y) is the nerve of the necklace category N_{x,y}.
- Objects (necklaces from x to y): simplicial maps $\Delta^{n_1} \vee \cdots \vee \Delta^{n_k} \to X$, endpoints map to x and y.

- X: a simplicial set (not necessarily a quasicategory).
- Fix vertices $x, y \in X_0$.
- The simplicial set Map_X(x, y) is the nerve of the necklace category N_{x,y}.
- Objects (necklaces from x to y): simplicial maps $\Delta^{n_1} \vee \cdots \vee \Delta^{n_k} \to X$, endpoints map to x and y.
- Morphisms: commutative triangles.

- X: a simplicial set (not necessarily a quasicategory).
- Fix vertices $x, y \in X_0$.
- The simplicial set Map_X(x, y) is the nerve of the necklace category N_{x,y}.
- Objects (necklaces from x to y): simplicial maps $\Delta^{n_1} \vee \cdots \vee \Delta^{n_k} \to X$, endpoints map to x and y.
- Morphisms: commutative triangles.
- Morphism 1: $\Delta^a \vee \Delta^b \to \Delta^{a+b}$ (endpoint-preserving).
- X: a simplicial set (not necessarily a quasicategory).
- Fix vertices $x, y \in X_0$.
- The simplicial set Map_X(x, y) is the nerve of the necklace category N_{x,y}.
- Objects (necklaces from x to y): simplicial maps $\Delta^{n_1} \vee \cdots \vee \Delta^{n_k} \to X$, endpoints map to x and y.
- Morphisms: commutative triangles.
- Morphism 1: $\Delta^a \vee \Delta^b \to \Delta^{a+b}$ (endpoint-preserving).
- Morphism 2: $\Delta^a \rightarrow \Delta^b$ (endpoint-preserving).

Intermission: Necklace categories of bordisms

• $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).

Intermission: Necklace categories of bordisms

- $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).
- Fix vertices $x, y \in X_0$, i.e., germs of cuts embedded into W.

Intermission: Necklace categories of bordisms

- $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).
- Fix vertices $x, y \in X_0$, i.e., germs of cuts embedded into W.
- Necklaces from x to y: composable chains of bordisms in B_{i-1} (or B_i) joined together by joint cuts.

- $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).
- Fix vertices $x, y \in X_0$, i.e., germs of cuts embedded into W.
- Necklaces from x to y: composable chains of bordisms in B_{i-1} (or B_i) joined together by joint cuts.
- Morphism 1: Δ^a ∨ Δ^b → Δ^{a+b}: convert a joint cut to an ordinary cut (only if allowed by B_{i-1}).

- $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).
- Fix vertices $x, y \in X_0$, i.e., germs of cuts embedded into W.
- Necklaces from x to y: composable chains of bordisms in B_{i-1} (or B_i) joined together by joint cuts.
- Morphism 1: Δ^a ∨ Δ^b → Δ^{a+b}: convert a joint cut to an ordinary cut (only if allowed by B_{i-1}).
- Morphism 2: $\Delta^a \rightarrow \Delta^b$: insert new compatible ordinary cuts.

- $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).
- Fix vertices $x, y \in X_0$, i.e., germs of cuts embedded into W.
- Necklaces from x to y: composable chains of bordisms in B_{i-1} (or B_i) joined together by joint cuts.
- Morphism 1: Δ^a ∨ Δ^b → Δ^{a+b}: convert a joint cut to an ordinary cut (only if allowed by B_{i-1}).
- Morphism 2: $\Delta^a \rightarrow \Delta^b$: insert new compatible ordinary cuts.
- Observation: the ambient composed bordism never changes ⇒ can fix it in advance.

• $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).

- $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).
- Fix vertices $x, y \in X_0$ together with a bordism M from x to y (in B_i , but not necessarily in B_{i-1}).

- $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).
- Fix vertices $x, y \in X_0$ together with a bordism M from x to y (in B_i , but not necessarily in B_{i-1}).
- Claim: the category of necklaces from x to y that compose to M has a contractible nerve (in B_{i-1} and in B_i).

- $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).
- Fix vertices $x, y \in X_0$ together with a bordism M from x to y (in B_i , but not necessarily in B_{i-1}).
- Claim: the category of necklaces from x to y that compose to M has a contractible nerve (in B_{i-1} and in B_i).
- Proof: B_i : formal; B_{i-1} : Morse theory on M.

- $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).
- Fix vertices $x, y \in X_0$ together with a bordism M from x to y (in B_i , but not necessarily in B_{i-1}).
- Claim: the category of necklaces from x to y that compose to M has a contractible nerve (in B_{i-1} and in B_i).
- Proof: B_i : formal; B_{i-1} : Morse theory on M.
- This implies $B_{i-1} \rightarrow B_i$ is a weak equivalence.

The big picture

Proof: Morse theory on *M*.

- Proof: Morse theory on *M*.
- Pick a Morse function on *M* with distinct critical values.

- Proof: Morse theory on *M*.
- Pick a Morse function on *M* with distinct critical values.
- Cut out a small neighborhood of each critical point.

- Proof: Morse theory on *M*.
- Pick a Morse function on *M* with distinct critical values.
- Cut out a small neighborhood of each critical point.
- Chop up the remaining cylinders into small bumps.

- Proof: Morse theory on *M*.
- Pick a Morse function on *M* with distinct critical values.
- Cut out a small neighborhood of each critical point.
- Chop up the remaining cylinders into small bumps.
- All neighborhoods can be chosen to be subordinate to the open cover of W.

- Proof: Morse theory on *M*.
- Pick a Morse function on *M* with distinct critical values.
- Cut out a small neighborhood of each critical point.
- Chop up the remaining cylinders into small bumps.
- All neighborhoods can be chosen to be subordinate to the open cover of W.
- How does this help us to show contractibility of necklace categories?

A Kan complex X is contractible if and only if any map $\partial \Delta^n \to X$ can be simplicially homotoped to a map that extends along $\partial \Delta^n \to \Delta^n$.

• Apply this theorem to the fibrant replacement X of the nerve of the necklace category of B_{i-1} (or B_i) from x to y.

- Apply this theorem to the fibrant replacement X of the nerve of the necklace category of B_{i-1} (or B_i) from x to y.
- Pick some map ∂∆ⁿ → X; its data is given by a collection of cut tuples in the bordism M.

- Apply this theorem to the fibrant replacement *X* of the nerve of the necklace category of *B*_{*i*−1} (or *B*_{*i*}) from *x* to *y*.
- Pick some map ∂Δⁿ → X; its data is given by a collection of cut tuples in the bordism M.
- Chop up *M* as explained on the previous slide.

- Apply this theorem to the fibrant replacement X of the nerve of the necklace category of B_{i-1} (or B_i) from x to y.
- Pick some map ∂Δⁿ → X; its data is given by a collection of cut tuples in the bordism M.
- Chop up *M* as explained on the previous slide.
- By induction on the Morse decomposition, push the cuts past each small region in the Morse decomposition, with some cutting and gluing of cuts.

- Apply this theorem to the fibrant replacement X of the nerve of the necklace category of B_{i-1} (or B_i) from x to y.
- Pick some map ∂Δⁿ → X; its data is given by a collection of cut tuples in the bordism M.
- Chop up *M* as explained on the previous slide.
- By induction on the Morse decomposition, push the cuts past each small region in the Morse decomposition, with some cutting and gluing of cuts.
- At the final step, all cuts have been collapsed to the source cut of *M*.

How is this used in the framed GCH?

$$B_{-1} \rightarrow B_0 \rightarrow B_1 \rightarrow B_2 \rightarrow \cdots \rightarrow B_d = \mathfrak{Bord}_d^{\mathbf{R}^d \times U \rightarrow U}$$

$$B_{-1} \rightarrow B_0 \rightarrow B_1 \rightarrow B_2 \rightarrow \cdots \rightarrow B_d = \mathfrak{Bord}_d^{\mathbf{R}^d \times U \rightarrow U}$$

 B_k: bordisms have a Morse function with critical points of index at most k;

How is this used in the framed GCH?

$$B_{-1} \rightarrow B_0 \rightarrow B_1 \rightarrow B_2 \rightarrow \cdots \rightarrow B_d = \mathfrak{Bord}_d^{\mathsf{R}^d \times U \rightarrow U}$$

- B_k: bordisms have a Morse function with critical points of index at most k;
- want to compute $\mathsf{R}\operatorname{Map}(\mathfrak{Bord}_d^{\mathsf{R}^d \times U \to U}, \mathcal{V});$

$$B_{-1} \rightarrow B_0 \rightarrow B_1 \rightarrow B_2 \rightarrow \cdots \rightarrow B_d = \mathfrak{Bord}_d^{\mathsf{R}^d \times U \rightarrow U}$$

- B_k: bordisms have a Morse function with critical points of index at most k;
- want to compute \mathbf{R} Map $(\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V})$;
- base: $\mathbf{R} \operatorname{Map}(\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V}) = \mathbf{R} \operatorname{Map}(B_d, \mathcal{V});$

$$B_{-1} \rightarrow B_0 \rightarrow B_1 \rightarrow B_2 \rightarrow \cdots \rightarrow B_d = \mathfrak{Bord}_d^{\mathsf{R}^d \times U \rightarrow U}$$

- B_k: bordisms have a Morse function with critical points of index at most k;
- want to compute \mathbf{R} Map $(\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V})$;
- base: \mathbf{R} Map($\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V}$) = \mathbf{R} Map(B_d, \mathcal{V});
- index k − 1 (counit) and index k (unit) handles form an adjunction in B_k;

$$B_{-1} \rightarrow B_0 \rightarrow B_1 \rightarrow B_2 \rightarrow \cdots \rightarrow B_d = \mathfrak{Bord}_d^{\mathbf{R}^d \times U \rightarrow U}$$

- B_k: bordisms have a Morse function with critical points of index at most k;
- want to compute $\mathbf{R} \operatorname{Map}(\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V});$
- base: \mathbf{R} Map($\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V}$) = \mathbf{R} Map(B_d, \mathcal{V});
- index k − 1 (counit) and index k (unit) handles form an adjunction in B_k;
- everything except for the index k handle is in B_{k-1} ;

$$B_{-1} \rightarrow B_0 \rightarrow B_1 \rightarrow B_2 \rightarrow \cdots \rightarrow B_d = \mathfrak{Bord}_d^{\mathsf{R}^d \times U \rightarrow U}$$

- B_k: bordisms have a Morse function with critical points of index at most k;
- want to compute $\mathbf{R} \operatorname{Map}(\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V});$
- base: \mathbf{R} Map($\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V}$) = \mathbf{R} Map(B_d, \mathcal{V});
- index k − 1 (counit) and index k (unit) handles form an adjunction in B_k;
- everything except for the index k handle is in B_{k-1} ;
- ⇒ the value on the index k handle is unique up to a contractible choice;
- B_k: bordisms have a Morse function with critical points of index at most k;
- want to compute $\mathbf{R} \operatorname{Map}(\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V});$
- base: $\mathbf{R} \operatorname{Map}(\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V}) = \mathbf{R} \operatorname{Map}(B_d, \mathcal{V});$
- index k − 1 (counit) and index k (unit) handles form an adjunction in B_k;
- everything except for the index k handle is in B_{k-1} ;
- the value on the index k handle is unique up to a contractible choice;
- hence, $\mathbf{R} \operatorname{Map}(B_k, \mathcal{V}) \simeq \mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})_{\operatorname{unit}}$;

- B_k: bordisms have a Morse function with critical points of index at most k;
- want to compute $\mathbf{R} \operatorname{Map}(\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V});$
- base: $\mathbf{R} \operatorname{Map}(\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V}) = \mathbf{R} \operatorname{Map}(B_d, \mathcal{V});$
- index k − 1 (counit) and index k (unit) handles form an adjunction in B_k;
- everything except for the index k handle is in B_{k-1} ;
- the value on the index k handle is unique up to a contractible choice;
- hence, $\mathbf{R} \operatorname{Map}(B_k, \mathcal{V}) \simeq \mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})_{\operatorname{unit}}$;
- exchange principle: the index k − 1 handle in B_{k−1} maps to a unit in V, if k − 1 ≥ 1;

- B_k: bordisms have a Morse function with critical points of index at most k;
- want to compute $\mathbf{R} \operatorname{Map}(\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V});$
- base: $\mathbf{R} \operatorname{Map}(\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V}) = \mathbf{R} \operatorname{Map}(B_d, \mathcal{V});$
- index k − 1 (counit) and index k (unit) handles form an adjunction in B_k;
- everything except for the index k handle is in B_{k-1} ;
- the value on the index k handle is unique up to a contractible choice;
- hence, $\mathbf{R} \operatorname{Map}(B_k, \mathcal{V}) \simeq \mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})_{\operatorname{unit}}$;
- exchange principle: the index k − 1 handle in B_{k−1} maps to a unit in V, if k − 1 ≥ 1;
- hence, $\mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})_{\operatorname{unit}} \simeq \mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})$ if $k-1 \ge 1$;

- B_k: bordisms have a Morse function with critical points of index at most k;
- want to compute $\mathbf{R} \operatorname{Map}(\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V});$
- base: $\mathbf{R} \operatorname{Map}(\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V}) = \mathbf{R} \operatorname{Map}(B_d, \mathcal{V});$
- index k − 1 (counit) and index k (unit) handles form an adjunction in B_k;
- everything except for the index k handle is in B_{k-1} ;
- the value on the index k handle is unique up to a contractible choice;
- hence, $\mathbf{R} \operatorname{Map}(B_k, \mathcal{V}) \simeq \mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})_{\operatorname{unit}}$;
- exchange principle: the index k − 1 handle in B_{k−1} maps to a unit in V, if k − 1 ≥ 1;
- hence, $\mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})_{\operatorname{unit}} \simeq \mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})$ if $k-1 \ge 1$;
- combine: $\mathbf{R} \operatorname{Map}(B_d, \mathcal{V}) \simeq \mathbf{R} \operatorname{Map}(B_0, \mathcal{V})_{\operatorname{unit}}$;

- want to compute $\mathbf{R} \operatorname{Map}(\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V});$
- base: $\mathbf{R} \operatorname{Map}(\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V}) = \mathbf{R} \operatorname{Map}(B_d, \mathcal{V});$
- index k − 1 (counit) and index k (unit) handles form an adjunction in B_k;
- everything except for the index k handle is in B_{k-1} ;
- the value on the index k handle is unique up to a contractible choice;
- hence, $\mathbf{R} \operatorname{Map}(B_k, \mathcal{V}) \simeq \mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})_{\operatorname{unit}}$;
- exchange principle: the index k − 1 handle in B_{k−1} maps to a unit in V, if k − 1 ≥ 1;
- hence, $\mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})_{\operatorname{unit}} \simeq \mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})$ if $k-1 \geq 1$;
- combine: $\mathbf{R} \operatorname{Map}(B_d, \mathcal{V}) \simeq \mathbf{R} \operatorname{Map}(B_0, \mathcal{V})_{\operatorname{unit}};$
- index 0 handles fall off: $\mathbf{R} \operatorname{Map}(B_0, \mathcal{V})_{\operatorname{unit}} \simeq \mathbf{R} \operatorname{Map}(B_{-1}, \mathcal{V}) \times \{\operatorname{units} F(\emptyset) \to F(S^{d-1})\};$

- base: $\mathbf{R} \operatorname{Map}(\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V}) = \mathbf{R} \operatorname{Map}(B_d, \mathcal{V});$
- index k − 1 (counit) and index k (unit) handles form an adjunction in B_k;
- everything except for the index k handle is in B_{k-1} ;
- the value on the index k handle is unique up to a contractible choice;
- hence, $\mathbf{R} \operatorname{Map}(B_k, \mathcal{V}) \simeq \mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})_{\operatorname{unit}}$;
- exchange principle: the index k − 1 handle in B_{k−1} maps to a unit in V, if k − 1 ≥ 1;
- hence, $\mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})_{\operatorname{unit}} \simeq \mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})$ if $k-1 \geq 1$;
- combine: $\mathbf{R} \operatorname{Map}(B_d, \mathcal{V}) \simeq \mathbf{R} \operatorname{Map}(B_0, \mathcal{V})_{\operatorname{unit}}$;
- index 0 handles fall off: $\mathbb{R} \operatorname{Map}(B_0, \mathcal{V})_{\operatorname{unit}} \simeq \mathbb{R} \operatorname{Map}(B_{-1}, \mathcal{V}) \times \{\operatorname{units} F(\emptyset) \to F(S^{d-1})\};$
- cylinders are source-contractible: $B_{-1} \simeq \text{const}(B_{-1}([0]));$

- base: $\mathbf{R} \operatorname{Map}(\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V}) = \mathbf{R} \operatorname{Map}(B_d, \mathcal{V});$
- index k 1 (counit) and index k (unit) handles form an adjunction in B_k;
- everything except for the index k handle is in B_{k-1} ;
- the value on the index k handle is unique up to a contractible choice;
- hence, $\mathbf{R} \operatorname{Map}(B_k, \mathcal{V}) \simeq \mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})_{\operatorname{unit}}$;
- exchange principle: the index k − 1 handle in B_{k−1} maps to a unit in V, if k − 1 ≥ 1;
- hence, $\mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})_{\operatorname{unit}} \simeq \mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})$ if $k-1 \geq 1$;
- combine: $\mathbf{R} \operatorname{Map}(B_d, \mathcal{V}) \simeq \mathbf{R} \operatorname{Map}(B_0, \mathcal{V})_{\operatorname{unit}}$;
- index 0 handles fall off: $\mathbb{R} \operatorname{Map}(B_0, \mathcal{V})_{\operatorname{unit}} \simeq \mathbb{R} \operatorname{Map}(B_{-1}, \mathcal{V}) \times \{\operatorname{units} F(\emptyset) \to F(S^{d-1})\};$
- cylinders are source-contractible: $B_{-1} \simeq \text{const}(B_{-1}([0]));$
- get rid of the *d*th direction: $B_{-1}([0]) \simeq \mathfrak{Botd}_{d-1}^{\iota_{d-1}(\mathbb{R}^d \times U \to U)}$;

- base: $\mathbf{R} \operatorname{Map}(\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V}) = \mathbf{R} \operatorname{Map}(B_d, \mathcal{V});$
- index k 1 (counit) and index k (unit) handles form an adjunction in B_k;
- everything except for the index k handle is in B_{k-1} ;
- hence, $\mathbf{R} \operatorname{Map}(B_k, \mathcal{V}) \simeq \mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})_{\operatorname{unit}}$;
- exchange principle: the index k 1 handle in B_{k-1} maps to a unit in V, if k 1 ≥ 1;
- hence, $\mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})_{\operatorname{unit}} \simeq \mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})$ if $k-1 \ge 1$;
- combine: $\mathbf{R} \operatorname{Map}(B_d, \mathcal{V}) \simeq \mathbf{R} \operatorname{Map}(B_0, \mathcal{V})_{\operatorname{unit}}$;
- index 0 handles fall off: $\mathbf{R} \operatorname{Map}(B_0, \mathcal{V})_{\operatorname{unit}} \simeq \mathbf{R} \operatorname{Map}(B_{-1}, \mathcal{V}) \times \{\operatorname{units} F(\emptyset) \to F(S^{d-1})\};$
- cylinders are source-contractible: $B_{-1} \simeq \text{const}(B_{-1}([0]));$
- get rid of the *d*th direction: $B_{-1}([0]) \simeq \mathfrak{Botd}_{d-1}^{\iota_{d-1}(\mathbb{R}^d \times U \to U)}$;
- inductive assumption: $\mathbf{R} \operatorname{Map}(B_{-1}, \mathcal{V}) \simeq \mathbf{R} \operatorname{Map}(\iota_{d-1}(\mathbf{R}^d \times U \to U), \mathcal{V}_{d-1}^{\times});$

- base: $\mathbf{R} \operatorname{Map}(\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V}) = \mathbf{R} \operatorname{Map}(B_d, \mathcal{V});$
- index k 1 (counit) and index k (unit) handles form an adjunction in B_k;
- everything except for the index k handle is in B_{k-1} ;
- hence, $\mathbf{R} \operatorname{Map}(B_k, \mathcal{V}) \simeq \mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})_{\operatorname{unit}}$;
- exchange principle: the index k 1 handle in B_{k-1} maps to a unit in V, if k 1 ≥ 1;
- hence, $\mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})_{\operatorname{unit}} \simeq \mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})$ if $k-1 \ge 1$;
- combine: $\mathbf{R} \operatorname{Map}(B_d, \mathcal{V}) \simeq \mathbf{R} \operatorname{Map}(B_0, \mathcal{V})_{\operatorname{unit}}$;
- index 0 handles fall off: $\mathbb{R} \operatorname{Map}(B_0, \mathcal{V})_{\operatorname{unit}} \simeq \mathbb{R} \operatorname{Map}(B_{-1}, \mathcal{V}) \times \{\operatorname{units} F(\emptyset) \to F(S^{d-1})\};$
- cylinders are source-contractible: $B_{-1} \simeq \text{const}(B_{-1}([0]));$
- get rid of the *d*th direction: $B_{-1}([0]) \simeq \mathfrak{Botd}_{d-1}^{\iota_{d-1}(\mathbb{R}^d \times U \to U)}$;
- $\mathbf{R}\operatorname{Map}(B_{-1},\mathcal{V})\simeq \mathbf{R}\operatorname{Map}(\iota_{d-1}(\mathbf{R}^d\times U\to U),\mathcal{V}_{d-1}^{\times});$
- $\blacksquare \operatorname{\mathsf{R}Map}(\mathfrak{Bord}_d^{\operatorname{\mathsf{R}}^d\times U\to U},\mathcal{V})\simeq \operatorname{\mathsf{R}Map}(\mathfrak{Bord}_{d-1}^{\operatorname{\mathsf{R}}^{d-1}\times U\to U},\operatorname{ev}_d\mathcal{V}).$

- base: $\mathbf{R} \operatorname{Map}(\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}, \mathcal{V}) = \mathbf{R} \operatorname{Map}(B_d, \mathcal{V});$
- index k 1 (counit) and index k (unit) handles form an adjunction in B_k;
- everything except for the index k handle is in B_{k-1} ;
- hence, $\mathbf{R} \operatorname{Map}(B_k, \mathcal{V}) \simeq \mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})_{\operatorname{unit}}$;
- exchange principle: the index k 1 handle in B_{k-1} maps to a unit in V, if k 1 ≥ 1;
- hence, $\mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})_{\operatorname{unit}} \simeq \mathbf{R} \operatorname{Map}(B_{k-1}, \mathcal{V})$ if $k-1 \geq 1$;
- combine: \mathbf{R} Map $(B_d, \mathcal{V}) \simeq \mathbf{R}$ Map $(B_0, \mathcal{V})_{unit}$;
- index 0 handles fall off: $\mathbb{R} \operatorname{Map}(B_0, \mathcal{V})_{\operatorname{unit}} \simeq \mathbb{R} \operatorname{Map}(B_{-1}, \mathcal{V}) \times \{\operatorname{units} F(\emptyset) \to F(S^{d-1})\};$
- cylinders are source-contractible: $B_{-1} \simeq \text{const}(B_{-1}([0]));$
- get rid of the *d*th direction: $B_{-1}([0]) \simeq \mathfrak{Botd}_{d-1}^{\iota_{d-1}(\mathbb{R}^d \times U \to U)}$;
- $\mathbf{R}\operatorname{Map}(B_{-1},\mathcal{V})\simeq \mathbf{R}\operatorname{Map}(\iota_{d-1}(\mathbf{R}^d\times U\to U),\mathcal{V}_{d-1}^{\times});$
- $\blacksquare \operatorname{\mathsf{R}Map}(\mathfrak{Bord}_d^{\operatorname{\mathsf{R}}^d\times U\to U},\mathcal{V})\simeq \operatorname{\mathsf{R}Map}(\mathfrak{Bord}_{d-1}^{\operatorname{\mathsf{R}}^{d-1}\times U\to U},\operatorname{ev}_d\mathcal{V}).$

Cutting out handles

Theorem (G.–P.)

For any $d \ge 0$ and $0 \le k \le d$, the following squares are homotopy cocartesian in $C^{\infty}Cat_{\infty,d}^{\otimes,\vee}$: $O_{k-1} \longrightarrow \overline{O}_{k-1} \longrightarrow \widetilde{O}_{k-1} \longrightarrow B_{k-1}$ $\dot{H}_k \longrightarrow \overline{H}_k \longrightarrow \widetilde{H}_k \longrightarrow \widetilde{B}_k.$ ■ *H_k*: index *k* − 1 (counit) and index *k* (unit) handles; • O_{k-1} : index k-1 (counit) handle; **•** \overline{H} , \overline{O} : same, with tails attached in the (d-2)nd direction; • H, O: same, with tails attached in the (d-1)st direction. left two squares: insert cuts close to the handle;

 right square: invoke the same proof as for locality, using a new open cover.

Nebulous visions of the future...

- Prequantum/classical: the book "Natural operations in differential geometry" (Kolář–Michor–Slovák) constructs a lot of functorial field theories...
- Quantum: quantization and path integrals (for fully extended FFTs) via the GCH;
- Further compute the right hand side of GCH via ∞ -Lie theory;

Explore possible value categories:

- geometric factorization algebras (Peña, based on Carmona–Flores–Muro);
- closed symmetric monoidal category with duals of complete vector spaces (?).