Daniel Grady, Dmitri Pavlov (Texas Tech University, Lubbock, TX)

These slides: https://dmitripavlov.org/lecture-4.pdf

 As we have discussed, the general case follows from the codescent property and the GCH in the geometrically framed case.

- As we have discussed, the general case follows from the codescent property and the GCH in the geometrically framed case.
- For the geometrically framed case, we take the representable presheaf (ℝ^d × U → U) ∈ FEmb_d as the geometric structure.

- As we have discussed, the general case follows from the codescent property and the GCH in the geometrically framed case.
- For the geometrically framed case, we take the representable presheaf (ℝ^d × U → U) ∈ FEmb_d as the geometric structure.
- For fixed $U \in \mathsf{Cart}$, $\langle \ell \rangle \in \Gamma$ and $\mathbf{m} \in \Delta^{ imes d}$, a vertex in

$$\operatorname{Bord}_{d}^{\mathbb{R}^{d} \times U \to U}(U, \langle \ell \rangle, \mathbf{m})$$

is a U-family of bordisms that is cut into a grid (varying smoothly in U), along with a partition of the set of connected components.

- As we have discussed, the general case follows from the codescent property and the GCH in the geometrically framed case.
- For the geometrically framed case, we take the representable presheaf (ℝ^d × U → U) ∈ FEmb_d as the geometric structure.
- For fixed $U \in Cart$, $\langle \ell \rangle \in \Gamma$ and $\mathbf{m} \in \Delta^{\times d}$, a vertex in

$$\operatorname{Bord}_{d}^{\mathbb{R}^{d} \times U \to U}(U, \langle \ell \rangle, \mathbf{m})$$

is a *U*-family of bordisms that is cut into a grid (varying smoothly in *U*), along with a partition of the set of connected components. The bordism also is fiberwise embedded (over *U*) into \mathbb{R}^d .

- As we have discussed, the general case follows from the codescent property and the GCH in the geometrically framed case.
- For the geometrically framed case, we take the representable presheaf (ℝ^d × U → U) ∈ FEmb_d as the geometric structure.
- For fixed $U \in \mathsf{Cart}$, $\langle \ell \rangle \in \Gamma$ and $\mathbf{m} \in \Delta^{ imes d}$, a vertex in

$$\operatorname{Bord}_{d}^{\mathbb{R}^{d} \times U \to U}(U, \langle \ell \rangle, \mathbf{m})$$

is a *U*-family of bordisms that is cut into a grid (varying smoothly in *U*), along with a partition of the set of connected components. The bordism also is fiberwise embedded (over *U*) into \mathbb{R}^d .

• An *l*-simplex is a smooth deformation of the **m**-cut tuples, parametrized by Δ^{l} .

- As we have discussed, the general case follows from the codescent property and the GCH in the geometrically framed case.
- For the geometrically framed case, we take the representable presheaf (ℝ^d × U → U) ∈ FEmb_d as the geometric structure.
- For fixed $U \in \mathsf{Cart}$, $\langle \ell \rangle \in \Gamma$ and $\mathbf{m} \in \Delta^{ imes d}$, a vertex in

$$\operatorname{Bord}_{d}^{\mathbb{R}^{d} \times U \to U}(U, \langle \ell \rangle, \mathbf{m})$$

is a *U*-family of bordisms that is cut into a grid (varying smoothly in *U*), along with a partition of the set of connected components. The bordism also is fiberwise embedded (over *U*) into \mathbb{R}^d .

• An *l*-simplex is a smooth deformation of the **m**-cut tuples, parametrized by Δ^l . The face maps restrict the germ of the core, as needed.

Framed case crucially uses duals.

Framed case crucially uses duals.

Definition

Let $(C,\otimes,1)$ be a symmetric monoidal cat. Let $c\in C$. Then a dual for c is an object c^{\vee} along with maps

1
$$\epsilon: c^{\vee} \otimes c \to 1$$

2 $n: 1 \to c \otimes c^{\vee}$

s.t.

$$c^{ee}\cong c^{ee}\otimes 1 o c^{ee}\otimes (c\otimes c^{ee})\cong (c^{ee}\otimes c)\otimes c^{ee} o 1\otimes c^{ee}\cong c^{ee}$$

is the identity.

Framed case crucially uses duals.

Definition

Let $(C, \otimes, 1)$ be a symmetric monoidal cat. Let $c \in C$. Then a dual for c is an object c^{\vee} along with maps

1
$$\epsilon: c^{\vee} \otimes c \to 1$$

2 $n: 1 \to c \otimes c^{\vee}$

s.t.

 $c^{\vee}\cong c^{\vee}\otimes 1
ightarrow c^{\vee}\otimes (c\otimes c^{\vee})\cong (c^{\vee}\otimes c)\otimes c^{\vee}
ightarrow 1\otimes c^{\vee}\cong c^{\vee}$

is the identity. Same with c and c^{\vee} reversed.

Let $C = Vect_k$, with tensor product as the monoidal structure.

Let $C = \operatorname{Vect}_k$, with tensor product as the monoidal structure. For $V \in \operatorname{Vect}_k$, let $V^{\vee} := \operatorname{hom}(V, k)$ be the usual dual space.

Let $C = \operatorname{Vect}_k$, with tensor product as the monoidal structure. For $V \in \operatorname{Vect}_k$, let $V^{\vee} := \hom(V, k)$ be the usual dual space. Let

$$\epsilon: V \otimes V^{\vee} \to k$$

be the canonical pairing.

Let $C = \text{Vect}_k$, with tensor product as the monoidal structure. For $V \in \text{Vect}_k$, let $V^{\vee} := \hom(V, k)$ be the usual dual space. Let

 $\epsilon: V \otimes V^{\vee} \to k$

be the canonical pairing. Fix a basis $\{v_i\}$ and define

 $\eta: k \to V \otimes V^{\vee}$

by $1 \mapsto \sum_{i} v_i \otimes v_i^{\vee}$, where $\{v_i^{\vee}\}$ is the dual basis.

Let $C = \operatorname{Vect}_k$, with tensor product as the monoidal structure. For $V \in \operatorname{Vect}_k$, let $V^{\vee} := \hom(V, k)$ be the usual dual space. Let

 $\epsilon: V \otimes V^{\vee} \to k$

be the canonical pairing. Fix a basis $\{v_i\}$ and define

 $\eta: k \to V \otimes V^{\vee}$

by $1 \mapsto \sum_{i} v_i \otimes v_i^{\vee}$, where $\{v_i^{\vee}\}$ is the dual basis. Easy to check that the triangle identities hold.

 For a 2-category, one can also define duals for morphisms: they are adjunctions.

Let $C = \operatorname{Vect}_k$, with tensor product as the monoidal structure. For $V \in \operatorname{Vect}_k$, let $V^{\vee} := \hom(V, k)$ be the usual dual space. Let

 $\epsilon: V \otimes V^{\vee} \to k$

be the canonical pairing. Fix a basis $\{v_i\}$ and define

 $\eta: k \to V \otimes V^{\vee}$

by $1 \mapsto \sum_{i} v_i \otimes v_i^{\vee}$, where $\{v_i^{\vee}\}$ is the dual basis. Easy to check that the triangle identities hold.

For a 2-category, one can also define duals for morphisms: they are adjunctions. Can extend to higher cats by induction.

Duals in $\operatorname{Bord}_1^{\mathbb{R} \times U \to U}$

Duals in $\operatorname{Bord}_2^{\mathbb{R}^2 \times U \to U}$

 Once again, our idea is to localize at yet another set of morphisms.

Definition

Let Adj denote the (stupid) nerve of 2-category that is generated by

 Once again, our idea is to localize at yet another set of morphisms.

Definition

Let Adj denote the (stupid) nerve of 2-category that is generated by

Two objects x and y

 Once again, our idea is to localize at yet another set of morphisms.

Definition

Let Adj denote the (stupid) nerve of 2-category that is generated by

- Two objects x and y
- Two nonidentity morphisms $f: x \rightarrow y$ and $g: y \rightarrow x$

 Once again, our idea is to localize at yet another set of morphisms.

Definition

Let Adj denote the (stupid) nerve of 2-category that is generated by

- Two objects x and y
- Two nonidentity morphisms $f: x \rightarrow y$ and $g: y \rightarrow x$
- Two nonidentity 2-morphisms $\eta: 1_x \to gf$ and $\epsilon: fg \to 1_y$.

 Once again, our idea is to localize at yet another set of morphisms.

Definition

Let Adj denote the (stupid) nerve of 2-category that is generated by

- Two objects x and y
- Two nonidentity morphisms $f: x \to y$ and $g: y \to x$
- Two nonidentity 2-morphisms $\eta: 1_x \to gf$ and $\epsilon: fg \to 1_y$.

subject to the relations given by the two triangle identities.

• We write $f \to \text{Adj}$, $\eta \to \text{Adj}$, $\epsilon \to \text{Adj}$ for the sub 2-categories generated by f, (f, g, η) and (f, g, ϵ) , respectively.

A smooth symmetric monoidal (∞, d) -category C has duals for *k*-morphisms if:

A smooth symmetric monoidal (∞, d) -category C has duals for k-morphisms if:

• A fibrant object in $PSh_{\Delta}(Cart \times \Gamma \times \Delta^{\times d})_{inj,loc}$

A smooth symmetric monoidal (∞, d) -category C has duals for k-morphisms if:

- A fibrant object in $PSh_{\Delta}(Cart \times \Gamma \times \Delta^{\times d})_{inj,loc}$
- For fixed m ∈ Δ^{×k−1}, ⟨ℓ⟩ ∈ Γ and U ∈ Cart, the bisimplicial set C_{m,*,*,0}(U, ⟨ℓ⟩) is local with respect to the canonical morphism

$$f \to \operatorname{Adj}$$
.

A smooth symmetric monoidal (∞, d) -category C has duals for k-morphisms if:

- A fibrant object in PSh_Δ(Cart × Γ × Δ^{×d})_{inj,loc}
- For fixed m ∈ Δ^{×k−1}, ⟨ℓ⟩ ∈ Γ and U ∈ Cart, the bisimplicial set C_{m,*,*,0}(U, ⟨ℓ⟩) is local with respect to the canonical morphism

$$f \to \operatorname{Adj}$$
.

Definition

We say that C has all duals if it has duals for all k-morphisms with $1 \le k \le d - 1$.

■ Adding the maps f → Adj (after applying the left adjoint to the evaluation at (U, ⟨ℓ⟩, (m, −, 0))) to the list of maps at which we localize, we get a new model category:

$$\mathrm{C}^\infty\mathsf{Cat}_{(\infty,d)}^{\otimes,\vee} := \mathrm{PSh}_\Delta(\mathsf{Cart}\times\mathsf{\Gamma}\times\Delta^{\times d})_{\mathrm{inj,loc}}$$

■ Adding the maps f → Adj (after applying the left adjoint to the evaluation at (U, ⟨ℓ⟩, (m, −, 0))) to the list of maps at which we localize, we get a new model category:

$$\mathrm{C}^{\infty}\mathsf{Cat}_{(\infty,d)}^{\otimes,\vee}:=\mathrm{PSh}_{\Delta}(\mathsf{Cart}\times\Gamma\times\Delta^{\times d})_{\mathrm{inj,loc}}$$

A fibrant object C solves the lifting property

Adding the maps f → Adj (after applying the left adjoint to the evaluation at (U, ⟨ℓ⟩, (m, −, 0))) to the list of maps at which we localize, we get a new model category:

$$\mathrm{C}^{\infty}\mathsf{Cat}_{(\infty,d)}^{\otimes,\vee} := \mathrm{PSh}_{\Delta}(\mathsf{Cart} \times \mathsf{\Gamma} \times \Delta^{\times d})_{\mathrm{inj,loc}}$$

A fibrant object C solves the lifting property

Adding the maps f → Adj (after applying the left adjoint to the evaluation at (U, ⟨ℓ⟩, (m, −, 0))) to the list of maps at which we localize, we get a new model category:

$$\mathrm{C}^{\infty}\mathsf{Cat}_{(\infty,d)}^{\otimes,\vee} := \mathrm{PSh}_{\Delta}(\mathsf{Cart} \times \mathsf{\Gamma} \times \Delta^{\times d})_{\mathrm{inj,loc}}$$

A fibrant object C solves the lifting property

So every *k*-morphism is the left adjoint for an adjunction.

Let $d \ge 0$, and let C be a fibrant object in $C^{\infty}Cat_{\infty,d}^{\otimes,\vee}$. Then evaluation at the (positive) point yields a weak equivalence

$$\operatorname{Fun}^{\otimes}(\mathfrak{Bord}_d^{\mathbb{R}^d \times U \to U}, \mathsf{C}) \simeq \mathsf{C}^{\times}(U)$$

Let $d \ge 0$, and let C be a fibrant object in $C^{\infty}Cat_{\infty,d}^{\otimes,\vee}$. Then evaluation at the (positive) point yields a weak equivalence

$$\operatorname{Fun}^{\otimes}(\mathfrak{Bord}_d^{\mathbb{R}^d imes U o U},\mathsf{C}) \simeq \mathsf{C}^{ imes}(U)$$

Proof

Let $d \ge 0$, and let C be a fibrant object in $C^{\infty}Cat_{\infty,d}^{\otimes,\vee}$. Then evaluation at the (positive) point yields a weak equivalence

$$\operatorname{Fun}^{\otimes}(\mathfrak{Bord}_d^{\mathbb{R}^d imes U o U},\mathsf{C}) \simeq \mathsf{C}^{ imes}(U)$$

Proof

Using Lurie's idea, we proceed by induction on the dimension.

Let $d \ge 0$, and let C be a fibrant object in $C^{\infty}Cat_{\infty,d}^{\otimes,\vee}$. Then evaluation at the (positive) point yields a weak equivalence

$$\operatorname{Fun}^{\otimes}(\mathfrak{Bord}_d^{\mathbb{R}^d imes U o U},\mathsf{C}) \simeq \mathsf{C}^{ imes}(U)$$

Proof

• Using Lurie's idea, we proceed by induction on the dimension. The base of the induction is d = 0.

Let $d \ge 0$, and let C be a fibrant object in $C^{\infty}Cat_{\infty,d}^{\otimes,\vee}$. Then evaluation at the (positive) point yields a weak equivalence

$$\operatorname{Fun}^{\otimes}(\mathfrak{Bord}_d^{\mathbb{R}^d imes U o U},\mathsf{C}) \simeq \mathsf{C}^{ imes}(U)$$

Proof

- Using Lurie's idea, we proceed by induction on the dimension. The base of the induction is d = 0.
- Assume the statement is true (in full generality!) in dimension d-1.
Theorem (G.-P.)

Let $d \ge 0$, and let C be a fibrant object in $C^{\infty}Cat_{\infty,d}^{\otimes,\vee}$. Then evaluation at the (positive) point yields a weak equivalence

$$\operatorname{Fun}^{\otimes}(\mathfrak{Bord}_d^{\mathbb{R}^d imes U o U},\mathsf{C}) \simeq \mathsf{C}^{ imes}(U)$$

Proof

- Using Lurie's idea, we proceed by induction on the dimension. The base of the induction is d = 0.
- Assume the statement is true (in full generality!) in dimension d-1.
- We first filter embedded bordisms by Morse index

Theorem (G.-P.)

Let $d \ge 0$, and let C be a fibrant object in $C^{\infty}Cat_{\infty,d}^{\otimes,\vee}$. Then evaluation at the (positive) point yields a weak equivalence

$$\operatorname{Fun}^{\otimes}(\mathfrak{Bord}_d^{\mathbb{R}^d imes U o U},\mathsf{C}) \simeq \mathsf{C}^{ imes}(U)$$

Proof

- Using Lurie's idea, we proceed by induction on the dimension. The base of the induction is d = 0.
- Assume the statement is true (in full generality!) in dimension d-1.
- We first filter embedded bordisms by Morse index

Definition

Fix $d \ge 0$. We define the subobject $B_k \subset \mathfrak{Bord}_d^{\mathbb{R}^d \times U \to U}$ as the subobject of bordisms that admit a Morse function having critical points of index at most k.

Definition

Fix $d \ge 0$. We define the subobject $B_k \subset \mathfrak{Bord}_d^{\mathbb{R}^d \times U \to U}$ as the subobject of bordisms that admit a Morse function having critical points of index at most k.

Problem: What if the disc of index 0 is not sent to the unit of an adjunction?

- Problem: What if the disc of index 0 is not sent to the unit of an adjunction?
- For higher index, this is not a problem (use exchange principle).

Definition

```
Let k \geq 0 and fix \mathbf{m} \in \Delta^{\times d-2}.
```

Definition

Let $k \ge 0$ and fix $\mathbf{m} \in \Delta^{\times d-2}$. We define the subobject $H_k(\mathbf{m}) \subset B_k(\mathbf{m})$ to be the subobject generated (as a bisimplicial space) by the bisimplices occuring in the following diagram:

Definition

Let $k \ge 0$ and fix $\mathbf{m} \in \Delta^{\times d-2}$. We define the subobject $H_k(\mathbf{m}) \subset B_k(\mathbf{m})$ to be the subobject generated (as a bisimplicial space) by the bisimplices occuring in the following diagram:

U ∈ Cart and ⟨ℓ⟩ ∈ Γ are present throughout, but we will omit these from notation.

Definition

Let $k \ge 0$ and fix $\mathbf{m} \in \Delta^{\times d-2}$. We define the subobject $H_k(\mathbf{m}) \subset B_k(\mathbf{m})$ to be the subobject generated (as a bisimplicial space) by the bisimplices occuring in the following diagram:

- U ∈ Cart and ⟨ℓ⟩ ∈ Γ are present throughout, but we will omit these from notation.
- We again work in families over Δ^{I} .

47/47 13/32

Handles of index k-1

We define O_{k-1} ⊂ H_k as the further subobject just containing the bisimplices in the left column.

Theorem (G.-P., Propositions 4.2.33, 4.3.2)

For $k \ge 1$, we have a homotopy pushout diagram

Handles of index k-1

We define O_{k-1} ⊂ H_k as the further subobject just containing the bisimplices in the left column.

Theorem (G.-P., Propositions 4.2.33, 4.3.2)

For $k \ge 1$, we have a homotopy pushout diagram

This statement can be regarded as a generalization of Lurie's claims 3.4.12 and 3.4.17:

Handles of index k-1

We define O_{k-1} ⊂ H_k as the further subobject just containing the bisimplices in the left column.

Theorem (G.-P., Propositions 4.2.33, 4.3.2)

For $k \ge 1$, we have a homotopy pushout diagram

• This statement can be regarded as a generalization of Lurie's claims 3.4.12 and 3.4.17: B_k is freely generated from B_{k-1} by the addition of O(d - k) worth of handles of index k and a handle cancellation for each index k-handle.

Another crucial ingredient:

Another crucial ingredient:

Theorem (G.-P., Proposition 4.2.24)

For $k \ge 1$, the map $O_{k-1} \to H_k$ induces weak equivalence $\operatorname{Fun}^{\otimes}(H_k, \mathsf{C}) \to \operatorname{Fun}^{\otimes}(O_{k-1}, \mathsf{C})_{\operatorname{unit}}$

Another crucial ingredient:

Theorem (G.-P., Proposition 4.2.24)

For $k \ge 1$, the map $O_{k-1} \to H_k$ induces weak equivalence $\operatorname{Fun}^{\otimes}(H_k, \mathsf{C}) \to \operatorname{Fun}^{\otimes}(O_{k-1}, \mathsf{C})_{\operatorname{unit}}$

Corollary

For $d\geq 1$ and C a fibrant object in $C^\infty\mathsf{Cat}_{\infty,d}^{\otimes,\vee},$ There are weak equivalences

$$\operatorname{Fun}^{\otimes}(B_k,\mathsf{C})\to\operatorname{Fun}^{\otimes}(B_{k-1},\mathsf{C})$$

for $k \ge 2$ and a weak equivalence

$$\operatorname{Fun}^{\otimes}(B_1,\mathsf{C}) \xrightarrow{\simeq} \operatorname{Fun}^{\otimes}(B_{-1},\mathsf{C}) \times_{\operatorname{Fun}^{\otimes}(\mathcal{O}_{-1},\mathsf{C})} \operatorname{Fun}^{\otimes}(\mathcal{H}_0,\mathsf{C})_{\operatorname{unit}}$$

The homotopy pushout square

gives rise to a homotopy pullback square

The homotopy pushout square

gives rise to a homotopy pullback square

The homotopy pushout square

gives rise to a homotopy pullback square

 By definition, the left map factors through the coproduct summand of units.

The homotopy pushout square

gives rise to a homotopy pullback square

- By definition, the left map factors through the coproduct summand of units.
- Hence, for the first claim, it suffices to prove that the top map factors through the coproduct summand of units.

Proposition (G.-P., Proposition 4.4.2)

Let X be a $d \ge 3$ -fold complete Segal space and suppose we have the following multisimplices

• $f: x \rightarrow y$ and $f^{\dagger}: y \rightarrow x$ of degree $(1, 0, \dots, 0)$.

Proposition (G.-P., Proposition 4.4.2)

Let X be a $d \ge 3$ -fold complete Segal space and suppose we have the following multisimplices

- $f: x \rightarrow y$ and $f^{\dagger}: y \rightarrow x$ of degree $(1, 0, \dots, 0)$.
- $u: id_x \to f \circ_1 f^{\dagger}$ and $u': id_y \to f \circ_1 f^{\dagger}$ of degree $(1, 1, 0, \dots, 0)$.

Proposition (G.-P., Proposition 4.4.2)

Let X be a $d \ge 3$ -fold complete Segal space and suppose we have the following multisimplices

- $f: x \rightarrow y$ and $f^{\dagger}: y \rightarrow x$ of degree $(1, 0, \dots, 0)$.
- $u: id_x \to f \circ_1 f^{\dagger}$ and $u': id_y \to f \circ_1 f^{\dagger}$ of degree $(1, 1, 0, \dots, 0)$.
- α : $\operatorname{id}_{f^{\dagger}} \circ_1 u' \to u \circ_1 \operatorname{id}_{f^{\dagger}}$ of degree $(1, 1, 1, 0, \dots, 0)$.

Proposition (G.-P., Proposition 4.4.2)

Let X be a $d \ge 3$ -fold complete Segal space and suppose we have the following multisimplices

- $f: x \rightarrow y \text{ and } f^{\dagger}: y \rightarrow x \text{ of degree } (1, 0, \dots, 0).$
- $u: \mathrm{id}_x \to f \circ_1 f^{\dagger}$ and $u': \mathrm{id}_y \to f \circ_1 f^{\dagger}$ of degree $(1, 1, 0, \ldots, 0)$.
- α : $\operatorname{id}_{f^{\dagger}} \circ_1 u' \to u \circ_1 \operatorname{id}_{f^{\dagger}}$ of degree $(1, 1, 1, 0, \dots, 0)$.

Suppose both u and u' are units of an adjunction.

Proposition (G.-P., Proposition 4.4.2)

Let X be a $d \ge 3$ -fold complete Segal space and suppose we have the following multisimplices

- $f: x \rightarrow y$ and $f^{\dagger}: y \rightarrow x$ of degree $(1, 0, \dots, 0)$.
- $u: id_x \to f \circ_1 f^{\dagger}$ and $u': id_y \to f \circ_1 f^{\dagger}$ of degree $(1, 1, 0, \dots, 0)$.
- α : $\operatorname{id}_{f^{\dagger}} \circ_1 u' \to u \circ_1 \operatorname{id}_{f^{\dagger}} of degree (1, 1, 1, 0, \dots, 0).$

Suppose both u and u' are units of an adjunction. Then there are morphisms $\gamma: \operatorname{id}_{f^{\dagger} \circ f} \to u \circ_2 v'$ and $\beta: u' \circ_2 v \to \operatorname{id}_{f \circ f^{\dagger}}$ associated to α via equivalences.

Proposition (G.-P., Proposition 4.4.2)

Let X be a $d \ge 3$ -fold complete Segal space and suppose we have the following multisimplices

- $f: x \rightarrow y$ and $f^{\dagger}: y \rightarrow x$ of degree $(1, 0, \dots, 0)$.
- $u: id_x \to f \circ_1 f^{\dagger}$ and $u': id_y \to f \circ_1 f^{\dagger}$ of degree $(1, 1, 0, \dots, 0)$.
- α : $\operatorname{id}_{f^{\dagger}} \circ_1 u' \to u \circ_1 \operatorname{id}_{f^{\dagger}} of degree (1, 1, 1, 0, \dots, 0).$

Suppose both u and u' are units of an adjunction. Then there are morphisms $\gamma: \mathrm{id}_{f^{\dagger} \circ f} \to u \circ_2 v'$ and $\beta: u' \circ_2 v \to \mathrm{id}_{f \circ f^{\dagger}}$ associated to α via equivalences. Moreover, β is the counit of an adjunction if and only if γ is the unit of an adjunction.

Exchanging a counit for a unit

• This only works for $k \ge 2!$

- This only works for $k \ge 2!$
- For k = 1, we obtain an equivalence

 $\operatorname{Fun}^{\otimes}(B_1,\mathsf{C})\to\operatorname{Fun}^{\otimes}(B_0,\mathsf{C})_{\operatorname{unit}}$

- This only works for $k \ge 2!$
- For k = 1, we obtain an equivalence

 $\operatorname{Fun}^{\otimes}(B_1,\mathsf{C}) \to \operatorname{Fun}^{\otimes}(B_0,\mathsf{C})_{\operatorname{unit}}$

• This, combined with the pullback diagram for k = 0 proves claim 2.

• By the corollary we have an equivalences

$$\operatorname{Fun}^{\otimes}(\mathfrak{Bord}_{d}^{\mathbb{R}^{d} \times U \to U}, \mathsf{C}) \simeq \operatorname{Fun}^{\otimes}(B_{1}, \mathsf{C})$$
and

$$\operatorname{Fun}^{\otimes}(B_{1}, \mathsf{C}) \simeq \operatorname{Fun}^{\otimes}(B_{-1}, \mathsf{C}) \times_{\operatorname{Fun}^{\otimes}(O_{-1}, \mathsf{C})} \operatorname{Fun}^{\otimes}(H_{0}, \mathsf{C})_{\operatorname{unit}}$$

By the corollary we have an equivalences

$$\operatorname{Fun}^{\otimes}(\mathfrak{Botd}_{d}^{\mathbb{R}^{d}\times U\to U},\mathsf{C})\simeq \operatorname{Fun}^{\otimes}(B_{1},\mathsf{C})$$
and

$$\operatorname{Fun}^{\otimes}(B_{1},\mathsf{C})\simeq \operatorname{Fun}^{\otimes}(B_{-1},\mathsf{C})\times_{\operatorname{Fun}^{\otimes}(\mathcal{O}_{-1},\mathsf{C})}\operatorname{Fun}^{\otimes}(\mathcal{H}_{0},\mathsf{C})_{\operatorname{unit}}$$

■ The object B₋₁ contains cylinders with a fiberwise embedding into ℝ^d.

- By the corollary we have an equivalences $\operatorname{Fun}^{\otimes}(\mathfrak{Bord}_d^{\mathbb{R}^d \times U \to U}, \mathsf{C}) \simeq \operatorname{Fun}^{\otimes}(B_1, \mathsf{C})$ and
 - $\mathrm{Fun}^{\otimes}(B_1,\mathsf{C})\simeq\mathrm{Fun}^{\otimes}(B_{-1},\mathsf{C})\times_{\mathrm{Fun}^{\otimes}(\mathcal{O}_{-1},\mathsf{C})}\mathrm{Fun}^{\otimes}(\mathcal{H}_0,\mathsf{C})_{\mathrm{unit}}$
- The object B₋₁ contains cylinders with a fiberwise embedding into ℝ^d. This is not equivalent to Bord^{ℝ^{d-1}×U→U}!
Proof of GCH

By the corollary we have an equivalences $\operatorname{Fun}^{\otimes}(\mathfrak{Bord}_{d}^{\mathbb{R}^{d}\times U\to U},\mathsf{C})\simeq\operatorname{Fun}^{\otimes}(B_{1},\mathsf{C})$ and $\operatorname{Fun}^{\otimes}(B_{1},\mathsf{C})\simeq\operatorname{Fun}^{\otimes}(B_{2},\mathsf{C})$

- $\operatorname{Fun}^{\otimes}(B_1,\mathsf{C})\simeq\operatorname{Fun}^{\otimes}(B_{-1},\mathsf{C})\times_{\operatorname{Fun}^{\otimes}(\mathcal{O}_{-1},\mathsf{C})}\operatorname{Fun}^{\otimes}(\mathcal{H}_0,\mathsf{C})_{\operatorname{unit}}$
- The object B₋₁ contains cylinders with a fiberwise embedding into ℝ^d. This is not equivalent to Bord_{d-1}^{ℝ^{d-1}×U→U}!

Definition

We define a functor ι_{d-1} : FEmb_{d-1} \rightarrow FEmb_d by sending a submersion $M \rightarrow U$ to $M \times \mathbb{R} \rightarrow U$.

Proof of GCH

By the corollary we have an equivalences $\operatorname{Fun}^{\otimes}(\mathfrak{Botd}_{d}^{\mathbb{R}^{d}\times U\to U},\mathsf{C})\simeq \operatorname{Fun}^{\otimes}(B_{1},\mathsf{C})$ and

- $\operatorname{Fun}^{\otimes}(B_1,\mathsf{C})\simeq\operatorname{Fun}^{\otimes}(B_{-1},\mathsf{C})\times_{\operatorname{Fun}^{\otimes}(\mathcal{O}_{-1},\mathsf{C})}\operatorname{Fun}^{\otimes}(\mathcal{H}_0,\mathsf{C})_{\operatorname{unit}}$
- The object B₋₁ contains cylinders with a fiberwise embedding into ℝ^d. This is not equivalent to Bord^{ℝ^{d-1}×U→U}_{d-1}!

Definition

We define a functor ι_{d-1} : FEmb_{d-1} \rightarrow FEmb_d by sending a submersion $M \rightarrow U$ to $M \times \mathbb{R} \rightarrow U$.

• We have
$$B_{-1} \simeq \mathfrak{Bord}_{d-1}^{\iota_{d-1}^*(\mathbb{R}^d \times U \to U)}$$
.

Proof of GCH

By the corollary we have an equivalences $\operatorname{Fun}^{\otimes}(\mathfrak{Bord}_d^{\mathbb{R}^d\times U\to U},\mathsf{C})\simeq\operatorname{Fun}^{\otimes}(B_1,\mathsf{C})$ and

$$\operatorname{Fun}^{\otimes}(B_1,\mathsf{C})\simeq\operatorname{Fun}^{\otimes}(B_{-1},\mathsf{C})\times_{\operatorname{Fun}^{\otimes}(\mathcal{O}_{-1},\mathsf{C})}\operatorname{Fun}^{\otimes}(\mathcal{H}_0,\mathsf{C})_{\operatorname{unit}}$$

The object B₋₁ contains cylinders with a fiberwise embedding into ℝ^d. This is not equivalent to Bord_{d-1}^{ℝ^{d-1}×U→U}!

Definition

F

We define a functor ι_{d-1} : FEmb_{d-1} \rightarrow FEmb_d by sending a submersion $M \rightarrow U$ to $M \times \mathbb{R} \rightarrow U$.

We have
$$B_{-1} \simeq \mathfrak{Botd}_{d-1}^{\iota_{d-1}^*(\mathbb{R}^d \times U \to U)}$$
.
By GCH in dimension $d-1$, we have an equivalence
 $\operatorname{Fun}^{\otimes}(B_1, \mathsf{C}) \simeq \operatorname{Map}(\iota_{d-1}^*(\mathbb{R}^d \times U \to U), \mathsf{C}^{\times}) \times_{\operatorname{Fun}^{\otimes}(O_{-1}, \mathsf{C})} \operatorname{Fun}^{\otimes}(H_0, \mathsf{C})_{\operatorname{unit}}$ (\bigstar)

Lemma

We have a homotopy pushout diagram in $sPSh_{\Delta}(FEmb_{d-1})_{\check{C},flc}$:

Proof: Idea is to move to O(d - 1)-equivariant presheaves by a zig-zag of Quillen equivalences.

Lemma

We have a homotopy pushout diagram in $sPSh_{\Delta}(FEmb_{d-1})_{\check{C},flc}$:

Proof: Idea is to move to O(d - 1)-equivariant presheaves by a zig-zag of Quillen equivalences. This turns the above diagram into a homotopy pushout diagram in sPSh_{Δ}(Cart; sSet^{O(d-1)}):

This can be shown to be a homotopy pushout square of equivariant spaces (Lurie's proof of Proposition 2.4.6). Since C_{d-1}^{\times} is fiberwise locally constant (by the induction hypothesis), we have a homotopy pullback diagram

■ The two off-diagonal corners are equivalent to Fun[⊗](𝔅ot𝔅^{R^{d-1}×U→U}, C) by the induction hypothesis. Since C_{d-1}^{\times} is fiberwise locally constant (by the induction hypothesis), we have a homotopy pullback diagram

- The two off-diagonal corners are equivalent to $\operatorname{Fun}^{\otimes}(\mathfrak{Bord}_{d-1}^{\mathbb{R}^{d-1}\times U\to U}, \mathsf{C})$ by the induction hypothesis.
- Then we invoke the corollary in dimension d-1 to get

$$\begin{aligned} &\operatorname{Fun}^{\otimes}(\mathfrak{Bord}_{d-1}^{\mathbb{R}^{d-1}\times U\to U},\mathsf{C}) \\ \simeq &\operatorname{Map}(\iota_{d-2}^{*}(\mathbb{R}^{d-1}\times U),\mathsf{C}_{d-1}^{\times})\times_{\operatorname{Fun}^{\otimes}(\mathcal{O}_{-1,d-1},\mathsf{C})}\operatorname{Fun}^{\otimes}(\mathcal{H}_{0,d-1},\mathsf{C})_{\operatorname{unit}} \end{aligned}$$

• To save on space, let's denote $C^B := Fun^{\otimes}(B, C)$.

■ To save on space, let's denote C^B: = Fun[⊗](B, C).
 ■ We have a big pullback diagram:

■ To save on space, let's denote C^B: = Fun[⊗](B, C).
 ■ We have a big pullback diagram:

$$C^{O_{-1,d-1}} \underbrace{ \operatorname{Map}(\iota_{d-2}^{*}(\mathbb{R}^{d-1} \times U), \mathsf{C}_{d-2}^{\times}) \xleftarrow{ \operatorname{Map}(\iota_{d-2}^{*}(\mathbb{R}^{d-1} \times U), \mathsf{C}^{\times}) \times_{\mathsf{C}^{O_{-1,d-1}}} \mathsf{C}_{u}^{H_{0,d-1}}}_{\mathsf{C}_{u}^{H_{0,d-1}}} \underbrace{ \operatorname{Map}(\iota_{d-2}^{*}(\mathbb{R}^{d} \times U), \mathsf{C}_{d-2}^{\times}) \times_{\mathsf{C}^{O_{-1,d-1}}} \mathsf{C}_{u}^{H_{0,d-1}}}_{\mathsf{Map}(\iota_{d-1}^{*}(\mathbb{R}^{d} \times U), \mathsf{C}_{d-1}^{\times})} \underbrace{ \operatorname{Map}(\iota_{d-1}^{*}(\mathbb{R}^{d} \times U), \mathsf{C}_{d-1}^{\times}) \times_{\mathsf{C}^{O_{-1,d-1}}} \mathsf{C}_{u}^{H_{0,d-1}}}_{\mathsf{Map}(\iota_{d-1}^{*}(\mathbb{R}^{d} \times U), \mathsf{C}_{d-1}^{\times})} \underbrace{ \operatorname{Map}(\iota_{d-1}^{*}(\mathbb{R}^{d} \times U), \mathsf{C}_{d-1}^{\times}) \times_{\mathsf{C}^{O_{-1,d-1}}} \mathsf{C}_{u}^{H_{0,d-1}}}_{\mathsf{Map}(\iota_{d-1}^{*}(\mathbb{R}^{d} \times U), \mathsf{C}_{d-1}^{\times})} \underbrace{ \operatorname{Map}(\iota_{d-1}^{*}(\mathbb{R}^{d} \times U), \mathsf{C}_{d-1}^{\times}) \times_{\mathsf{C}^{O_{-1,d-1}}} \mathsf{C}_{u}^{H_{0,d-1}}}_{\mathsf{Map}(\iota_{d-1}^{*}(\mathbb{R}^{d} \times U), \mathsf{C}_{d-1}^{\times})} \underbrace{ \operatorname{Map}(\iota_{d-1}^{*}(\mathbb{R}^{d} \times U), \mathsf{C}_{d-1}^{\times}) \times_{\mathsf{C}^{O_{-1,d-1}}} \mathsf{C}_{u}^{H_{0,d-1}}}_{\mathsf{Map}(\iota_{d-1}^{*}(\mathbb{R}^{d} \times U), \mathsf{C}_{d-1}^{\times})}$$

So we have an equivalence

■ To save on space, let's denote C^B: = Fun[⊗](B, C).
■ We have a big pullback diagram:

$$C^{O_{-1,d-1}} \underbrace{ \operatorname{Map}(\iota_{d-2}^{*}(\mathbb{R}^{d-1} \times U), \mathsf{C}_{d-2}^{\times}) \underbrace{ \operatorname{Map}(\iota_{d-2}^{*}(\mathbb{R}^{d-1} \times U), \mathsf{C}^{\times}) \times_{\mathsf{C}^{O_{-1,d-1}}} \mathsf{C}_{u}^{H_{0,d-1}}}_{\mathsf{C}_{u}^{H_{0,d-1}}} \underbrace{ \operatorname{Map}(\iota_{d-2}^{*}(\mathbb{R}^{d-1} \times U), \mathsf{C}_{d-2}^{\times}) \times_{\mathsf{C}^{O_{-1,d-1}}} \mathsf{C}_{u}^{H_{0,d-1}}}_{\mathsf{Map}(\iota_{d-1}^{*}(\mathbb{R}^{d} \times U), \mathsf{C}_{d-1}^{\times})} \underbrace{ \operatorname{Map}(\iota_{d-1}^{*}(\mathbb{R}^{d} \times U), \mathsf{C}_{d-1}^{\times}) \times_{\mathsf{C}^{O_{-1,d-1}}} \mathsf{C}_{u}^{H_{0,d-1}}}_{\mathsf{C}_{u}^{H_{0,d-1}}} \underbrace{ \operatorname{Map}(\iota_{d-1}^{*}(\mathbb{R}^{d} \times U), \mathsf{C}_{d-1}^{\times}) \times_{\mathsf{C}^{O_{-1,d-1}}} \mathsf{C}_{u}^{H_{0,d-1}}}_{\mathsf{C}_{u}^{H_{0,d-1}}}} \underbrace{ \operatorname{Map}(\iota_{d-1}^{*}(\mathbb{R}^{d} \times U), \mathsf{C}_{d-1}^{\times}) \times_{\mathsf{C}^{O_{-1,d-1}}} \mathsf{C}_{u}^{H_{0,d-1}}}_{\mathsf{C}_{u}^{H_{0,d-1}}} \underbrace{ \operatorname{Map}(\iota_{d-1}^{*}(\mathbb{R}^{d} \times U), \mathsf{C}_{d-1}^{\times}) \times_{\mathsf{C}^{O_{-1,d-1}}}} \mathsf{C}_{u}^{H_{0,d-1}}}_{\mathsf{C}_{u}^{H_{0,d-1}}} \underbrace{ \operatorname{Map}(\iota_{d-1}^{*}(\mathbb{R}^{d} \times U), \mathsf{C}_{d-1}^{\times}) \times_{\mathsf{C}^{O_{-1,d-1}}}_{\mathsf{C}_{u}^{H_{0,d-1}}}} \times_{\mathsf{C}^{O_{-1,d-1}}} \operatorname{Map}(\iota_{d-1}^{*}(\mathbb{R}^{d} \times U), \mathsf{C}_{d-1}^{\times}) \times_{\mathsf{C}^{O_{-1,d-1}}}_{\mathsf{C}_{u}^{H_{0,d-1}}} \times_{\mathsf{C}^{O_{-1,d-1}}} \times_{\mathsf{C}^{O_{-1,d-1}}}$$

• So we have an equivalence
$$\begin{split} \operatorname{Map}(\iota_{d-1}^*(\mathbb{R}^d \times U \to U), \mathsf{C}_{d-1}^{\times}) &\simeq \\ \operatorname{Map}(\iota_{d-2}^*(\mathbb{R}^{d-1} \times U \to U), \mathsf{C}_{d-2}^{\times}) \times_{\mathsf{C}^{O_{-1,d-1}}} \mathsf{C}_u^{H_{0,d-1}} \times_{\mathsf{C}^{O_{-1,d-1}}} \times \mathsf{C}_u^{H_{0,d-1}} \end{split}$$

• Plugging back into (\blacklozenge), we get an equivalence Fun^{\otimes}(B_1 , C^{\times}) \simeq Map($\iota_{d-2}^*(\mathbb{R}^{d-1} \times U \to U), C_{d-2}^{\times}) \times_{C^{o-1,d-1}} C_u^{H_{0,d-1}} \times_{C^{o-1,d-1}} \times C_u^{H_{0,d-1}} \times_{C^{o-1}} C_u^{H_0}$ (\heartsuit)

84/84 24/32

• Focusing on the triple pullback

$$\mathsf{C}_{u}^{H_{0,d-1}} \times_{\mathsf{C}^{\mathcal{O}_{-1,d-1}}} \times \mathsf{C}_{u}^{H_{0,d-1}} \times_{\mathsf{C}^{\mathcal{O}_{-1}}} \mathsf{C}_{u}^{H_{0}},$$

Focusing on the triple pullback

$$\mathsf{C}_{u}^{H_{0,d-1}} \times_{\mathsf{C}^{O_{-1,d-1}}} \times \mathsf{C}_{u}^{H_{0,d-1}} \times_{\mathsf{C}^{O_{-1}}} \mathsf{C}_{u}^{H_{0}},$$

we observe that the projection

$$\mathsf{C}^{H_{0,d-1}}_{u}\times_{\mathsf{C}^{\mathcal{O}_{-1,d-1}}}\times\mathsf{C}^{H_{0,d-1}}_{u}\times_{\mathsf{C}^{\mathcal{O}_{-1}}}\mathsf{C}^{H_{0}}_{u}\to\mathsf{C}^{H_{0,d-1}}_{u}$$

is an equivalence (since C has duals).

Focusing on the triple pullback

$$\mathsf{C}_{u}^{H_{0,d-1}} \times_{\mathsf{C}^{\mathcal{O}_{-1,d-1}}} \times \mathsf{C}_{u}^{H_{0,d-1}} \times_{\mathsf{C}^{\mathcal{O}_{-1}}} \mathsf{C}_{u}^{H_{0}},$$

we observe that the projection

$$\mathsf{C}^{H_{0,d-1}}_{u}\times_{\mathsf{C}^{\mathcal{O}_{-1,d-1}}}\times\mathsf{C}^{H_{0,d-1}}_{u}\times_{\mathsf{C}^{\mathcal{O}_{-1}}}\mathsf{C}^{H_{0}}_{u}\to\mathsf{C}^{H_{0,d-1}}_{u}$$

is an equivalence (since C has duals).

Focusing on the triple pullback

$$\mathsf{C}_{u}^{H_{0,d-1}} \times_{\mathsf{C}^{\mathcal{O}_{-1,d-1}}} \times \mathsf{C}_{u}^{H_{0,d-1}} \times_{\mathsf{C}^{\mathcal{O}_{-1}}} \mathsf{C}_{u}^{H_{0}},$$

we observe that the projection

$$\mathsf{C}^{H_{0,d-1}}_{u}\times_{\mathsf{C}^{\mathcal{O}_{-1,d-1}}}\times\mathsf{C}^{H_{0,d-1}}_{u}\times_{\mathsf{C}^{\mathcal{O}_{-1}}}\mathsf{C}^{H_{0}}_{u}\to\mathsf{C}^{H_{0,d-1}}_{u}$$

is an equivalence (since C has duals).

\blacksquare Finally, combining with (\heartsuit), we have equivalences

$$\begin{split} &\operatorname{Fun}^{\otimes}(\mathfrak{Bord}_{d-1}^{\mathbb{R}^{d} \times U \to U},\mathsf{C}) \simeq \operatorname{Fun}^{\otimes}(B_{1},\mathsf{C}) \\ &\simeq \operatorname{Map}(\iota_{d-2}^{*}(\mathbb{R}^{d-1} \times U \to U),\mathsf{C}_{d-2}^{\times}) \times_{\mathsf{C}^{O-1,d-1}} \mathsf{C}^{H_{0,d-1}} \times_{\mathsf{C}^{O-1,d-1}} \times \mathsf{C}^{H_{0,d-1}} \times_{\mathsf{C}^{O-1}} \mathsf{C}^{H_{0,d-1}} \\ &\simeq \operatorname{Map}(\iota_{d-2}^{*}(\mathbb{R}^{d-1} \times U \to U),\mathsf{C}_{d-2}^{\times}) \times_{\mathsf{C}^{O-1,d-1}} \mathsf{C}^{H_{0,d-1}} \\ &\simeq \operatorname{Fun}^{\otimes}(B_{1,d-1},\mathsf{C}) \\ &\simeq \operatorname{Fun}^{\otimes}(\mathfrak{Bord}_{d-1}^{\mathbb{R}^{d} \times U \to U},\mathsf{C}) \simeq \mathsf{C}^{\times}(U) \end{split}$$

Finally, combining with (\heartsuit) , we have equivalences

$$\begin{split} &\operatorname{Fun}^{\otimes}(\mathfrak{Botd}_{d-1}^{\mathbb{R}^{d}\times U \to U},\mathsf{C}) \simeq \operatorname{Fun}^{\otimes}(B_{1},\mathsf{C}) \\ &\simeq \operatorname{Map}(\iota_{d-2}^{*}(\mathbb{R}^{d-1}\times U \to U),\mathsf{C}_{d-2}^{\times}) \times_{\mathsf{C}^{O-1,d-1}} \mathsf{C}^{H_{0,d-1}} \times_{\mathsf{C}^{O-1,d-1}} \times \mathsf{C}^{H_{0,d-1}} \times_{\mathsf{C}^{O-1}} \mathsf{C}^{H_{0}} \\ &\simeq \operatorname{Map}(\iota_{d-2}^{*}(\mathbb{R}^{d-1}\times U \to U),\mathsf{C}_{d-2}^{\times}) \times_{\mathsf{C}^{O-1,d-1}} \mathsf{C}^{H_{0,d-1}} \\ &\simeq \operatorname{Fun}^{\otimes}(B_{1,d-1},\mathsf{C}) \\ &\simeq \operatorname{Fun}^{\otimes}(\mathfrak{Botd}_{d-1}^{\mathbb{R}^{d}\times U \to U},\mathsf{C}) \simeq \mathsf{C}^{\times}(U) \end{split}$$

• The induction is complete.

Lemma (Proposition 4.2.24)

For $k \ge 1$, the map $O_{k-1} \rightarrow H_k$ induces weak equivalence

Lemma (Proposition 4.2.24)

For $k \ge 1$, the map $O_{k-1} \to H_k$ induces weak equivalence $\operatorname{Fun}^{\otimes}(H_k, \mathsf{C}) \to \operatorname{Fun}^{\otimes}(O_{k-1}, \mathsf{C})_{\operatorname{unit}}$

Lemma (Proposition 4.2.24)

For $k \ge 1$, the map $O_{k-1} \to H_k$ induces weak equivalence $\operatorname{Fun}^{\otimes}(H_k, \mathsf{C}) \to \operatorname{Fun}^{\otimes}(O_{k-1}, \mathsf{C})_{\operatorname{unit}}$

Proof: We let $\mathcal{M} \subset \operatorname{Map}(\operatorname{Adj}, B_k)$ be the coproduct summand of maps that send the left adjoint to bordisms of the form f.

Lemma (Proposition 4.2.24)

For $k \ge 1$, the map $O_{k-1} \to H_k$ induces weak equivalence $\operatorname{Fun}^{\otimes}(H_k, \mathsf{C}) \to \operatorname{Fun}^{\otimes}(O_{k-1}, \mathsf{C})_{\operatorname{unit}}$

Proof: We let $\mathcal{M} \subset \operatorname{Map}(\operatorname{Adj}, B_k)$ be the coproduct summand of maps that send the left adjoint to bordisms of the form f. We claim we have a homotopy pushout

• Let P be the objectwise pushout and let $P \rightarrow H_k$ be the induced map.

■ Let P be the objectwise pushout and let P → H_k be the induced map. The idea of the proof is to show the homotopy fibers of this map are contractible.

- Let P be the objectwise pushout and let P → H_k be the induced map. The idea of the proof is to show the homotopy fibers of this map are contractible.
- We analyze homotopy fibers over each connected component in H_k.

- Let P be the objectwise pushout and let $P \rightarrow H_k$ be the induced map. The idea of the proof is to show the homotopy fibers of this map are contractible.
- We analyze homotopy fibers over each connected component in H_k. The homotopy fiber F_ϵ over a bordism ϵ ∈ H_k is a choice of adjunction data in H_k:
- Let G_0 be the connected component of the identity on g_0 .

- Let P be the objectwise pushout and let $P \rightarrow H_k$ be the induced map. The idea of the proof is to show the homotopy fibers of this map are contractible.
- We analyze homotopy fibers over each connected component in H_k. The homotopy fiber F_ϵ over a bordism ϵ ∈ H_k is a choice of adjunction data in H_k:
- Let G₀ be the connected component of the identity on g₀.
 Then we define maps

$$F_{\epsilon} \rightarrow G_0 \qquad G_0 \rightarrow F_{\epsilon}.$$

- Let P be the objectwise pushout and let $P \rightarrow H_k$ be the induced map. The idea of the proof is to show the homotopy fibers of this map are contractible.
- We analyze homotopy fibers over each connected component in H_k. The homotopy fiber F_ϵ over a bordism ϵ ∈ H_k is a choice of adjunction data in H_k:
- Let G₀ be the connected component of the identity on g₀.
 Then we define maps

$$F_{\epsilon}
ightarrow G_0 \qquad G_0
ightarrow F_{\epsilon}.$$

• The composition $F_{\epsilon} \rightarrow G_0 \rightarrow F_{\epsilon}$ is homotopic to identity.

• $(F_{\epsilon} \rightarrow G_0)$ Restrict adjunction data to the counit ϵ and then insert ϵ into the following diagram:

The maps $F_{\epsilon} \rightarrow G_0$ and $G_0 \rightarrow F_{\epsilon}$

 (F_e → G₀) Restrict adjunction data to the counit e and then insert e into the following diagram:

• $(G_0 \rightarrow F_{\epsilon})$ Insert a bordism in $g' \in G_0$ into the following diagram:

 (F_ϵ → G₀) Restrict adjunction data to the counit ϵ and then insert ϵ into the following diagram:

• $(G_0 \rightarrow F_{\epsilon})$ Insert a bordism in $g' \in G_0$ into the following diagram:

The composition $F_{\epsilon} \rightarrow G_0 \rightarrow F_{\epsilon}$

After composing the bottom portion of the diagram, the entire diagram contracts to just (ε, f, g), by a homotopy (corresponding to one of the triangle identities).

The composition $F_{\epsilon} \rightarrow G_0 \rightarrow F_{\epsilon}$

- After composing the bottom portion of the diagram, the entire diagram contracts to just (ε, f, g), by a homotopy (corresponding to one of the triangle identities).
- Hence, $F_{\epsilon} \rightarrow G_0 \rightarrow F_{\epsilon}$ is homotopic to identity.

The composition $F_{\epsilon} \rightarrow G_0 \rightarrow F_{\epsilon}$

- After composing the bottom portion of the diagram, the entire diagram contracts to just (ε, f, g), by a homotopy (corresponding to one of the triangle identities).
- Hence, $F_{\epsilon} \rightarrow G_0 \rightarrow F_{\epsilon}$ is homotopic to identity.
- Since G_0 is contractible, this proves the claim.

Lemma (Propositions 4.2.33, 4.3.2)

For $k \geq 1$, we have a homotopy pushout diagram

Proof: We use introduce intermediate objects $H_k \subset \overline{H}_k \subset \overline{H}_k$ and $O_{k-1} \subset \overline{O}_{k-1} \subset \widetilde{O}_{k-1}$.

Lemma (Propositions 4.2.33, 4.3.2)

For $k \geq 1$, we have a homotopy pushout diagram

Proof: We use introduce intermediate objects $H_k \subset \overline{H}_k \subset \overline{H}_k$ and $O_{k-1} \subset \overline{O}_{k-1} \subset \widetilde{O}_{k-1}$. We have iterated homotopy pushouts:

108/108 31/32
• The right square requires cutting in the *d*-th direction,

■ The right square requires cutting in the *d*-th direction, the middle square requires cutting in the (*d* − 1)st direction,

- The right square requires cutting in the *d*-th direction, the middle square requires cutting in the (*d* − 1)st direction, and the first square requires cutting in the (*d* − 2)nd direction.
- At each stage we fix all multisimplicial directions but one.

- The right square requires cutting in the *d*-th direction, the middle square requires cutting in the (d 1)st direction, and the first square requires cutting in the (d 2)nd direction.
- At each stage we fix all multisimplicial directions but one. We then show that the canonical map out of the levelwise pushout is a weak equivalence in the Rezk model structure.

- The right square requires cutting in the *d*-th direction, the middle square requires cutting in the (d 1)st direction, and the first square requires cutting in the (d 2)nd direction.
- At each stage we fix all multisimplicial directions but one. We then show that the canonical map out of the levelwise pushout is a weak equivalence in the Rezk model structure.
- To do this, we work levelwise in the space direction.

- The right square requires cutting in the *d*-th direction, the middle square requires cutting in the (d 1)st direction, and the first square requires cutting in the (d 2)nd direction.
- At each stage we fix all multisimplicial directions but one. We then show that the canonical map out of the levelwise pushout is a weak equivalence in the Rezk model structure.
- To do this, we work levelwise in the space direction. At each level *I*, we show that the map is a weak equivalence in the Joyal model structure.