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Overview

Yesterday: definitions

Today: locality and how to use it to prove one half of the GCH

Tomorrow: the framed GCH (the other half)
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Review of smooth symmetric monoidal (∞, d)-categories

Cart is the site of cartesian spaces and smooth maps (controls
smoothness);
Γ is the opposite category of pointed finite sets (controls
monoidal products);
∆×d is the d-fold product of categories of nonempty ordered
finite sets (controls compositions in d directions);

A smooth symmetric monoidal (∞, d)-category is a functor

V: (Cart× Γ×∆×d)op → sSet.
The injective fibrancy condition;
The sheaf condition for Cart (ensures gluing of smooth
families of objects and morphisms);
The Segal condition for Γ (ensures multiplication of objects
can be performed in a unique way);
A Segal condition for every factor of ∆ (ensures composition);
A completeness condition for every factor of ∆ (eliminates a
redundancy in the encoding of invertible morphisms);
A globularity condition for every factor of ∆ with its
subsequent factors (eliminates a redundancy in the encoding
of noninvertible morphisms);
A dualizability condition for Γ and every factor of ∆ except
the last one (explained in Lecture 4).
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Review of geometric structures and bordism categories

FEmbd is the site of smooth families of d-manifolds and
fiberwise open embeddings;

Geometric structures S are simplicial presheaves on FEmbd ;

BordSd is the smooth symmetric monoidal (∞, d)-category of
bordisms with geometric structure S;

Bordisms come in smooth families over Cart, can be pulled
back and glued;
Monoidal product: disjoint union of bordisms;
Composition: gluing of bordisms along germs;
Cuts can be moved using higher invertible morphisms;
Higher gauge transformations implemented using higher
invertible morphisms.

V: smooth symmetric monoidal (∞, d)-category of values;

FFTd ,V(S) = RMap(BordSd ,V).
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Review of statements

Theorem (G.–P.)

Given V and d ≥ 0, the functor FFTd ,V

sPSh(FEmbd)
op

Č-inj
→ sSet, S 7→ FFTd ,V(S) = RMap(BordSd ,V)

is an (∞, 1)-sheaf, i.e., preserves homotopy limits.

This follows from the following result.

Theorem (G.–P.)

Given d ≥ 0, the functor

sPSh(FEmbd)Č-inj → sPSh(Cart× Γ×∆×d)loc, S 7→ BordSd

is an (∞, 1)-cosheaf, i.e., preserves homotopy colimits.
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The geometric cobordism hypothesis: Part I

Theorem

Given d ≥ 0, a geometric structure S, and a smooth symmetric
monoidal (∞, d)-category V, we have

Fun⊗(BordSd ,V) ≃ Map(S,Rd(V)),

Rd(V)(W → U) = Fun⊗(BordW→U
d ,V).

where
Rd : sPSh(Cart× Γ×∆×d) → sPSh(FEmbd)

is the right adjoint of Bordd :

Rd(V)(W → U) = Fun⊗(BordW→U
d ,V) = FFTd ,V(W → U).
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The geometric cobordism hypothesis: Part I and II

Part II of GCH (Lecture 4): Rd(V)
∼→ V∨,×, write V×

d = Rd(V).

Theorem (GCH, Part I and II)

Given d ≥ 0, a geometric structure S, and a smooth symmetric
monoidal (∞, d)-category V, we have (Part I)

Fun⊗(BordSd ,V) ≃ Map(S,V×
d ),

where (Part II) V×
d is the smooth ∞-groupoid of fully dualizable

objects in V equipped with an action of the ∞-group O(d)
(implemented as a simplicial presheaf on FEmbd).
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Application: Classifying spaces of FFTs

Theorem (G.–P.)

Given d ≥ 0, V ∈ C∞Cat⊗∞,d , and an ∞-cosheaf
F :Man → sPSh(FEmbd) (example: F (M) = M × Riem), set

FFTd ,V,F :Manop → sSet, M 7→ FFTd ,V(F (M)),

(B∫FFTd ,V,F )(M) = hocolim
n∈∆op

FFTd ,V(∆
n ×M).

Then

(B∫FFTd ,V,F )(M)
∼→ RMap(M, (B∫FFTd ,V,F )(R

0)).

FFTd ,V,F [M] ∼= [M, (B∫FFTd ,V,F )(R
0)].

Proof: Combine Locality and the following result.

Theorem (Berwick-Evans–Boavida de Brito–P.)

Given
F :Manop → sSet,

set
(B∫F )(M) = hocolim

n∈∆op
F (∆n ×M).

If F is an ∞-sheaf, then so is B∫F and

(B∫F )(M)
∼→ RMap(M, (B∫F )(R

0)).

Can replace sSet by any algebraic (∞, 1)-category (e.g., connective
ring spectra, connective chain complexes, etc.).
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The structure of the proof

Theorem

The left derived functor of a left Quillen functor preserves
homotopy colimits.

Theorem (G.–P.)

Given d ≥ 0, the functor

sPSh(FEmbd)Č-inj → sPSh(Cart× Γ×∆×d)loc, S 7→ BordSd

is a left Quillen functor. In our case: preserves monomorphisms
and local weak equivalences.
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Review of reflective localizations

Input data:

P: a category of presheaves: P = Fun(C op,Set);

Č : Čech sieves of covering families

Output data and properties:

PČ : X ∈ P is Č -local if Map(g ,X ) is an iso for all g ∈ Č ;

S : f ∈ P→ is Č -local if Map(f ,X ) is an iso for all X ∈ PČ ;

a:P → P[S−1] has a fully faithful right adjoint ι;

PČ is the essential image of ι;

P[S−1]: same objects as P, more isomorphisms;

Ladj(P[S−1],Q) = {F ∈ Ladj(P,Q) | F (Č ) ⊂ isos in Q};
colimits (and limits) in P[S−1] computed objectwise.
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Review of left Bousfield localizations

Input data:

P: relative category of simplicial presheaves: P = Fun(C op, sSet);

Č : Čech nerves of covering families

Output data and properties:

PČ : X ∈ P is Č -local if RMap(g ,X ) is a weak eq for all g ∈ Č ;

S : f ∈ P→ is Č -local if RMap(f ,X ) is a weak eq for all X ∈ PČ ;

a:P → LSP has a homotopically f-f right Quillen adjoint ι;

PČ is the essential image of Rι.

LSP: same category as P, more weak equivalences.

LQF(LSP,Q) = {F ∈ LQF(P,Q) | LF (Č ) ⊂ WQ}.
homotopy colimits (and limits) in LSP computed objectwise.
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Specialization to Bordd

P = sPSh(FEmbd)inj, LSP = sPSh(FEmbd)Č-inj;

Č : Čech nerves of open covers in FEmbd ;

Q = sPSh(Cart× Γ×∆×d)loc;

Bordd : sPSh(FEmbd)Č-inj → sPSh(Cart× Γ×∆×d)loc.

Proposition (G.–P.)

Given d ≥ 0, we have a left Quillen functor

sPSh(FEmbd)inj → sPSh(Cart× Γ×∆×d)loc, S 7→ BordSd .

Theorem (G.–P.)

Given d ≥ 0, the left derived functor of the left Quillen functor

sPSh(FEmbd)inj → sPSh(Cart× Γ×∆×d)loc, S 7→ BordSd

sends Čech nerves of open covers in FEmbd to weak equivalences.

18/19 12/25



Specialization to Bordd

P = sPSh(FEmbd)inj, LSP = sPSh(FEmbd)Č-inj;
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The formal component

Proposition (G.–P.)

Given d ≥ 0, we have a left Quillen functor

sPSh(FEmbd)inj → sPSh(Cart× Γ×∆×d)loc, S 7→ BordSd .

Proof: a formal observation on the construction of BordSd .

Bordd preserves small colimits, hence is a left adjoint;

Bordd preserves monomorphisms;

Bordd preserves objectwise weak equivalences.
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The codescent property

Theorem (G.–P.)

Given d ≥ 0, the left derived functor of the left Quillen functor

sPSh(FEmbd)inj → sPSh(Cart× Γ×∆×d)loc, S 7→ BordSd

sends the Čech nerve of an open cover {Wa → Ua}a∈A of
(W → U) ∈ FEmbd to a weak equivalence:

hocolim
n∈∆op

∐
α:[n]→A

BordWα→Uα
d −̃→BordW→U

d ,

where Wα = Wα0 ∩ · · · ∩Wαn .
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The codescent property: main steps

hocolim
n∈∆op

∐
α:[n]→A

BordWα→Uα
d −̃→BordW→U

d

Step 1 Replace hocolim by colim

Step 2 Pass to n-dimensional stalks on Cart for all n ≥ 0.

Step 3 Introduce a filtration (on n-dimensional stalks)

colim
n∈∆op

∐
α:[n]→A

BordWα→Uα
d → B0 → · · · → Bd → BordW→U

d .

Step 4 Prove all maps in the filtration are weak equivalences.
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The codescent property: filtration

colim
n∈∆op

∐
α:[n]→A

BordWα→Uα
d → B0 → · · · → Bd → BordW→U

d .

Definition

Given d ≥ 0 and (W = Rd × U → U) ∈ FEmbopd , the set

BordR
d×U→U

d (V , ⟨ℓ⟩,m)n has elements:

a smooth manifold M;

a V -family of embeddings M → Rd ;

a V ×∆n-family of cut tuples with m1 × · · · ×md cells;

P:M → ⟨ℓ⟩;
smooth map V → U;

Definition

We define Bi (⟨ℓ⟩,m) ⊂ BordW→U
d (⟨ℓ⟩,m) as follows.

An n-simplex is in Bi if for every t ∈ ∆n the corresponding
bordism over t satisfies the conditions given below.

x ∈ B0(m, ⟨ℓ⟩) is given by a germ f :M ⇒ W around
core[0,m] that maps every connected component of the germ
into some Wa ⊂ W .

i > 0: x ∈ Bi (m, ⟨ℓ⟩) if it admits a cut tuple C̃ that contains
the cut tuple of x (in the ith direction) such that for each
0 ≤ j < mi , the bordism with the same data as x , but with
cut tuple in the ith direction given by two successive cuts C̃j

and C̃j+1, belongs to Bi−1.
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Filtration: Step 0

colim
n∈∆op

∐
α:[n]→A

BordWα→Uα
d → B0 → · · · → Bd → BordW→U

d .

B0: every connected component of the bordism factors
through some Wa ⊂ W .
colim: the entire bordism factors through some Wa ⊂ W .

Proposition

The map colim → B0 is a weak equivalence in sPSh(Γ×∆×d)loc.

Proof.

Evaluate on an arbitrary object of ∆×d , obtaining a map in
sPSh(Γ);

Introduce a filtration on B0: B
k
0 is the union of Bk−1

0 and the
part of B0 whose bordisms have at most k connected
components;

Present every map Bk−1
0 → Bk

0 as a transfinite composition of
cobase changes of generating acyclic cofibrations of Γ-objects
in simplicial sets.
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Filtration: Step 1

B0: every connected component of the bordism factors
through some Wa ⊂ W .
Bi : bordisms that can be chopped in the ith direction so that
every piece belongs to Bi−1.

Proposition

The map Bi−1 → Bi is a weak equivalence in sPSh(Γ×∆×d)loc
for every i > 0.

Proof.

Evaluate Bi−1 → Bi on an arbitrary object X of Γ×∆×(d−1),
obtaining a map Bi−1(X ) → Bi (X ) in sPSh(∆);

Extract the kth simplicial degree (for some k ≥ 0), obtaining
a map in PSh(∆) = sSet;

The resulting simplicial set has

vertices: germs of cuts (embedded in W );
edges: bordisms between cuts (embedded in W );
2-simplices: composition of bordisms;
everything is in smooth families indexed by ∆k ;
bordisms must belong to Bi−1 respectively Bi .

Want to show: Bi−1 → Bi is a categorical weak equivalence in the
Joyal model structure on simplicial sets.
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Intermission: Necklace categories

X → Y : a map of simplicial sets (not necessarily
quasicategories).

X0 → Y0 an isomorphism of sets.

Want to know whether X → Y is a categorical weak
equivalence.

Fix vertices x , y ∈ X0.

Want a model for the simplicial map
MapX (x , y) → MapY (x , y).

Answer: Dugger–Spivak necklace categories.
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Intermission: Necklace categories

X : a simplicial set (not necessarily a quasicategory).

Fix vertices x , y ∈ X0.

The simplicial set MapX (x , y) is the nerve of the necklace
category Nx ,y .

Objects (necklaces from x to y): simplicial maps
∆n1 ∨ · · · ∨∆nk → X , endpoints map to x and y .

Morphisms: commutative triangles.

Morphism 1: ∆a ∨∆b → ∆a+b (endpoint-preserving).

Morphism 2: ∆a → ∆b (endpoint-preserving).
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Intermission: Necklace categories of bordisms

X = Bi−1 or Bi , evaluated at X ∈ Γ×∆×(d−1) and some
[l ] ∈ ∆ (smooth families of bordisms indexed by ∆l).

Fix vertices x , y ∈ X0, i.e., germs of cuts embedded into W .

Necklaces from x to y : composable chains of bordisms in
Bi−1 (or Bi ) joined together by joint cuts.

Morphism 1: ∆a ∨∆b → ∆a+b: convert a joint cut to an
ordinary cut (only if allowed by Bi−1).

Morphism 2: ∆a → ∆b: insert new compatible ordinary cuts.

Observation: the ambient composed bordism never changes
=⇒ can fix it in advance.
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Necklace categories of bordisms have contractible nerves: 1

X = Bi−1 or Bi , evaluated at X ∈ Γ×∆×(d−1) and some
[l ] ∈ ∆ (smooth families of bordisms indexed by ∆l).

Fix vertices x , y ∈ X0 together with a bordism M from x to y
(in Bi , not necessarily in Bi−1).

Claim: the category of necklaces from x to y that compose
to M has a contractible nerve.

Proof: Morse theory on M.

This implies Bi−1 → Bi is a weak equivalence.
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The big picture

77/77 23/25



Necklace categories of bordisms have contractible nerves: 2

Proof: Morse theory on M.

Pick a Morse function on M with distinct critical values.

Cut out a small neighborhood of each critical point.

Chop up the remaining cylinders into small bumps.

All neighborhoods can be chosen to be subordinate to the
open cover of W .

How does this help us to show contractibility of necklace
categories?
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Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map ∂∆n → X
can be simplicially homotoped to a map that extends along
∂∆n → ∆n.

Apply this theorem to the fibrant replacement X of the nerve
of the necklace category of Bi−1 (or Bi ) from x to y .

Pick some map ∂∆n → X ; its data is given by a collection of
cut tuples in the bordism M.

Chop up M as explained on the previous slide.

By induction on the Morse decomposition, push the cuts past
each small region in the Morse decomposition, with some
cutting and gluing of cuts.

At the final step, all cuts have been collapsed to the source
cut of M.
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cutting and gluing of cuts.

At the final step, all cuts have been collapsed to the source
cut of M.
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