The geometric cobordism hypothesis Lecture 3: Locality

Daniel Grady, Dmitri Pavlov (Texas Tech University, Lubbock, TX)
These slides: https://dmitripavlov.org/lecture-3.pdf

Overview

- Yesterday: definitions
- Today: locality and how to use it to prove one half of the GCH
- Tomorrow: the framed GCH (the other half)

Review of smooth symmetric monoidal (∞, d)-categories

- Cart is the site of cartesian spaces and smooth maps (controls smoothness);
- 「 is the opposite category of pointed finite sets (controls monoidal products);
- $\Delta^{\times d}$ is the d-fold product of categories of nonempty ordered finite sets (controls compositions in directions);

Review of smooth symmetric monoidal (∞, d)-categories

- Cart is the site of cartesian spaces and smooth maps (controls smoothness);
■ 「 is the opposite category of pointed finite sets (controls monoidal products);
- $\Delta^{\times d}$ is the d-fold product of categories of nonempty ordered finite sets (controls compositions in d directions);
A smooth symmetric monoidal (∞, d)-category is a functor

$$
\mathcal{V}:\left(\text { Cart } \times \Gamma \times \Delta^{\times d}\right)^{\mathrm{op}} \rightarrow \text { sSet. }
$$

- The injective fibrancy condition;
- The sheaf condition for Cart (ensures gluing of smooth families of objects and morphisms);
- The Segal condition for Γ (ensures multiplication of objects can be performed in a unique way);

Review of smooth symmetric monoidal (∞, d)-categories

■ Cart is the site of cartesian spaces and smooth maps;
\square ■ is the opposite category of pointed finite sets;
$\square \Delta^{\times d}: \Delta$ is the category of nonempty ordered finite sets;
A smooth symmetric monoidal (∞, d)-category is a functor

$$
\mathcal{V}:\left(\text { Cart } \times \Gamma \times \Delta^{\times d}\right)^{\mathrm{op}} \rightarrow \text { sSet. }
$$

- The injective fibrancy condition;
- The sheaf condition for Cart (ensures gluing);
- The Segal condition for Γ (ensures multiplication);
- A Segal condition for every factor of Δ (ensures composition);
- A completeness condition for every factor of Δ (eliminates a redundancy in the encoding of invertible morphisms);

Review of smooth symmetric monoidal (∞, d)-categories

■ Cart is the site of cartesian spaces and smooth maps;
■ 「 is the opposite category of pointed finite sets;
■ $\Delta^{\times d}: \Delta$ is the category of nonempty ordered finite sets; A smooth symmetric monoidal (∞, d)-category is a functor

$$
\mathcal{V}:\left(\text { Cart } \times \Gamma \times \Delta^{\times d}\right)^{\mathrm{op}} \rightarrow \text { sSet. }
$$

- The injective fibrancy condition;
- The sheaf condition for Cart (ensures gluing);
- The Segal condition for Γ (ensures multiplication);
- A Segal condition for every factor of Δ (ensures composition);
- A completeness condition for Δ (invertible morphisms);
- A globularity condition for every factor of Δ with its subsequent factors (eliminates a redundancy in the encoding of noninvertible morphisms);

Review of smooth symmetric monoidal (∞, d)-categories

- Cart is the site of cartesian spaces and smooth maps;
$■$ ■ is the opposite category of pointed finite sets;
- $\Delta^{\times d}: \Delta$ is the category of nonempty ordered finite sets;

A smooth symmetric monoidal (∞, d)-category is a functor

$$
\mathcal{V}:\left(\text { Cart } \times \Gamma \times \Delta^{\times d}\right)^{\mathrm{op}} \rightarrow \text { sSet. }
$$

- The injective fibrancy condition;
- The sheaf condition for Cart (ensures gluing);
- The Segal condition for Γ (ensures multiplication);
- A Segal condition for every factor of Δ (ensures composition);
- A completeness condition for Δ (invertible morphisms);
- A globularity condition for Δ (eliminates a redundancy in the encoding of noninvertible morphisms);
- A dualizability condition for Γ and every factor of Δ except the last one (explained in Lecture 4).

Review of geometric structures and bordism categories

- FEmb_{d} is the site of smooth families of d-manifolds and fiberwise open embeddings;
- Geometric structures \mathcal{S} are simplicial presheaves on FEmb_{d};
- $\mathfrak{B o r d}_{d}^{\mathcal{S}}$ is the smooth symmetric monoidal (∞, d)-category of bordisms with geometric structure \mathcal{S};
- Bordisms come in smooth families over Cart, can be pulled back and glued;
- Monoidal product: disjoint union of bordisms;
- Composition: gluing of bordisms along germs;
- Cuts can be moved using higher invertible morphisms;
- Higher gauge transformations implemented using higher invertible morphisms.
■ \mathcal{V} : smooth symmetric monoidal (∞, d)-category of values;
$■ \mathrm{FFT}_{d, \mathcal{V}}(\mathcal{S})=\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}_{d}^{\mathcal{S}}, \mathcal{V}\right)$.

Review of statements

Theorem (G.-P.)

Given \mathcal{V} and $d \geq 0$, the functor $\mathrm{FFT}_{d, \mathcal{V}}$
$\operatorname{sPSh}\left(\mathrm{FEmb}_{d}\right)_{\mathrm{C}-\mathrm{inj}}^{\mathrm{op}} \rightarrow$ sSet, $\quad \mathcal{S} \mapsto \mathrm{FFT}_{d, \mathcal{V}}(\mathcal{S})=\mathbf{R M a p}\left(\mathfrak{B o r d}_{d}^{\mathcal{S}}, \mathcal{V}\right)$
is an ($\infty, 1$)-sheaf, i.e., preserves homotopy limits.
This follows from the following result.

Theorem (G.-P.)

Given $d \geq 0$, the functor $\operatorname{sPSh}\left(\mathrm{FEmb}_{d}\right)_{\text {Č-inj }} \rightarrow \operatorname{sPSh}\left(\mathrm{Cart} \times \Gamma \times \Delta^{\times d}\right)_{\mathrm{loc}}, \quad \mathcal{S} \mapsto \mathfrak{B o r d}_{d}^{\mathcal{S}}$
is an ($\infty, 1$)-cosheaf, i.e., preserves homotopy colimits.

The geometric cobordism hypothesis: Part I

Theorem

Given $d \geq 0$, a geometric structure \mathcal{S}, and a smooth symmetric monoidal (∞, d)-category \mathcal{V}, we have

$$
\begin{gathered}
\operatorname{Fun}^{\otimes}\left(\mathfrak{B o r d}_{d}^{\mathcal{S}}, \mathcal{V}\right) \simeq \operatorname{Map}\left(\mathcal{S}, R_{d}(\mathcal{V})\right), \\
R_{d}(\mathcal{V})(W \rightarrow \mathcal{U})=\operatorname{Fun}^{\otimes}\left(\mathfrak{B o r d}{ }_{d}^{W} \rightarrow U, \mathcal{V}\right)
\end{gathered}
$$

where

$$
R_{d}: \operatorname{sPSh}\left(\text { Cart } \times \Gamma \times \Delta^{\times d}\right) \rightarrow \mathrm{sPSh}\left(\mathrm{FEmb}_{d}\right)
$$

is the right adjoint of $\mathfrak{B o r d}_{d}$:

$$
R_{d}(\mathcal{V})(W \rightarrow U)=\mathrm{Fun}^{\otimes}\left(\mathfrak{B o r d}_{d}^{W} \rightarrow U, \mathcal{V}\right)=\mathrm{FFT}_{d, \mathcal{V}}(W \rightarrow U)
$$

The geometric cobordism hypothesis: Part I and II

Part II of GCH (Lecture 4): $R_{d}(\mathcal{V}) \xrightarrow{\sim} \mathcal{V}^{\vee}, \times$, write $\mathcal{V}_{d}^{\times}=R_{d}(\mathcal{V})$.
Theorem (GCH, Part I and II)
Given $d \geq 0$, a geometric structure \mathcal{S}, and a smooth symmetric monoidal (∞, d)-category \mathcal{V}, we have (Part I)

$$
\operatorname{Fun}^{\otimes}\left(\mathfrak{B o r d}_{d}^{\mathcal{S}}, \mathcal{V}\right) \simeq \operatorname{Map}\left(\mathcal{S}, \mathcal{V}_{d}^{\times}\right)
$$

where (Part II) \mathcal{V}_{d}^{\times}is the smooth ∞-groupoid of fully dualizable objects in \mathcal{V} equipped with an action of the ∞-group $\mathrm{O}(d)$ (implemented as a simplicial presheaf on FEmb_{d}).

Application: Classifying spaces of FFTs

Theorem (G.-P.)

Given $d \geq 0, \mathcal{V} \in \mathrm{C}^{\infty} \mathrm{Cat}_{\infty, d}^{\otimes}$, and an ∞-cosheaf
$F: \mathrm{Man} \rightarrow \mathrm{sPSh}\left(\mathrm{FEmb}_{d}\right.$) (example: $F(M)=M \times$ Riem), set

$$
\mathrm{FFT}_{d, \mathcal{V}, F}: \mathrm{Man}^{\mathrm{op}} \rightarrow \mathrm{sSet}, \quad M \mapsto \mathrm{FFT}_{d, \mathcal{V}}(F(M)),
$$

$$
\left(\mathrm{B}_{\int} \mathrm{FFT}_{d, \mathcal{V}, F}\right)(M)=\underset{\substack{\operatorname{hocolim} \\ n \in \Delta^{\circ \mathrm{P}}}}{\mathrm{FFT}_{d, \mathcal{V}}\left(\Delta^{n} \times M\right)}
$$

Then

$$
\begin{aligned}
\left(\mathrm{B}_{f} \mathrm{FFT}_{d, \mathcal{V}, F}\right)(M) & \xrightarrow[\rightarrow]{ } \mathbf{R}_{\operatorname{Map}}\left(M,\left(\mathrm{~B}_{f} \mathrm{FFT}_{d, \mathcal{V}, F}\right)\left(\mathbf{R}^{0}\right)\right) \\
\mathrm{FFT}_{d, \mathcal{V}, F}[M] & \cong\left[M,\left(\mathrm{~B}_{f} \mathrm{FFT}_{d, \mathcal{V}, F}\right)\left(\mathbf{R}^{0}\right)\right]
\end{aligned}
$$

Application: Classifying spaces of FFTs

Theorem (G.-P.)

Given $d \geq 0, \mathcal{V} \in \mathrm{C}^{\infty} \mathrm{Cat}_{\infty, d}^{\otimes}$, and an ∞-cosheaf
$F: \mathrm{Man} \rightarrow \mathrm{sPSh}\left(\mathrm{FEmb}_{d}\right.$) (example: $F(M)=M \times$ Riem), set

$$
\begin{gathered}
\mathrm{FFT}_{d, \mathcal{V}, F}: \mathrm{Man}^{\mathrm{op}} \rightarrow \text { sSet, } \quad M \mapsto \mathrm{FFT}_{d, \mathcal{V}}(F(M)), \\
\left(\mathrm{B}_{f} \mathrm{FFT}_{d, \mathcal{V}, F}\right)(M)=\underset{\substack{\operatorname{hocolim} \\
n \in \Delta^{\mathrm{op}}}}{\mathrm{FFT}_{d, \mathcal{V}}\left(\Delta^{n} \times M\right)}
\end{gathered}
$$

Then

$$
\begin{gathered}
\left.\left(\mathrm{B}_{f} \mathrm{FFT}_{d, \mathcal{V}, F}\right)(M) \xrightarrow{\sim} \mathbf{R}^{\operatorname{Map}\left(M,\left(\mathrm{~B}_{f} \mathrm{FFT}_{d, \mathcal{V}, F}\right)\left(\mathbf{R}^{0}\right)\right)} \begin{array}{rl}
& \mathrm{FFT}_{d, \mathcal{V}, F}[M]
\end{array}\right)\left[M,\left(\mathrm{~B}_{f} \mathrm{FFT}_{d, \mathcal{V}, F}\right)\left(\mathbf{R}^{0}\right)\right]
\end{gathered}
$$

Proof: Combine Locality and the following result.

Application: Classifying spaces of FFTs

Proof: Combine Locality and the following result.
Theorem (Berwick-Evans-Boavida de Brito-P.)
Given

$$
F: \text { Man }^{\mathrm{op}} \rightarrow \text { sSet, }
$$

set

$$
\left(\mathrm{B}_{f} F\right)(M)=\underset{\substack{\text { hocolim } \\ n \in \Delta^{\mathrm{op}}}}{ } F\left(\Delta^{n} \times M\right)
$$

If F is an ∞-sheaf, then so is $\mathrm{B}_{\rho} F$ and

$$
\left(\mathrm{B}_{f} F\right)(M) \xrightarrow{\sim} \mathbf{R} \operatorname{Map}\left(M,\left(\mathrm{~B}_{f} F\right)\left(\mathbf{R}^{0}\right)\right) .
$$

Can replace sSet by any algebraic ($\infty, 1$)-category (e.g., connective ring spectra, connective chain complexes, etc.).

The structure of the proof

Theorem

The left derived functor of a left Quillen functor preserves homotopy colimits.

Theorem (G.-P.)

Given $d \geq 0$, the functor $\operatorname{sPSh}\left(\mathrm{FEmb}_{d}\right)_{\text {Činj }} \rightarrow \operatorname{sPSh}\left(\text { Cart } \times \Gamma \times \Delta^{\times d}\right)_{\mathrm{loc}}, \quad \mathcal{S} \mapsto \mathfrak{B o r d}_{d}^{\mathcal{S}}$
is a left Quillen functor. In our case: preserves monomorphisms and local weak equivalences.

Review of reflective localizations

Input data:
P : a category of presheaves: $P=\operatorname{Fun}\left(C^{\mathrm{op}}\right.$, Set);
Č: Čech sieves of covering families
Output data and properties:
$P_{\check{C}}: X \in P$ is \check{C}-local if $\operatorname{Map}(g, X)$ is an iso for all $g \in \check{C}$;
$S: f \in P \rightarrow$ is \check{C}-local if $\operatorname{Map}(f, X)$ is an iso for all $X \in P_{\check{C}}$;

- a: $P \rightarrow P\left[S^{-1}\right]$ has a fully faithful right adjoint ι;
- $P_{\check{C}}$ is the essential image of ι;
- $P\left[S^{-1}\right]$: same objects as P, more isomorphisms;

■ $\operatorname{Ladj}\left(P\left[S^{-1}\right], Q\right)=\{F \in \operatorname{Ladj}(P, Q) \mid F(C \check{C}) \subset$ isos in $Q\} ;$
■ colimits (and limits) in $P\left[S^{-1}\right]$ computed objectwise.

Review of left Bousfield localizations

Input data:
P : relative category of simplicial presheaves: $P=\operatorname{Fun}\left(C^{\mathrm{op}}\right.$, sSet);
Č: Čech nerves of covering families
Output data and properties:
$P_{\check{C}}: X \in P$ is \check{C}-local if $\mathbf{R} \operatorname{Map}(g, X)$ is a weak eq for all $g \in \check{C}$;
$S: f \in P \rightarrow$ is \check{C}-local if $\mathbf{R} \operatorname{Map}(f, X)$ is a weak eq for all $X \in P_{\check{C}}$;
■ a: $P \rightarrow \mathcal{L}_{S} P$ has a homotopically f-f right Quillen adjoint ι;

- $P_{\check{C}}$ is the essential image of $\mathbf{R} \iota$.
- $\mathcal{L}_{S} P$: same category as P, more weak equivalences.
- $\operatorname{LQF}\left(\mathcal{L}_{S} P, Q\right)=\left\{F \in \operatorname{LQF}(P, Q) \mid \mathbf{L} F(\check{C}) \subset W_{Q}\right\}$.

■ homotopy colimits (and limits) in $\mathcal{L}_{S} P$ computed objectwise.

Specialization to $\mathfrak{B o r d}_{\boldsymbol{d}}$

- $P=\operatorname{sPSh}\left(\mathrm{FEmb}_{d}\right)_{\mathrm{inj}}, \mathcal{L}_{S} P=\operatorname{sPSh}\left(\mathrm{FEmb}_{d}\right)_{\text {č-inj }}$;
- Č: Čech nerves of open covers in FEmb_{d};
- $Q=\operatorname{sPSh}\left(\text { Cart } \times \Gamma \times \Delta^{\times d}\right)_{\text {loc }}$;
- $\mathfrak{B o r d}_{d}: \operatorname{sPSh}\left(\mathrm{FEmb}_{d}\right)_{\check{\mathrm{C}} \text {-inj }} \rightarrow \operatorname{sPSh}\left(\text { Cart } \times \Gamma \times \Delta^{\times d}\right)_{\text {loc }}$.

Specialization to $\mathfrak{B o r d}_{d}$

- $P=\operatorname{sPSh}\left(\mathrm{FEmb}_{d}\right)_{\mathrm{inj}}, \mathcal{L}_{S} P=\operatorname{sPSh}\left(\mathrm{FEmb}_{d}\right)_{\check{\mathrm{c}} \text {-inj }}$;
- Č: Čech nerves of open covers in FEmb ${ }_{d}$;
- $Q=\operatorname{sPSh}\left(\text { Cart } \times \Gamma \times \Delta^{\times d}\right)_{\text {loc }}$;
- $\mathfrak{B o r d}_{d}: \operatorname{sPSh}\left(\mathrm{FEmb}_{d}\right)_{\check{\mathrm{C}} \text {-inj }} \rightarrow \operatorname{sPSh}\left(\operatorname{Cart} \times \Gamma \times \Delta^{\times d}\right)_{\text {loc }}$.

Proposition (G.-P.)

Given $d \geq 0$, we have a left Quillen functor
$\operatorname{sPSh}\left(\mathrm{FEmb}_{d}\right)_{\mathrm{inj}} \rightarrow \mathrm{sPSh}\left(\text { Cart } \times \Gamma \times \Delta^{\times d}\right)_{\mathrm{loc}}, \quad \mathcal{S} \mapsto \mathfrak{B o r d}_{d}^{\mathcal{S}}$.

Theorem (G.-P.)

Given $d \geq 0$, the left derived functor of the left Quillen functor $\operatorname{sPSh}\left(\mathrm{FEmb}_{d}\right)_{\text {inj }} \rightarrow \operatorname{sPSh}\left(\text { Cart } \times \Gamma \times \Delta^{\times d}\right)_{\text {loc }}, \quad \mathcal{S} \mapsto \mathfrak{B o r d}_{d}^{\mathcal{S}}$ sends Čech nerves of open covers in FEmb_{d} to weak equivalences.

The formal component

Proposition (G.-P.)
Given $d \geq 0$, we have a left Quillen functor $\operatorname{sPSh}\left(\mathrm{FEmb}_{d}\right)_{\mathrm{inj}} \rightarrow \mathrm{sPSh}\left(\text { Cart } \times \Gamma \times \Delta^{\times d}\right)_{\mathrm{loc}}, \quad \mathcal{S} \mapsto \mathfrak{B o r d}_{d}^{\mathcal{S}}$.

The formal component

Proposition (G.-P.)
Given $d \geq 0$, we have a left Quillen functor
$\operatorname{sPSh}\left(\mathrm{FEmb}_{d}\right)_{\mathrm{inj}} \rightarrow \mathrm{sPSh}\left(\text { Cart } \times \Gamma \times \Delta^{\times d}\right)_{\mathrm{loc}}, \quad \mathcal{S} \mapsto \mathfrak{B o r d}_{d}^{\mathcal{S}}$.

Proof: a formal observation on the construction of $\mathfrak{B o r d} \boldsymbol{d}_{d}^{\mathcal{S}}$.

The formal component

Proposition (G.-P.)
Given $d \geq 0$, we have a left Quillen functor
$\operatorname{sPSh}\left(\mathrm{FEmb}_{d}\right)_{\mathrm{inj}} \rightarrow \mathrm{sPSh}\left(\text { Cart } \times \Gamma \times \Delta^{\times d}\right)_{\mathrm{loc}}, \quad \mathcal{S} \mapsto \mathfrak{B o r d}_{d}^{\mathcal{S}}$.

Proof: a formal observation on the construction of $\mathfrak{B o r d}_{d}^{\mathcal{S}}$.
■ $\mathfrak{B o r d}_{d}$ preserves small colimits, hence is a left adjoint;

The formal component

Proposition (G.-P.)

Given $d \geq 0$, we have a left Quillen functor
$\operatorname{sPSh}\left(\mathrm{FEmb}_{d}\right)_{\mathrm{inj}} \rightarrow \mathrm{sPSh}\left(\text { Cart } \times \Gamma \times \Delta^{\times d}\right)_{\mathrm{loc}}, \quad \mathcal{S} \mapsto \mathfrak{B o r d}_{d}^{\mathcal{S}}$.

Proof: a formal observation on the construction of $\mathfrak{B o r d}_{d}^{\mathcal{S}}$.
■ $\mathfrak{B o r d}_{d}$ preserves small colimits, hence is a left adjoint;

- $\mathfrak{B o r d}_{d}$ preserves monomorphisms;

The formal component

Proposition (G.-P.)

Given $d \geq 0$, we have a left Quillen functor
$\operatorname{sPSh}\left(\mathrm{FEmb}_{d}\right)_{\mathrm{inj}} \rightarrow \mathrm{sPSh}\left(\text { Cart } \times \Gamma \times \Delta^{\times d}\right)_{\mathrm{loc}}, \quad \mathcal{S} \mapsto \mathfrak{B o r d}_{d}^{\mathcal{S}}$.

Proof: a formal observation on the construction of $\mathfrak{B o r d}_{d}^{\mathcal{S}}$.
■ $\mathfrak{B o r d}_{d}$ preserves small colimits, hence is a left adjoint;

- $\mathfrak{B o r d}_{d}$ preserves monomorphisms;

■ $\mathfrak{B o r d}_{d}$ preserves objectwise weak equivalences.

The codescent property

Theorem (G.-P.)

Given $d \geq 0$, the left derived functor of the left Quillen functor

$$
\operatorname{sPSh}\left(\mathrm{FEmb}_{d}\right)_{\mathrm{inj}} \rightarrow \operatorname{sPSh}\left(\mathrm{Cart} \times \Gamma \times \Delta^{\times d}\right)_{\mathrm{loc}}, \quad \mathcal{S} \mapsto \mathfrak{B o r d}_{d}^{\mathcal{S}}
$$

sends the Čech nerve of an open cover $\left\{W_{a} \rightarrow U_{a}\right\}_{a \in A}$ of $(W \rightarrow U) \in \mathrm{FEmb}_{d}$ to a weak equivalence:

$$
\underset{n \in \Delta^{\circ \mathrm{op}}}{\operatorname{\operatorname {hocolim}}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \xrightarrow{\sim} \mathfrak{B o r d}_{d}^{W} \rightarrow U,
$$

where $W_{\alpha}=W_{\alpha_{0}} \cap \cdots \cap W_{\alpha_{n}}$.

The codescent property: main steps

$$
\underset{n \in \Delta^{\circ \mathrm{p}}}{\operatorname{hocolim}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \xrightarrow{\sim} \mathfrak{B o r d}_{d}^{W} \rightarrow U
$$

The codescent property: main steps

$$
\underset{n \in \Delta^{\circ \mathrm{p}}}{\operatorname{hocolim}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \xrightarrow{\sim} \mathfrak{B o r d}_{d}^{W} \rightarrow U
$$

Step 1 Replace hocolim by colim

The codescent property: main steps

$$
\underset{n \in \Delta^{\mathrm{op}}}{\operatorname{hocolim}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \xrightarrow{\sim} \mathfrak{B o r d}_{d}^{W} \rightarrow U
$$

Step 1 Replace hocolim by colim (use Reedy cofibrancy of the diagram):

$$
\underset{n \in \Delta^{\mathrm{op}}}{\operatorname{hocolim}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \underset{n \in \Delta^{\mathrm{op}}}{\sim} \coprod_{\alpha:[n] \rightarrow A} \operatorname{Bord}_{d}^{W_{\alpha} \rightarrow U_{\alpha}}
$$

The codescent property: main steps

$$
\underset{n \in \Delta^{\circ \mathrm{p}}}{\operatorname{hocolim}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \underset{\sim}{\sim} \mathfrak{B o r d}_{d}^{W} \rightarrow U
$$

Step 1 Replace hocolim by colim
Step 2 Pass to n-dimensional stalks on Cart for all $n \geq 0$.

The codescent property: main steps

$$
\underset{n \in \Delta^{\circ \mathrm{p}}}{\operatorname{hocolim}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \xrightarrow{\sim} \mathfrak{B o r d}_{d}^{W} \rightarrow U
$$

Step 1 Replace hocolim by colim
Step 2 Pass to n-dimensional stalks on Cart for all $n \geq 0$.
Step 3 Introduce a filtration (on n-dimensional stalks)

$$
\operatorname{colim}_{n \in \Delta^{\mathrm{op}}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \rightarrow B_{0} \rightarrow \cdots \rightarrow B_{d} \rightarrow \mathfrak{B o r d}_{d}^{W} \rightarrow U .
$$

The codescent property: main steps

$$
\underset{n \in \Delta^{\circ \mathrm{p}}}{\operatorname{hocolim}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \xrightarrow{\sim} \mathfrak{B o r d}_{d}^{W} \rightarrow U
$$

Step 1 Replace hocolim by colim
Step 2 Pass to n-dimensional stalks on Cart for all $n \geq 0$.
Step 3 Introduce a filtration (on n-dimensional stalks)

$$
\operatorname{colim}_{n \in \Delta^{\circ} \mathrm{p}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \rightarrow B_{0} \rightarrow \cdots \rightarrow B_{d} \rightarrow \mathfrak{B o r d}{ }_{d}^{W} \rightarrow U .
$$

Step 4 Prove all maps in the filtration are weak equivalences.

The codescent property: filtration

$$
\operatorname{colim}_{n \in \Delta^{\mathrm{op}}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \rightarrow B_{0} \rightarrow \cdots \rightarrow B_{d} \rightarrow \mathfrak{B o r d}_{d}^{W} \rightarrow U .
$$

Definition

Given $d \geq 0$ and $\left(W=\mathbf{R}^{d} \times U \rightarrow U\right) \in \mathrm{FEmb}_{d}^{\mathrm{op}}$, the set $\mathfrak{B o r d}{ }_{d}^{\mathbf{R}^{d} \times U \rightarrow U}(V,\langle\ell\rangle, \mathbf{m})_{n}$ has elements:

- a smooth manifold M;
- a V-family of embeddings $M \rightarrow \mathbf{R}^{d}$;
- a $V \times \boldsymbol{\Delta}^{n}$-family of cut tuples with $m_{1} \times \cdots \times m_{d}$ cells;
- $P: M \rightarrow\langle\ell\rangle$;
- smooth map $V \rightarrow U$;

The codescent property: filtration

Definition

We define $B_{i}(\langle\ell\rangle, \mathbf{m}) \subset \mathfrak{B o r d}_{d}^{W} \rightarrow U(\langle\ell\rangle, \mathbf{m})$ as follows.

- An n-simplex is in B_{i} if for every $t \in \Delta^{n}$ the corresponding bordism over t satisfies the conditions given below.
■ $x \in B_{0}(\mathbf{m},\langle\ell\rangle)$ is given by a germ $f: M \Rightarrow W$ around core $[0, \mathbf{m}]$ that maps every connected component of the germ into some $W_{a} \subset W$.
- $i>0: x \in B_{i}(\mathbf{m},\langle\ell\rangle)$ if it admits a cut tuple \widetilde{C} that contains the cut tuple of x (in the ith direction) such that for each $0 \leq j<m_{i}$, the bordism with the same data as x, but with cut tuple in the i th direction given by two successive cuts \widetilde{C}_{j} and \widetilde{C}_{j+1}, belongs to B_{i-1}.

Filtration: Step 0

Filtration: Step 0

$$
\operatorname{colim}_{n \in \Delta^{\mathrm{op}}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \rightarrow B_{0} \rightarrow \cdots \rightarrow B_{d} \rightarrow \mathfrak{B o r d}{ }_{d}^{W} \rightarrow U .
$$

- An n-simplex is in $B_{0}(\mathbf{m},\langle\ell\rangle)$ if it is given by a germ $f: M \Rightarrow W$ around core $[0, \mathbf{m}]$ that maps every connected component of the germ into some $W_{a} \subset W$.
- colim: Same, but f maps the entire core into some $W_{a} \subset W$.

Filtration: Step 0

$$
\underset{n \in \Delta^{\mathrm{op}}}{\operatorname{colim}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \rightarrow B_{0} \rightarrow \cdots \rightarrow B_{d} \rightarrow \mathfrak{B o r d}_{d}^{W} \rightarrow U .
$$

- B_{0} : every connected component of the bordism factors through some $W_{a} \subset W$.
■ colim: the entire bordism factors through some $W_{a} \subset W$.

Filtration: Step 0

$$
\operatorname{colim}_{n \in \Delta^{\mathrm{op}}} \coprod_{\alpha:[n] \rightarrow A} \mathfrak{B o r d}_{d}^{W_{\alpha} \rightarrow U_{\alpha}} \rightarrow B_{0} \rightarrow \cdots \rightarrow B_{d} \rightarrow \mathfrak{B o r d}_{d}^{W} \rightarrow U .
$$

■ B_{0} : every connected component of the bordism factors through some $W_{a} \subset W$.

- colim: the entire bordism factors through some $W_{a} \subset W$.

Proposition

The map colim $\rightarrow B_{0}$ is a weak equivalence in $\operatorname{sPSh}\left(\Gamma \times \Delta^{\times d}\right)_{\text {loc }}$.

Filtration: Step 0

Proposition

The map colim $\rightarrow B_{0}$ is a weak equivalence in $\operatorname{sPSh}\left(\Gamma \times \Delta^{\times d}\right)_{\text {loc }}$.

Proof.

Filtration: Step 0

Proposition

The map colim $\rightarrow B_{0}$ is a weak equivalence in $\operatorname{sPSh}\left(\Gamma \times \Delta^{\times d}\right)_{\text {loc }}$.

Proof.

- Evaluate on an arbitrary object of $\Delta^{\times d}$, obtaining a map in $\operatorname{sPSh}(\Gamma)$;

Filtration: Step 0

Proposition

The map colim $\rightarrow B_{0}$ is a weak equivalence in $\operatorname{sPSh}\left(\Gamma \times \Delta^{\times d}\right)_{\text {loc }}$.

Proof.

- Evaluate on an arbitrary object of $\Delta^{\times d}$, obtaining a map in sPSh(Г);
- Introduce a filtration on B_{0} : B_{0}^{k} is the union of B_{0}^{k-1} and the part of B_{0} whose bordisms have at most k connected components;

Filtration: Step 0

Proposition

The map colim $\rightarrow B_{0}$ is a weak equivalence in $\operatorname{sPSh}\left(\Gamma \times \Delta^{\times d}\right)_{\text {loc }}$.

Proof.

- Evaluate on an arbitrary object of $\Delta^{\times d}$, obtaining a map in sPSh(Г);
- Introduce a filtration on B_{0} : B_{0}^{k} is the union of B_{0}^{k-1} and the part of B_{0} whose bordisms have at most k connected components;
- Present every map $B_{0}^{k-1} \rightarrow B_{0}^{k}$ as a transfinite composition of cobase changes of generating acyclic cofibrations of Γ-objects in simplicial sets.

Filtration: Step 1

Filtration: Step 1

- B_{0} : every connected component of the bordism factors through some $W_{a} \subset W$.
- B_{i} : bordisms that can be chopped in the i th direction so that every piece belongs to B_{i-1}.

Filtration: Step 1

■ B_{0} : every connected component of the bordism factors through some $W_{a} \subset W$.

- B_{i} : bordisms that can be chopped in the i th direction so that every piece belongs to B_{i-1}.

Proposition

The map $B_{i-1} \rightarrow B_{i}$ is a weak equivalence in $\operatorname{sPSh}\left(\Gamma \times \Delta^{\times d}\right)_{\text {loc }}$ for every $i>0$.

Filtration: Step 1

Proposition

The map $B_{i-1} \rightarrow B_{i}$ is a weak equivalence in $\operatorname{sPSh}\left(\Gamma \times \Delta^{\times d}\right)_{\text {loc }}$ for every $i>0$.

Proof.

Filtration: Step 1

Proposition

The map $B_{i-1} \rightarrow B_{i}$ is a weak equivalence in $\operatorname{sPSh}\left(\Gamma \times \Delta^{\times d}\right)_{\text {loc }}$ for every $i>0$.

Proof.

- Evaluate $B_{i-1} \rightarrow B_{i}$ on an arbitrary object X of $\Gamma \times \Delta^{\times(d-1)}$, obtaining a map $B_{i-1}(X) \rightarrow B_{i}(X)$ in $\operatorname{sPSh}(\Delta)$;

Filtration: Step 1

Proof.

- Evaluate $B_{i-1} \rightarrow B_{i}$ on an arbitrary object X of $\Gamma \times \Delta^{\times(d-1)}$, obtaining a map $B_{i-1}(X) \rightarrow B_{i}(X)$ in $\operatorname{sPSh}(\Delta)$;
- Extract the k th simplicial degree (for some $k \geq 0$), obtaining a map in $\operatorname{PSh}(\Delta)=\mathrm{sSet}$;

Filtration: Step 1

Proof.

- Evaluate $B_{i-1} \rightarrow B_{i}$ on an arbitrary object X of $\Gamma \times \Delta^{\times(d-1)}$, obtaining a map $B_{i-1}(X) \rightarrow B_{i}(X)$ in $\operatorname{sPSh}(\Delta)$;
- Extract the k th simplicial degree (for some $k \geq 0$), obtaining a map in $\operatorname{PSh}(\Delta)=$ sSet;
- The resulting simplicial set has
- vertices: germs of cuts (embedded in W);

■ edges: bordisms between cuts (embedded in W);

- 2-simplices: composition of bordisms;
- everything is in smooth families indexed by Δ^{k};

■ bordisms must belong to B_{i-1} respectively B_{i}.
Want to show: $B_{i-1} \rightarrow B_{i}$ is a categorical weak equivalence in the Joyal model structure on simplicial sets.

Intermission: Necklace categories

Intermission: Necklace categories

■ $X \rightarrow Y$: a map of simplicial sets (not necessarily quasicategories).

Intermission: Necklace categories

■ $X \rightarrow Y$: a map of simplicial sets (not necessarily quasicategories).
■ $X_{0} \rightarrow Y_{0}$ an isomorphism of sets.

Intermission: Necklace categories

■ $X \rightarrow Y$: a map of simplicial sets (not necessarily quasicategories).
■ $X_{0} \rightarrow Y_{0}$ an isomorphism of sets.

- Want to know whether $X \rightarrow Y$ is a categorical weak equivalence.

Intermission: Necklace categories

■ $X \rightarrow Y$: a map of simplicial sets (not necessarily quasicategories).
■ $X_{0} \rightarrow Y_{0}$ an isomorphism of sets.
■ Want to know whether $X \rightarrow Y$ is a categorical weak equivalence.

- Fix vertices $x, y \in X_{0}$.

Intermission: Necklace categories

■ $X \rightarrow Y$: a map of simplicial sets (not necessarily quasicategories).
■ $X_{0} \rightarrow Y_{0}$ an isomorphism of sets.
■ Want to know whether $X \rightarrow Y$ is a categorical weak equivalence.

- Fix vertices $x, y \in X_{0}$.
- Want a model for the simplicial map
$\operatorname{Map}_{X}(x, y) \rightarrow \operatorname{Map}_{Y}(x, y)$.

Intermission: Necklace categories

■ $X \rightarrow Y$: a map of simplicial sets (not necessarily quasicategories).

- $X_{0} \rightarrow Y_{0}$ an isomorphism of sets.

■ Want to know whether $X \rightarrow Y$ is a categorical weak equivalence.

- Fix vertices $x, y \in X_{0}$.
- Want a model for the simplicial map
$\operatorname{Map}_{X}(x, y) \rightarrow \operatorname{Map}_{Y}(x, y)$.
■ Answer: Dugger-Spivak necklace categories.

Intermission: Necklace categories

Intermission: Necklace categories

- X : a simplicial set (not necessarily a quasicategory).

Intermission: Necklace categories

- X : a simplicial set (not necessarily a quasicategory).

■ Fix vertices $x, y \in X_{0}$.

Intermission: Necklace categories

■ X : a simplicial set (not necessarily a quasicategory).

- Fix vertices $x, y \in X_{0}$.
- The simplicial set $\operatorname{Map}_{X}(x, y)$ is the nerve of the necklace category $N_{x, y}$.

Intermission: Necklace categories

■ X : a simplicial set (not necessarily a quasicategory).
\square Fix vertices $x, y \in X_{0}$.

- The simplicial set $\operatorname{Map}_{X}(x, y)$ is the nerve of the necklace category $N_{x, y}$.
- Objects (necklaces from x to y): simplicial maps $\Delta^{n_{1}} \vee \cdots \vee \Delta^{n_{k}} \rightarrow X$, endpoints map to x and y.

Intermission: Necklace categories

■ X : a simplicial set (not necessarily a quasicategory).
■ Fix vertices $x, y \in X_{0}$.

- The simplicial set $\operatorname{Map}_{X}(x, y)$ is the nerve of the necklace category $N_{x, y}$.
■ Objects (necklaces from x to y): simplicial maps $\Delta^{n_{1}} \vee \cdots \vee \Delta^{n_{k}} \rightarrow X$, endpoints map to x and y.
■ Morphisms: commutative triangles.

Intermission: Necklace categories

■ X: a simplicial set (not necessarily a quasicategory).
\square Fix vertices $x, y \in X_{0}$.

- The simplicial set $\operatorname{Map}_{X}(x, y)$ is the nerve of the necklace category $N_{x, y}$.
■ Objects (necklaces from x to y): simplicial maps $\Delta^{n_{1}} \vee \cdots \vee \Delta^{n_{k}} \rightarrow X$, endpoints map to x and y.
■ Morphisms: commutative triangles.
- Morphism 1: $\Delta^{a} \vee \Delta^{b} \rightarrow \Delta^{a+b}$ (endpoint-preserving).

Intermission: Necklace categories

■ X : a simplicial set (not necessarily a quasicategory).
\square Fix vertices $x, y \in X_{0}$.

- The simplicial set $\operatorname{Map}_{X}(x, y)$ is the nerve of the necklace category $N_{x, y}$.
■ Objects (necklaces from x to y): simplicial maps $\Delta^{n_{1}} \vee \cdots \vee \Delta^{n_{k}} \rightarrow X$, endpoints map to x and y.
■ Morphisms: commutative triangles.
- Morphism 1: $\Delta^{a} \vee \Delta^{b} \rightarrow \Delta^{a+b}$ (endpoint-preserving).

■ Morphism 2: $\Delta^{a} \rightarrow \Delta^{b}$ (endpoint-preserving).

Intermission: Necklace categories of bordisms

Intermission: Necklace categories of bordisms

■ $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[/] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).

Intermission: Necklace categories of bordisms

■ $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[/] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).
■ Fix vertices $x, y \in X_{0}$, i.e., germs of cuts embedded into W.

Intermission: Necklace categories of bordisms

■ $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[/] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).
■ Fix vertices $x, y \in X_{0}$, i.e., germs of cuts embedded into W.

- Necklaces from x to y : composable chains of bordisms in B_{i-1} (or B_{i}) joined together by joint cuts.

Intermission: Necklace categories of bordisms

■ $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[/] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).
■ Fix vertices $x, y \in X_{0}$, i.e., germs of cuts embedded into W.

- Necklaces from x to y : composable chains of bordisms in B_{i-1} (or B_{i}) joined together by joint cuts.
■ Morphism 1: $\Delta^{a} \vee \Delta^{b} \rightarrow \Delta^{a+b}$: convert a joint cut to an ordinary cut (only if allowed by B_{i-1}).

Intermission: Necklace categories of bordisms

■ $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[/] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).
■ Fix vertices $x, y \in X_{0}$, i.e., germs of cuts embedded into W.

- Necklaces from x to y : composable chains of bordisms in B_{i-1} (or B_{i}) joined together by joint cuts.
■ Morphism 1: $\Delta^{a} \vee \Delta^{b} \rightarrow \Delta^{a+b}$: convert a joint cut to an ordinary cut (only if allowed by B_{i-1}).
- Morphism 2: $\Delta^{a} \rightarrow \Delta^{b}$: insert new compatible ordinary cuts.

Intermission: Necklace categories of bordisms

- $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[/] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).
■ Fix vertices $x, y \in X_{0}$, i.e., germs of cuts embedded into W.
- Necklaces from x to y : composable chains of bordisms in B_{i-1} (or B_{i}) joined together by joint cuts.
■ Morphism 1: $\Delta^{a} \vee \Delta^{b} \rightarrow \Delta^{a+b}$: convert a joint cut to an ordinary cut (only if allowed by B_{i-1}).
- Morphism 2: $\Delta^{a} \rightarrow \Delta^{b}$: insert new compatible ordinary cuts.

■ Observation: the ambient composed bordism never changes \Longrightarrow can fix it in advance.

Necklace categories of bordisms have contractible nerves: 1

Necklace categories of bordisms have contractible nerves: 1

■ $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[/] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).

Necklace categories of bordisms have contractible nerves: 1

■ $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).
■ Fix vertices $x, y \in X_{0}$ together with a bordism M from x to y (in B_{i}, not necessarily in B_{i-1}).

Necklace categories of bordisms have contractible nerves: 1

■ $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).
■ Fix vertices $x, y \in X_{0}$ together with a bordism M from x to y (in B_{i}, not necessarily in B_{i-1}).

- Claim: the category of necklaces from x to y that compose to M has a contractible nerve.

Necklace categories of bordisms have contractible nerves: 1

■ $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).

- Fix vertices $x, y \in X_{0}$ together with a bordism M from x to y (in B_{i}, not necessarily in B_{i-1}).
- Claim: the category of necklaces from x to y that compose to M has a contractible nerve.
- Proof: Morse theory on M.

Necklace categories of bordisms have contractible nerves: 1

■ $X=B_{i-1}$ or B_{i}, evaluated at $X \in \Gamma \times \Delta^{\times(d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^{\prime}).

- Fix vertices $x, y \in X_{0}$ together with a bordism M from x to y (in B_{i}, not necessarily in B_{i-1}).
- Claim: the category of necklaces from x to y that compose to M has a contractible nerve.
- Proof: Morse theory on M.

■ This implies $B_{i-1} \rightarrow B_{i}$ is a weak equivalence.

The big picture

Necklace categories of bordisms have contractible nerves: 2

Necklace categories of bordisms have contractible nerves: 2

■ Proof: Morse theory on M.

Necklace categories of bordisms have contractible nerves: 2

■ Proof: Morse theory on M.

- Pick a Morse function on M with distinct critical values.

Necklace categories of bordisms have contractible nerves: 2

■ Proof: Morse theory on M.

- Pick a Morse function on M with distinct critical values.

■ Cut out a small neighborhood of each critical point.

Necklace categories of bordisms have contractible nerves: 2

■ Proof: Morse theory on M.

- Pick a Morse function on M with distinct critical values.

■ Cut out a small neighborhood of each critical point.

- Chop up the remaining cylinders into small bumps.

Necklace categories of bordisms have contractible nerves: 2

■ Proof: Morse theory on M.

- Pick a Morse function on M with distinct critical values.
- Cut out a small neighborhood of each critical point.
- Chop up the remaining cylinders into small bumps.
- All neighborhoods can be chosen to be subordinate to the open cover of W.

Necklace categories of bordisms have contractible nerves: 2

- Proof: Morse theory on M.
- Pick a Morse function on M with distinct critical values.
- Cut out a small neighborhood of each critical point.
- Chop up the remaining cylinders into small bumps.

■ All neighborhoods can be chosen to be subordinate to the open cover of W.

- How does this help us to show contractibility of necklace categories?

Necklace categories of bordisms have contractible nerves: 3

Necklace categories of bordisms have contractible nerves: 3

> Theorem (Simplicial Whitehead theorem)
> A Kan complex X is contractible if and only if any map $\partial \Delta^{n} \rightarrow X$ can be simplicially homotoped to a map that extends along $\partial \Delta^{n} \rightarrow \Delta^{n}$.

Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map $\partial \Delta^{n} \rightarrow X$ can be simplicially homotoped to a map that extends along $\partial \Delta^{n} \rightarrow \Delta^{n}$.

- Apply this theorem to the fibrant replacement X of the nerve of the necklace category of B_{i-1} (or B_{i}) from x to y.

Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map $\partial \Delta^{n} \rightarrow X$ can be simplicially homotoped to a map that extends along $\partial \Delta^{n} \rightarrow \Delta^{n}$.

- Apply this theorem to the fibrant replacement X of the nerve of the necklace category of B_{i-1} (or B_{i}) from x to y.
■ Pick some map $\partial \Delta^{n} \rightarrow X$; its data is given by a collection of cut tuples in the bordism M.

Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map $\partial \Delta^{n} \rightarrow X$ can be simplicially homotoped to a map that extends along $\partial \Delta^{n} \rightarrow \Delta^{n}$.

- Apply this theorem to the fibrant replacement X of the nerve of the necklace category of B_{i-1} (or B_{i}) from x to y.
- Pick some map $\partial \Delta^{n} \rightarrow X$; its data is given by a collection of cut tuples in the bordism M.
- Chop up M as explained on the previous slide.

Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map $\partial \Delta^{n} \rightarrow X$ can be simplicially homotoped to a map that extends along $\partial \Delta^{n} \rightarrow \Delta^{n}$.

- Apply this theorem to the fibrant replacement X of the nerve of the necklace category of B_{i-1} (or B_{i}) from x to y.
■ Pick some map $\partial \Delta^{n} \rightarrow X$; its data is given by a collection of cut tuples in the bordism M.
- Chop up M as explained on the previous slide.
- By induction on the Morse decomposition, push the cuts past each small region in the Morse decomposition, with some cutting and gluing of cuts.

Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map $\partial \Delta^{n} \rightarrow X$ can be simplicially homotoped to a map that extends along $\partial \Delta^{n} \rightarrow \Delta^{n}$.

- Apply this theorem to the fibrant replacement X of the nerve of the necklace category of B_{i-1} (or B_{i}) from x to y.
■ Pick some map $\partial \Delta^{n} \rightarrow X$; its data is given by a collection of cut tuples in the bordism M.
- Chop up M as explained on the previous slide.
- By induction on the Morse decomposition, push the cuts past each small region in the Morse decomposition, with some cutting and gluing of cuts.
- At the final step, all cuts have been collapsed to the source cut of M.

