The geometric cobordism hypothesis

Lecture 3: Locality

Daniel Grady, Dmitri Pavlov (Texas Tech University, Lubbock, TX)

These slides: https://dmitripavlov.org/lecture-3.pdf
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Overview

m Yesterday: definitions
m Today: locality and how to use it to prove one half of the GCH
m Tomorrow: the framed GCH (the other half)
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Review of smooth symmetric monoidal (oo, d)-categories

m Cart is the site of cartesian spaces and smooth maps (controls
smoothness);

m [ is the opposite category of pointed finite sets (controls
monoidal products);

m A% is the d-fold product of categories of nonempty ordered
finite sets (controls compositions in d directions);
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Review of smooth symmetric monoidal (oo, d)-categories

m Cart is the site of cartesian spaces and smooth maps (controls
smoothness);

m [ is the opposite category of pointed finite sets (controls
monoidal products);

m A% is the d-fold product of categories of nonempty ordered
finite sets (controls compositions in d directions);

A smooth symmetric monoidal (oo, d)-category is a functor
V:(Cart x T x AX9)°P — sSet.

m The injective fibrancy condition;

m The sheaf condition for Cart (ensures gluing of smooth
families of objects and morphisms);

m The Segal condition for I' (ensures multiplication of objects
can be performed in a unique way);
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Review of smooth symmetric monoidal (oo, d)-categories

m Cart is the site of cartesian spaces and smooth maps;
m [ is the opposite category of pointed finite sets;
m A*9: A is the category of nonempty ordered finite sets;
A smooth symmetric monoidal (oo, d)-category is a functor
V:(Cart x T x AX9)°P 5 sSet,
The injective fibrancy condition;
The sheaf condition for Cart (ensures gluing);
The Segal condition for I' (ensures multiplication);
A Segal condition for every factor of A (ensures composition);
A completeness condition for every factor of A (eliminates a
redundancy in the encoding of invertible morphisms);
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Review of smooth symmetric monoidal (oo, d)-categories

m Cart is the site of cartesian spaces and smooth maps;

m [ is the opposite category of pointed finite sets;

m A9 A s the category of nonempty ordered finite sets;
A smooth symmetric monoidal (oo, d)-category is a functor

V:(Cart x T x AX9)°P — sSet.

The injective fibrancy condition;
The sheaf condition for Cart (ensures gluing);
The Segal condition for I' (ensures multiplication);
A Segal condition for every factor of A (ensures composition);
A completeness condition for A (invertible morphisms);
A globularity condition for every factor of A with its
subsequent factors (eliminates a redundancy in the encoding
of noninvertible morphisms);
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Review of smooth symmetric monoidal (oo, d)-categories

m Cart is the site of cartesian spaces and smooth maps;
m [ is the opposite category of pointed finite sets;
m AX9: A s the category of nonempty ordered finite sets;
A smooth symmetric monoidal (oo, d)-category is a functor
V:(Cart x T x A*9)°P 5 sSet,.
The injective fibrancy condition;
The sheaf condition for Cart (ensures gluing);
The Segal condition for I' (ensures multiplication);
A Segal condition for every factor of A (ensures composition);
A completeness condition for A (invertible morphisms);

A globularity condition for A (eliminates a redundancy in the
encoding of noninvertible morphisms);

A dualizability condition for I and every factor of A except
the last one (explained in Lecture 4).
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Review of geometric structures and bordism categories

m FEmb, is the site of smooth families of d-manifolds and
fiberwise open embeddings;

m Geometric structures S are simplicial presheaves on FEmby;

m Bord§ is the smooth symmetric monoidal (co, d)-category of
bordisms with geometric structure S;

Bordisms come in smooth families over Cart, can be pulled
back and glued;

Monoidal product: disjoint union of bordisms;
Composition: gluing of bordisms along germs;

Cuts can be moved using higher invertible morphisms;
Higher gauge transformations implemented using higher
invertible morphisms.

m V: smooth symmetric monoidal (oo, d)-category of values;
m FFT41(S) = RMap(Bord3, V).
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Review of statements

Theorem (G.—P.)
Given'V and d > 0, the functor FFT 4y

sPSh(FEmbq)y”, . — sSet, S+ FFTqy(S) = R Map(Bord3, V)

is an (0o, 1)-sheaf, i.e., preserves homotopy limits.

This follows from the following result.

Theorem (G.—P.)
Given d > 0, the functor

sPSh(FEmbg)e i — sPSh(Cart x T x A*¥)oe, S Bord]

is an (00, 1)-cosheaf, i.e., preserves homotopy colimits.
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The geometric cobordism hypothesis: Part |

Given d > 0, a geometric structure S, and a smooth symmetric
monoidal (oo, d)-category V, we have

Fun®(Bordj, V) ~ Map(S, Ra(V)),

Ry(WV) (W — U) = Fun®(Bord V7V V).

where
Ry:sPSh(Cart x I x A*?) — sPSh(FEmby)

is the right adjoint of Botdy:

Ri(V)(W — U) = Fun®(Bord 7Y, V) = FFT (W — U).

10/10  6/25



The geometric cobordism hypothesis: Part | and [l

Part Il of GCH (Lecture 4): Rg(V) = VV>*, write V| = Ryq(V).

Theorem (GCH, Part | and Il)

Given d > 0, a geometric structure S, and a smooth symmetric
monoidal (oo, d)-category V, we have (Part 1)

Fun®(‘30t05, V) = Map(87 V;)7

where (Part 1) V' is the smooth co-groupoid of fully dualizable
objects in V equipped with an action of the co-group O(d)
(implemented as a simplicial presheaf on FEmby ).
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Application: Classifying spaces of FFTs

Theorem (G.—P.)

Givend >0, V € C°°Cat® , and an oco-cosheaf
F:Man — sPSh(FEmb,) (examp/e F(M) = M x Riem), set

FFT4y.F: Man®® — sSet, M — FFET4v(F(M)),
(BsFFTa,y,r)(M) = hocolim FFTq,»(A" x M).
Then
(B/FFTa.v.£)(M) 5 RMap(M, (B;FF T4y £)(R?)).

FFTayv F[M] 2 [M, (B[FFT4y £)(R%)].
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Application: Classifying spaces of FFTs

Theorem (G.—P.)

Givend >0, V € C°°Cat® , and an oco-cosheaf
F:Man — sPSh(FEmb,) (examp/e F(M) = M x Riem), set

FFT4y.F: Man®® — sSet, M — FFET4v(F(M)),
(BsFFTa,y,r)(M) = hocolim FFTq,»(A" x M).
Then
(B/FFTa.v.£)(M) 5 RMap(M, (B;FF T4y £)(R?)).

FFTayv F[M] 2 [M, (B[FFT4y £)(R%)].

Proof: Combine Locality and the following result.
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Application: Classifying spaces of FFTs

Proof: Combine Locality and the following result.

Theorem (Berwick-Evans—Boavida de Brito—P.)

Given

F:Man®® — sSet,

set
(ByF)(M) = hocghmF( A" x M).

If F is an oo-sheaf, then so is B;F and
(B;F)(M) = RMap(M, (B;F)(RP)).

Can replace sSet by any algebraic (oo, 1)-category (e.g., connective
ring spectra, connective chain complexes, etc.).
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The structure of the proof

The left derived functor of a left Quillen functor preserves
homotopy colimits.

Theorem (G.—P.)
Given d > 0, the functor

sPSh(FEmbg)e ;i — sPSh(Cart x T x A*¥)oe, S — Bord]

is a left Quillen functor. In our case: preserves monomorphisms
and local weak equivalences.
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Review of reflective localizations

Input data:
P: a category of presheaves: P = Fun(C®P, Set);
C: Cech sieves of covering families
Output data and properties:
Ps: X € Pis C-local if Map(g, X) is an iso for all g € C;
S: f € P~ is C-local if Map(f, X) is an iso for all X € Pg;
m a: P — P[S7!] has a fully faithful right adjoint ¢;
m Py is the essential image of ¢;
m P[S7!]: same objects as P, more isomorphisms;
» Ladj(P[S7Y], Q) = {F € Ladj(P, Q) | F(C) C isos in Q};

m colimits (and limits) in P[S™!] computed objectwise.
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Review of left Bousfield localizations

Input data:
P: relative category of simplicial presheaves: P = Fun(C®P, sSet);
C: Cech nerves of covering families
Output data and properties:
Ps: X € Pis C-local if RMap(g, X) is a weak eq for all g € C;
S: f e P is C-local if RMap(f, X) is a weak eq for all X € Pg;
m a: P — LsP has a homotopically f-f right Quillen adjoint ¢;
m Px is the essential image of Re.
m LsP: same category as P, more weak equivalences.
= LQF(LsP, Q) = {F e LQF(P, Q) | LF(C) ¢ Wg}.

m homotopy colimits (and limits) in £sP computed objectwise.
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Specialization to Botoy

m P =sPSh(FEmbg)inj, LsP = sPSh(FEmbd)é_inj;

m C: Cech nerves of open covers in FEmby;

m Q =sPSh(Cart x I x AXY)oc;

= Bordg: sPSh(FEmbg)e i, — sPSh(Cart x ' x A
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Specialization to Botoy

m P =sPSh(FEmbg)inj, LsP = sPSh(FEmbd)(v:_inj;

m C: Cech nerves of open covers in FEmby;

m Q =sPSh(Cart x I x AXY)oc;

= Bordg: sPSh(FEmbg)e i, — sPSh(Cart x ' x A

Proposition (G.—P.)
Given d > 0, we have a left Quillen functor
sPSh(FEmby)inj — sPSh(Cart x I x A*?)o, S~ Bordy.

Theorem (G.—P.)

Given d > 0, the left derived functor of the left Quillen functor
sPSh(FEmby)inj — sPSh(Cart x I x A%9)o, S — Bord§
sends Cech nerves of open covers in FEmby to weak equivalences.
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The formal component

Proposition (G.—P.)

Given d > 0, we have a left Quillen functor

sPSh(FEmbg)inj — sPSh(Cart x I x A*®);oc, S+ Bords.
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The formal component

Proposition (G.—P.)

Given d > 0, we have a left Quillen functor

sPSh(FEmbg)inj — sPSh(Cart x I x A*®);oc, S+ Bords.

Proof: a formal observation on the construction of Botd3.
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The formal component

Proposition (G.—P.)

Given d > 0, we have a left Quillen functor

sPSh(FEmbg)inj — sPSh(Cart x I x A*®);oc, S+ Bords.

Proof: a formal observation on the construction of Botd3.

m Bot0y preserves small colimits, hence is a left adjoint;
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The formal component

Proposition (G.—P.)

Given d > 0, we have a left Quillen functor

sPSh(FEmbg)inj — sPSh(Cart x I x A*®);oc, S+ Bords.

Proof: a formal observation on the construction of Botd3.
m Bot0y preserves small colimits, hence is a left adjoint;

m Bordy preserves monomorphisms;
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The formal component

Proposition (G.—P.)

Given d > 0, we have a left Quillen functor

sPSh(FEmbg)inj — sPSh(Cart x I x A*®);oc, S+ Bords.

Proof: a formal observation on the construction of Botd3.
m Bot0y preserves small colimits, hence is a left adjoint;
m Bordy preserves monomorphisms;

m Bot0, preserves objectwise weak equivalences.
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The codescent property

Theorem (G.—P.)
Given d > 0, the left derived functor of the left Quillen functor

sPSh(FEmbg)inj — sPSh(Cart x I x A*)c, S+ Bord

sends the Cech nerve of an open cover {W, — U,}aen of
(W — U) € FEmby to a weak equivalence:

hocolim Bord Ve Vo =y BorpW -V
neA°P d el ’
a:[n]—A

where Wy, = Wy, N--- N W,,.
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The codescent property: main steps

hocglim H Bordle7 Ve =5 Bord )/ 7Y
neA°P
o:[n]—A
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The codescent property: main steps

hocglim H Bordle7 Ve =5 Bord )/ 7Y
neA°P
o:[n]—A

Step 1 Replace hocolim by colim
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The codescent property: main steps

hocolim H Bord ala =, Borplf 2V
neA°pr
a:[n]—A

Step 1 Replace hocolim by colim (use Reedy cofibrancy of the

diagram):
hocolim SBotDZV“*Ua%colim H %Otbg‘/“_}u“
neA°P neA°p
a:[n]—A a:[n]—A
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The codescent property: main steps

hocglim H Bordle7 Ve =5 Bord )/ 7Y
neA°P
o:[n]—A

Step 1 Replace hocolim by colim

Step 2 Pass to n-dimensional stalks on Cart for all n > 0.
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The codescent property: main steps

h : a—Us _~ W—uU

SECRLIJH H Bord, — Bord,
o:[n]—A

Step 1 Replace hocolim by colim

Step 2 Pass to n-dimensional stalks on Cart for all n > 0.

Step 3 Introduce a filtration (on n-dimensional stalks)

colim Bord)* 7V — By — -+ — By — Bord) V.
neA°p
a:[n]—A
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The codescent property: main steps

hocolim a>la _= Ainad
ocolir H Bord, — Bord,
o:[n]—A
Step 1 Replace hocolim by colim
Step 2 Pass to n-dimensional stalks on Cart for all n > 0.
Step 3 Introduce a filtration (on n-dimensional stalks)
colim H Bord)/e Ve - By — -+ = By — Bord)/ 7Y,

neAc°pr
a:[n]—A

Step 4 Prove all maps in the filtration are weak equivalences.
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The codescent property: filtration

colim Bord* Ve — By — - — By — Bord) Y.
neA°p
a:[n]—A

Given d > 0 and (W = RY x U — U) € FEmbJ", the set
SBOtDEdXUHU( V, {¢), m), has elements:

®m a smooth manifold M;

m a V-family of embeddings M — RY;

m a V x A"-family of cut tuples with m; x --- x my cells;
m P:M — (0);

m smooth map V — U,
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The codescent property: filtration

We define B;((¢),m) C Bord} 7Y ((£), m) as follows.

m An n-simplex is in B; if for every t € A" the corresponding
bordism over t satisfies the conditions given below.

m x € By(m, (¢)) is given by a germ f: M = W around
core[0, m] that maps every connected component of the germ
into some W, C W.

m i >0: x € Bi(m, (¢)) if it admits a cut tuple C that contains
the cut tuple of x (in the ith direction) such that for each
0 < j < mj, the bordism with the same data as x, but with
cut tuple in the ith direction given by two successive cuts (_~'J

and Cjy1, belongs to B;_;.
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Filtration: Step 0

34/41  17/25



Filtration: Step 0

colim Bord 7Y — By — -+ — By — Bordy Y.
op
ne a:[n]—A
m An n-simplex is in By(m, (£)) if it is given by a germ
f:M = W around core[0, m| that maps every connected
component of the germ into some W, C W.

m colim: Same, but f maps the entire core into some W, C W.
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Filtration: Step 0

colim Bord 7Y — By — -+ — By — Bordy Y.

op

ne a:[n]—A

m By: every connected component of the bordism factors
through some W, C W.

m colim: the entire bordism factors through some W, C W.
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Filtration: Step 0

colim Bord 7Y — By — -+ — By — Bordy Y.

op

ne a:[n]—A

m By: every connected component of the bordism factors
through some W, C W.

m colim: the entire bordism factors through some W, C W.

The map colim — By is a weak equivalence in sPSh(I" x AX%)..
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Filtration: Step 0

The map colim — By is a weak equivalence in sPSh(I" x AXd)bc.
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Filtration: Step 0

The map colim — By is a weak equivalence in sPSh(I" x AXd)bc.

m Evaluate on an arbitrary object of AX9, obtaining a map in
sPSh(l);
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Filtration: Step 0

The map colim — By is a weak equivalence in sPSh(I" x AXd)bc.

m Evaluate on an arbitrary object of AX9, obtaining a map in
sPSh(l);

m Introduce a filtration on By: Bé‘ is the union of Bé‘_l and the
part of By whose bordisms have at most k connected
components;
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Filtration: Step 0

The map colim — By is a weak equivalence in sPSh(I" x AXd)bc.

m Evaluate on an arbitrary object of AX9, obtaining a map in
sPSh(l);

m Introduce a filtration on By: Bé‘ is the union of Bé‘_l and the
part of By whose bordisms have at most k connected
components;

m Present every map Bé‘*l — B(’)‘ as a transfinite composition of
cobase changes of generating acyclic cofibrations of [-objects
in simplicial sets.

Ol
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Filtration: Step 1

42/48  18/25



Filtration: Step 1

m By: every connected component of the bordism factors

through some W, C W.
m B;: bordisms that can be chopped in the ith direction so that

every piece belongs to B;_j.
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Filtration: Step 1

m By: every connected component of the bordism factors
through some W, C W.

m B;: bordisms that can be chopped in the ith direction so that
every piece belongs to B;_j.

The map B;_1 — B; is a weak equivalence in sPSh(I" x A*9)oc
for every i > Q.
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Filtration: Step 1

The map Bi_1 — B is a weak equivalence in sPSh(I" x AXd)bc
for every i > 0.
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Filtration: Step 1

The map Bi_1 — B is a weak equivalence in sPSh(I" x AXd)bc
for every i > 0.

m Evaluate B;_1 — B; on an arbitrary object X of I' x Ax(d=1)
obtaining a map B;_1(X) — B;j(X) in sPSh(A);
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Filtration: Step 1

m Evaluate B;_; — B; on an arbitrary object X of [' x Ax(d=1)
obtaining a map B;_1(X) — B;j(X) in sPSh(A);

m Extract the kth simplicial degree (for some k > 0), obtaining
a map in PSh(A) = sSet;
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Filtration: Step 1

m Evaluate B;_1 — B; on an arbitrary object X of I' x Ax(d=1)
obtaining a map B;_1(X) — B;j(X) in sPSh(A);

m Extract the kth simplicial degree (for some k > 0), obtaining
a map in PSh(A) = sSet;

m The resulting simplicial set has

m vertices: germs of cuts (embedded in W);

m edges: bordisms between cuts (embedded in W);
m 2-simplices: composition of bordisms;
"
|

everything is in smooth families indexed by A¥;
bordisms must belong to B;_; respectively B;.

Want to show: B;j_1 — B; is a categorical weak equivalence in the
Joyal model structure on simplicial sets. O
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Intermission: Necklace categories
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Intermission: Necklace categories

m X — Y: a map of simplicial sets (not necessarily
quasicategories).
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Intermission: Necklace categories

m X — Y: a map of simplicial sets (not necessarily
quasicategories).

m Xp — Yp an isomorphism of sets.
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Intermission: Necklace categories

m X — Y: a map of simplicial sets (not necessarily
quasicategories).

m Xp — Yp an isomorphism of sets.

m Want to know whether X — Y is a categorical weak
equivalence.
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Intermission: Necklace categories

m X — Y: a map of simplicial sets (not necessarily
quasicategories).

m Xp — Yp an isomorphism of sets.

m Want to know whether X — Y is a categorical weak
equivalence.

m Fix vertices x,y € Xp.
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Intermission: Necklace categories

m X — Y: a map of simplicial sets (not necessarily
quasicategories).

Xo — Yp an isomorphism of sets.

Want to know whether X — Y is a categorical weak
equivalence.

Fix vertices x,y € Xp.

Want a model for the simplicial map
Mapx (x, y) = Mapy (x, y).
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Intermission: Necklace categories

m X — Y: a map of simplicial sets (not necessarily
quasicategories).

Xo — Yp an isomorphism of sets.

Want to know whether X — Y is a categorical weak
equivalence.

Fix vertices x,y € Xp.

Want a model for the simplicial map
Mapx (x,y) = Mapy(x, y).
m Answer: Dugger-Spivak necklace categories.

55/55  19/25



Intermission: Necklace categories
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Intermission: Necklace categories

m X: a simplicial set (not necessarily a quasicategory).
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Intermission: Necklace categories

m X: a simplicial set (not necessarily a quasicategory).

m Fix vertices x,y € Xp.
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Intermission: Necklace categories

m X: a simplicial set (not necessarily a quasicategory).
m Fix vertices x,y € Xp.

m The simplicial set Mapy(x, y) is the nerve of the necklace
category N ,.
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Intermission: Necklace categories

X: a simplicial set (not necessarily a quasicategory).

Fix vertices x, y € Xp.

The simplicial set Mapy(x, y) is the nerve of the necklace
category N ,.

Objects (necklaces from x to y): simplicial maps

AM YV ...V A" — X, endpoints map to x and y.
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Intermission: Necklace categories

X: a simplicial set (not necessarily a quasicategory).

Fix vertices x, y € Xp.

The simplicial set Mapy(x, y) is the nerve of the necklace
category N ,.

Objects (necklaces from x to y): simplicial maps

AM YV ...V A" — X, endpoints map to x and y.

m Morphisms: commutative triangles.
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Intermission: Necklace categories

m X: a simplicial set (not necessarily a quasicategory).

m Fix vertices x,y € Xp.

m The simplicial set Mapy(x, y) is the nerve of the necklace
category N ,.

m Objects (necklaces from x to y): simplicial maps
AM YV ...V A" — X, endpoints map to x and y.

m Morphisms: commutative triangles.
m Morphism 1: A? v AP — A?%b (endpoint-preserving).
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Intermission: Necklace categories

m X: a simplicial set (not necessarily a quasicategory).
m Fix vertices x,y € Xp.

m The simplicial set Mapy(x, y) is the nerve of the necklace
category N ,.

m Objects (necklaces from x to y): simplicial maps
AM YV ...V A" — X, endpoints map to x and y.

m Morphisms: commutative triangles.
m Morphism 1: A? v AP — A?%b (endpoint-preserving).
m Morphism 2: A? — AP (endpoint-preserving).
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Intermission: Necklace categories of bordisms
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Intermission: Necklace categories of bordisms

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').
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Intermission: Necklace categories of bordisms

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').

m Fix vertices x,y € Xp, i.e., germs of cuts embedded into W.
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Intermission: Necklace categories of bordisms

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').

m Fix vertices x,y € Xp, i.e., germs of cuts embedded into W.

m Necklaces from x to y: composable chains of bordisms in
Bi_1 (or B;) joined together by joint cuts.
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Intermission: Necklace categories of bordisms

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').

m Fix vertices x,y € Xp, i.e., germs of cuts embedded into W.

m Necklaces from x to y: composable chains of bordisms in
Bi_1 (or B;) joined together by joint cuts.

m Morphism 1: A? Vv AP — A+P: convert a joint cut to an
ordinary cut (only if allowed by B;_1).
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Intermission: Necklace categories of bordisms

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').

m Fix vertices x,y € Xp, i.e., germs of cuts embedded into W.

m Necklaces from x to y: composable chains of bordisms in
Bi_1 (or B;) joined together by joint cuts.

m Morphism 1: A? Vv AP — A+P: convert a joint cut to an
ordinary cut (only if allowed by B;_1).

m Morphism 2: A? — Ab: insert new compatible ordinary cuts.
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Intermission: Necklace categories of bordisms

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').

Fix vertices x,y € Xy, i.e., germs of cuts embedded into W.

Necklaces from x to y: composable chains of bordisms in
Bi_1 (or B;) joined together by joint cuts.

Morphism 1: A? v AP — A+P: convert a joint cut to an
ordinary cut (only if allowed by B;_1).

Morphism 2: A? — Ab: insert new compatible ordinary cuts.

Observation: the ambient composed bordism never changes
= can fix it in advance.
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Necklace categories of bordisms have contractible nerves: 1
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Necklace categories of bordisms have contractible nerves: 1

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').
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Necklace categories of bordisms have contractible nerves: 1

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').

m Fix vertices x,y € Xp together with a bordism M from x to y
(in B;, not necessarily in B;_1).
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Necklace categories of bordisms have contractible nerves:

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').

m Fix vertices x,y € Xp together with a bordism M from x to y
(in B;, not necessarily in B;_1).

m Claim: the category of necklaces from x to y that compose
to M has a contractible nerve.
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Necklace categories of bordisms have contractible nerves:

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').

m Fix vertices x,y € Xp together with a bordism M from x to y
(in B;, not necessarily in B;_1).

m Claim: the category of necklaces from x to y that compose
to M has a contractible nerve.

m Proof: Morse theory on M.
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Necklace categories of bordisms have contractible nerves: 1

m X = Bj_; or B;, evaluated at X € T x A*(4=1) and some
[/] € A (smooth families of bordisms indexed by A').

m Fix vertices x,y € Xp together with a bordism M from x to y
(in B;, not necessarily in B;_1).

m Claim: the category of necklaces from x to y that compose
to M has a contractible nerve.

m Proof: Morse theory on M.
m This implies B;_1 — B; is a weak equivalence.
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The big picture
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Necklace categories of bordisms have contractible nerves: 2
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Necklace categories of bordisms have contractible nerves: 2

m Proof: Morse theory on M.
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Necklace categories of bordisms have contractible nerves: 2

m Proof: Morse theory on M.
m Pick a Morse function on M with distinct critical values.
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Necklace categories of bordisms have contractible nerves:

m Proof: Morse theory on M.
m Pick a Morse function on M with distinct critical values.

m Cut out a small neighborhood of each critical point.
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Necklace categories of bordisms have contractible nerves: 2

Proof: Morse theory on M.
Pick a Morse function on M with distinct critical values.
Cut out a small neighborhood of each critical point.

Chop up the remaining cylinders into small bumps.
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Necklace categories of bordisms have contractible nerves: 2

Proof: Morse theory on M.
Pick a Morse function on M with distinct critical values.

|

|

m Cut out a small neighborhood of each critical point.
m Chop up the remaining cylinders into small bumps.
|

All neighborhoods can be chosen to be subordinate to the
open cover of W.
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Necklace categories of bordisms have contractible nerves: 2

Proof: Morse theory on M.
Pick a Morse function on M with distinct critical values.

|

|

m Cut out a small neighborhood of each critical point.
m Chop up the remaining cylinders into small bumps.
|

All neighborhoods can be chosen to be subordinate to the
open cover of W.

How does this help us to show contractibility of necklace
categories?
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Necklace categories of bordisms have contractible nerves: 3
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Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map 0A"™ — X
can be simplicially homotoped to a map that extends along
OA" — A",
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Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map 0A"™ — X
can be simplicially homotoped to a map that extends along
OA" — A",

m Apply this theorem to the fibrant replacement X of the nerve
of the necklace category of B;_; (or B;) from x to y.
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Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map 0A"™ — X
can be simplicially homotoped to a map that extends along
OA" — A",
m Apply this theorem to the fibrant replacement X of the nerve
of the necklace category of B;_; (or B;) from x to y.
m Pick some map 0A" — X; its data is given by a collection of
cut tuples in the bordism M.
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Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map 0A"™ — X
can be simplicially homotoped to a map that extends along
OA" — A",
m Apply this theorem to the fibrant replacement X of the nerve
of the necklace category of B;_; (or B;) from x to y.
m Pick some map 0A" — X; its data is given by a collection of
cut tuples in the bordism M.
m Chop up M as explained on the previous slide.
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Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map 0A"™ — X
can be simplicially homotoped to a map that extends along
OA" — A",
m Apply this theorem to the fibrant replacement X of the nerve
of the necklace category of B;_; (or B;) from x to y.
m Pick some map 0A" — X; its data is given by a collection of
cut tuples in the bordism M.
m Chop up M as explained on the previous slide.
m By induction on the Morse decomposition, push the cuts past
each small region in the Morse decomposition, with some
cutting and gluing of cuts.
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Necklace categories of bordisms have contractible nerves: 3

Theorem (Simplicial Whitehead theorem)

A Kan complex X is contractible if and only if any map 0A"™ — X
can be simplicially homotoped to a map that extends along
OA" — A",

m Apply this theorem to the fibrant replacement X of the nerve
of the necklace category of B;_; (or B;) from x to y.

m Pick some map 0A" — X; its data is given by a collection of
cut tuples in the bordism M.

m Chop up M as explained on the previous slide.

m By induction on the Morse decomposition, push the cuts past
each small region in the Morse decomposition, with some
cutting and gluing of cuts.

m At the final step, all cuts have been collapsed to the source
cut of M.
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