The geometric cobordism hypothesis Lecture 3: Locality

Daniel Grady, Dmitri Pavlov (Texas Tech University, Lubbock, TX)

These slides: https://dmitripavlov.org/lecture-3.pdf

- Yesterday: definitions
- Today: locality and how to use it to prove one half of the GCH
- Tomorrow: the framed GCH (the other half)

- Cart is the site of cartesian spaces and smooth maps (controls smoothness);
- Γ is the opposite category of pointed finite sets (controls monoidal products);
- Δ^{×d} is the *d*-fold product of categories of nonempty ordered finite sets (controls compositions in *d* directions);

- Cart is the site of cartesian spaces and smooth maps (controls smoothness);
- Γ is the opposite category of pointed finite sets (controls monoidal products);
- Δ^{×d} is the *d*-fold product of categories of nonempty ordered finite sets (controls compositions in *d* directions);
- A smooth symmetric monoidal (∞, d) -category is a functor

 $\mathcal{V}: (\mathsf{Cart} \times \Gamma \times \Delta^{\times d})^{\mathrm{op}} \to \mathrm{sSet}.$

- The injective fibrancy condition;
- The sheaf condition for Cart (ensures gluing of smooth families of objects and morphisms);
- The Segal condition for Γ (ensures multiplication of objects can be performed in a unique way);

- Cart is the site of cartesian spaces and smooth maps;
- **Γ** is the opposite category of pointed finite sets;
- $\Delta^{\times d}$: Δ is the category of nonempty ordered finite sets;
- A smooth symmetric monoidal (∞, d) -category is a functor

 $\mathcal{V}: (\mathsf{Cart} \times \Gamma \times \Delta^{\times d})^{\mathrm{op}} \to \mathrm{sSet}.$

- The injective fibrancy condition;
- The sheaf condition for Cart (ensures gluing);
- The Segal condition for Γ (ensures multiplication);
- A Segal condition for every factor of Δ (ensures composition);
- A completeness condition for every factor of Δ (eliminates a redundancy in the encoding of invertible morphisms);

- Cart is the site of cartesian spaces and smooth maps;
- Γ is the opposite category of pointed finite sets;
- $\Delta^{\times d}$: Δ is the category of nonempty ordered finite sets;
- A smooth symmetric monoidal (∞, d) -category is a functor

 \mathcal{V} : $(\mathsf{Cart} \times \Gamma \times \Delta^{\times d})^{\mathrm{op}} \to \mathrm{sSet}.$

- The injective fibrancy condition;
- The sheaf condition for Cart (ensures gluing);
- The Segal condition for Γ (ensures multiplication);
- A Segal condition for every factor of Δ (ensures composition);
- A completeness condition for Δ (invertible morphisms);
- A globularity condition for every factor of Δ with its subsequent factors (eliminates a redundancy in the encoding of noninvertible morphisms);

- Cart is the site of cartesian spaces and smooth maps;
- Γ is the opposite category of pointed finite sets;
- $\Delta^{\times d}$: Δ is the category of nonempty ordered finite sets;
- A smooth symmetric monoidal (∞, d) -category is a functor

 \mathcal{V} : (Cart $\times \Gamma \times \Delta^{\times d}$)^{op} \to sSet.

- The injective fibrancy condition;
- The sheaf condition for Cart (ensures gluing);
- The Segal condition for Γ (ensures multiplication);
- A Segal condition for every factor of Δ (ensures composition);
- A completeness condition for Δ (invertible morphisms);
- A globularity condition for Δ (eliminates a redundancy in the encoding of noninvertible morphisms);
- A dualizability condition for Γ and every factor of Δ except the last one (explained in Lecture 4).

Review of geometric structures and bordism categories

- FEmb_d is the site of smooth families of *d*-manifolds and fiberwise open embeddings;
- Geometric structures *S* are simplicial presheaves on FEmb_d;
- Bord^S_d is the smooth symmetric monoidal (∞, d)-category of bordisms with geometric structure S;
 - Bordisms come in smooth families over Cart, can be pulled back and glued;
 - Monoidal product: disjoint union of bordisms;
 - Composition: gluing of bordisms along germs;
 - Cuts can be moved using higher invertible morphisms;
 - Higher gauge transformations implemented using higher invertible morphisms.
- \mathcal{V} : smooth symmetric monoidal (∞ , d)-category of values;
- $\mathsf{FFT}_{d,\mathcal{V}}(\mathcal{S}) = \mathsf{R}\operatorname{Map}(\mathfrak{Bord}_d^{\mathcal{S}},\mathcal{V}).$

Review of statements

Theorem (G.–P.)

Given \mathcal{V} and $d \geq 0$, the functor $\mathsf{FFT}_{d,\mathcal{V}}$

 $\mathrm{sPSh}(\mathsf{FEmb}_d)^{\mathrm{op}}_{\check{\mathsf{C}}\text{-}\mathsf{inj}} \to \mathrm{sSet}, \quad \mathcal{S} \mapsto \mathsf{FFT}_{d,\mathcal{V}}(\mathcal{S}) = \mathbf{R} \operatorname{Map}(\mathfrak{Bord}^{\mathcal{S}}_d, \mathcal{V})$

is an $(\infty, 1)$ -sheaf, i.e., preserves homotopy limits.

This follows from the following result.

Theorem (G.–P.)

Given $d \ge 0$, the functor

$$\mathrm{sPSh}(\mathsf{FEmb}_d)_{\check{\mathsf{C}}\operatorname{-inj}} \to \mathrm{sPSh}(\mathsf{Cart} \times \mathsf{\Gamma} \times \Delta^{\times d})_{\mathsf{loc}}, \qquad \mathcal{S} \mapsto \mathfrak{Bord}_d^{\mathcal{S}}$$

is an $(\infty, 1)$ -cosheaf, i.e., preserves homotopy colimits.

Theorem

Given $d \ge 0$, a geometric structure S, and a smooth symmetric monoidal (∞, d) -category V, we have

 $\operatorname{Fun}^{\otimes}(\mathfrak{Bord}_d^{\mathcal{S}},\mathcal{V})\simeq\operatorname{Map}(\mathcal{S},R_d(\mathcal{V})),$

$$R_d(\mathcal{V})(W
ightarrow U) = \operatorname{Fun}^{\otimes}(\mathfrak{Bord}_d^{W
ightarrow U}, \mathcal{V}).$$

where

$$R_d: \operatorname{sPSh}(\operatorname{Cart} \times \Gamma \times \Delta^{\times d}) \to \operatorname{sPSh}(\operatorname{\mathsf{FEmb}}_d)$$

is the right adjoint of \mathfrak{Bord}_d :

$${\sf R}_d(\mathcal{V})(W
ightarrow U)={
m Fun}^\otimes(\mathfrak{Botd}_d^{W
ightarrow U},\mathcal{V})={\sf FFT}_{d,\mathcal{V}}(W
ightarrow U).$$

Part II of GCH (Lecture 4): $R_d(\mathcal{V}) \xrightarrow{\sim} \mathcal{V}^{\vee,\times}$, write $\mathcal{V}_d^{\times} = R_d(\mathcal{V})$.

Theorem (GCH, Part I and II)

Given $d \ge 0$, a geometric structure S, and a smooth symmetric monoidal (∞, d) -category V, we have (Part I)

$$\operatorname{Fun}^{\otimes}(\mathfrak{Bord}_d^{\mathcal{S}},\mathcal{V})\simeq\operatorname{Map}(\mathcal{S},\mathcal{V}_d^{\times}),$$

where (Part II) \mathcal{V}_d^{\times} is the smooth ∞ -groupoid of fully dualizable objects in \mathcal{V} equipped with an action of the ∞ -group O(d) (implemented as a simplicial presheaf on FEmb_d).

Application: Classifying spaces of FFTs

Theorem (G.–P.)

Given $d \ge 0$, $\mathcal{V} \in C^{\infty}Cat_{\infty,d}^{\otimes}$, and an ∞ -cosheaf $F: Man \to sPSh(FEmb_d)$ (example: $F(M) = M \times Riem$), set

 $\mathsf{FFT}_{d,\mathcal{V},\mathcal{F}}:\mathsf{Man}^{\mathrm{op}}\to\mathrm{sSet},\qquad M\mapsto\mathsf{FFT}_{d,\mathcal{V}}(\mathcal{F}(M)),$

$$(\mathrm{B}_{f}\mathsf{FFT}_{d,\mathcal{V},F})(M) = \operatornamewithlimits{hocolim}_{n\in\Delta^{\mathrm{op}}}\mathsf{FFT}_{d,\mathcal{V}}(\mathbf{\Delta}^{n}\times M).$$

Then

 $(B_{f}\mathsf{FFT}_{d,\mathcal{V},F})(M) \xrightarrow{\sim} \mathbf{R} \operatorname{Map}(M, (B_{f}\mathsf{FFT}_{d,\mathcal{V},F})(\mathbf{R}^{0})).$ $\mathsf{FFT}_{d,\mathcal{V},F}[M] \cong [M, (B_{f}\mathsf{FFT}_{d,\mathcal{V},F})(\mathbf{R}^{0})].$

Application: Classifying spaces of FFTs

Theorem (G.–P.)

Given $d \ge 0$, $\mathcal{V} \in C^{\infty}Cat_{\infty,d}^{\otimes}$, and an ∞ -cosheaf $F: Man \to sPSh(FEmb_d)$ (example: $F(M) = M \times Riem$), set

 $\mathsf{FFT}_{d,\mathcal{V},\mathcal{F}}:\mathsf{Man}^{\mathrm{op}}\to\mathrm{sSet},\qquad M\mapsto\mathsf{FFT}_{d,\mathcal{V}}(\mathcal{F}(M)),$

$$(\mathrm{B}_{f}\mathsf{FFT}_{d,\mathcal{V},F})(M) = \operatornamewithlimits{hocolim}_{n\in\Delta^{\mathrm{op}}}\mathsf{FFT}_{d,\mathcal{V}}(\mathbf{\Delta}^{n}\times M).$$

Then

 $(B_{f}\mathsf{FFT}_{d,\mathcal{V},F})(M) \xrightarrow{\sim} \mathbf{R} \operatorname{Map}(M, (B_{f}\mathsf{FFT}_{d,\mathcal{V},F})(\mathbf{R}^{0})).$ $\mathsf{FFT}_{d,\mathcal{V},F}[M] \cong [M, (B_{f}\mathsf{FFT}_{d,\mathcal{V},F})(\mathbf{R}^{0})].$

Proof: Combine Locality and the following result.

Proof: Combine Locality and the following result.

Theorem (Berwick-Evans-Boavida de Brito-P.)

Given

$$F: \mathsf{Man}^{\mathrm{op}} \to \mathrm{sSet},$$

set

$$(\mathbf{B}_{\mathbf{f}}F)(M) = \operatorname*{hocolim}_{n \in \Delta^{\mathrm{op}}} F(\mathbf{\Delta}^n \times M).$$

If F is an ∞ -sheaf, then so is $\mathrm{B}_{\int}F$ and

 $(\mathcal{B}_{f}F)(M) \xrightarrow{\sim} \mathbf{R} \operatorname{Map}(M, (\mathcal{B}_{f}F)(\mathbf{R}^{0})).$

Can replace sSet by any algebraic $(\infty, 1)$ -category (e.g., connective ring spectra, connective chain complexes, etc.).

Theorem

The left derived functor of a left Quillen functor preserves homotopy colimits.

Theorem (G.–P.)

Given $d \ge 0$, the functor

 $\mathrm{sPSh}(\mathsf{FEmb}_d)_{\check{\mathsf{C}}\operatorname{-inj}} \to \mathrm{sPSh}(\mathsf{Cart} \times \Gamma \times \Delta^{\times d})_{\mathsf{loc}}, \qquad \mathcal{S} \mapsto \mathfrak{Botd}_d^{\mathcal{S}}$

is a left Quillen functor. In our case: preserves monomorphisms and local weak equivalences.

Input data:

- *P*: a category of presheaves: $P = Fun(C^{op}, Set)$;
- Č: Čech sieves of covering families

Output data and properties:

- $P_{\check{C}}$: $X \in P$ is \check{C} -local if Map(g, X) is an iso for all $g \in \check{C}$;
 - S: $f \in P^{\rightarrow}$ is \check{C} -local if $\operatorname{Map}(f, X)$ is an iso for all $X \in P_{\check{C}}$;
 - $a: P \to P[S^{-1}]$ has a fully faithful right adjoint ι ;
 - $P_{\check{C}}$ is the essential image of ι ;
 - $P[S^{-1}]$: same objects as P, more isomorphisms;
 - $\operatorname{Ladj}(P[S^{-1}], Q) = \{F \in \operatorname{Ladj}(P, Q) \mid F(\check{C}) \subset \text{ isos in } Q\};$
 - colimits (and limits) in $P[S^{-1}]$ computed objectwise.

Input data:

P: relative category of simplicial presheaves: $P = Fun(C^{op}, sSet)$; Č: Čech nerves of covering families

Output data and properties:

- $P_{\check{C}}$: $X \in P$ is \check{C} -local if $\mathbf{R} \operatorname{Map}(g, X)$ is a weak eq for all $g \in \check{C}$;
 - S: $f \in P^{\rightarrow}$ is \check{C} -local if $\mathbf{R} \operatorname{Map}(f, X)$ is a weak eq for all $X \in P_{\check{C}}$;
 - $a: P \to \mathcal{L}_S P$ has a homotopically f-f right Quillen adjoint ι ;
 - $P_{\check{C}}$ is the essential image of $\mathbf{R}\iota$.
 - $\mathcal{L}_S P$: same category as P, more weak equivalences.
 - $\operatorname{LQF}(\mathcal{L}_{S}P, Q) = \{F \in \operatorname{LQF}(P, Q) \mid \mathsf{L}F(\check{C}) \subset W_{Q}\}.$
 - homotopy colimits (and limits) in $\mathcal{L}_S P$ computed objectwise.

Specialization to \mathfrak{Bord}_d

- $P = \operatorname{sPSh}(\mathsf{FEmb}_d)_{inj}, \ \mathcal{L}_S P = \operatorname{sPSh}(\mathsf{FEmb}_d)_{\check{\mathsf{C}}\text{-}inj};$
- Č: Čech nerves of open covers in FEmb_d;
- $Q = \operatorname{sPSh}(\operatorname{Cart} \times \Gamma \times \Delta^{\times d})_{\mathsf{loc}};$
- \mathfrak{Bord}_d : $\mathrm{sPSh}(\mathsf{FEmb}_d)_{\check{\mathsf{C}}\text{-}\mathrm{inj}} \to \mathrm{sPSh}(\mathsf{Cart} \times \mathsf{\Gamma} \times \Delta^{\times d})_{\mathsf{loc}}.$

Specialization to \mathfrak{Bord}_d

- $P = \operatorname{sPSh}(\mathsf{FEmb}_d)_{inj}, \ \mathcal{L}_S P = \operatorname{sPSh}(\mathsf{FEmb}_d)_{\check{\mathsf{C}}\text{-}inj};$
- Č: Čech nerves of open covers in FEmb_d;

•
$$Q = \operatorname{sPSh}(\operatorname{Cart} \times \Gamma \times \Delta^{\times d})_{\operatorname{loc}};$$

• \mathfrak{Bord}_d : $\mathrm{sPSh}(\mathsf{FEmb}_d)_{\check{\mathsf{C}}\operatorname{-inj}} \to \mathrm{sPSh}(\mathsf{Cart} \times \mathsf{\Gamma} \times \Delta^{\times d})_{\mathsf{loc}}.$

Proposition (G.–P.)

$$\begin{split} & \textit{Given } d \geq 0, \textit{ we have a left Quillen functor} \\ & \mathrm{sPSh}(\mathsf{FEmb}_d)_{\mathsf{inj}} \to \mathrm{sPSh}(\mathsf{Cart} \times \Gamma \times \Delta^{\times d})_{\mathsf{loc}}, \qquad \mathcal{S} \mapsto \mathfrak{Bord}_d^{\mathcal{S}}. \end{split}$$

Theorem (G.–P.)

Given $d \ge 0$, the left derived functor of the left Quillen functor $\mathrm{sPSh}(\mathsf{FEmb}_d)_{inj} \to \mathrm{sPSh}(\mathsf{Cart} \times \Gamma \times \Delta^{\times d})_{\mathsf{loc}}, \qquad S \mapsto \mathfrak{Bord}_d^S$ sends Čech nerves of open covers in FEmb_d to weak equivalences.

The formal component

Proposition (G.–P.)

Given $d \ge 0$, we have a left Quillen functor

 $\mathrm{sPSh}(\mathsf{FEmb}_d)_{\mathsf{inj}} \to \mathrm{sPSh}(\mathsf{Cart} \times \Gamma \times \Delta^{\times d})_{\mathsf{loc}}, \qquad \mathcal{S} \mapsto \mathfrak{Bord}_d^{\mathcal{S}}.$

Proposition (G.–P.)

Given $d \ge 0$, we have a left Quillen functor

 $\mathrm{sPSh}(\mathsf{FEmb}_d)_{\mathsf{inj}} \to \mathrm{sPSh}(\mathsf{Cart} \times \Gamma \times \Delta^{\times d})_{\mathsf{loc}}, \qquad \mathcal{S} \mapsto \mathfrak{Bord}_d^{\mathcal{S}}.$

Proof: a formal observation on the construction of $\mathfrak{Bord}_d^{\mathcal{S}}$.

Proposition (G.-P.)

Given $d \ge 0$, we have a left Quillen functor

 $\mathrm{sPSh}(\mathsf{FEmb}_d)_{\mathsf{inj}} \to \mathrm{sPSh}(\mathsf{Cart} \times \Gamma \times \Delta^{\times d})_{\mathsf{loc}}, \qquad \mathcal{S} \mapsto \mathfrak{Bord}_d^{\mathcal{S}}.$

Proof: a formal observation on the construction of $\mathfrak{Bord}_d^{\mathcal{S}}$.

• \mathfrak{Bord}_d preserves small colimits, hence is a left adjoint;

Proposition (G.–P.)

Given $d \ge 0$, we have a left Quillen functor

 $\mathrm{sPSh}(\mathsf{FEmb}_d)_{\mathsf{inj}} \to \mathrm{sPSh}(\mathsf{Cart} \times \Gamma \times \Delta^{\times d})_{\mathsf{loc}}, \qquad \mathcal{S} \mapsto \mathfrak{Bord}_d^{\mathcal{S}}.$

Proof: a formal observation on the construction of $\mathfrak{Bord}_d^{\mathcal{S}}$.

- \mathfrak{Bord}_d preserves small colimits, hence is a left adjoint;
- \mathfrak{Bord}_d preserves monomorphisms;

Proposition (G.-P.)

Given $d \ge 0$, we have a left Quillen functor

 $\mathrm{sPSh}(\mathsf{FEmb}_d)_{\mathsf{inj}} \to \mathrm{sPSh}(\mathsf{Cart} \times \Gamma \times \Delta^{\times d})_{\mathsf{loc}}, \qquad \mathcal{S} \mapsto \mathfrak{Bord}_d^{\mathcal{S}}.$

Proof: a formal observation on the construction of $\mathfrak{Bord}_d^{\mathcal{S}}$.

- \mathfrak{Bord}_d preserves small colimits, hence is a left adjoint;
- Bord_d preserves monomorphisms;
- \mathfrak{Bord}_d preserves objectwise weak equivalences.

Theorem (G.–P.)

Given $d \ge 0$, the left derived functor of the left Quillen functor

 $\mathrm{sPSh}(\mathsf{FEmb}_d)_{\mathsf{inj}} \to \mathrm{sPSh}(\mathsf{Cart} \times \Gamma \times \Delta^{\times d})_{\mathsf{loc}}, \qquad \mathcal{S} \mapsto \mathfrak{Bord}_d^{\mathcal{S}}$

sends the Čech nerve of an open cover $\{W_a \to U_a\}_{a \in A}$ of $(W \to U) \in FEmb_d$ to a weak equivalence:

$$\operatorname{hocolim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\xrightarrow{\sim}\mathfrak{Bord}_d^{W\to U},$$

where $W_{\alpha} = W_{\alpha_0} \cap \cdots \cap W_{\alpha_n}$.

$$\operatornamewithlimits{hocolim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\xrightarrow{\sim}\mathfrak{Bord}_d^{W\to U}$$

$$\operatornamewithlimits{hocolim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\xrightarrow{\sim}\mathfrak{Bord}_d^{W\to U}$$

Step 1 Replace hocolim by colim

$$\operatornamewithlimits{hocolim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\xrightarrow{\sim}\mathfrak{Bord}_d^{W\to U}$$

Step 1 Replace hocolim by colim (use Reedy cofibrancy of the diagram):

$$\operatorname{hocolim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\xrightarrow{\sim}\operatorname{colim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}$$

$$\operatornamewithlimits{hocolim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\xrightarrow{\sim}\mathfrak{Bord}_d^{W\to U}$$

Step 1 Replace hocolim by colim

Step 2 Pass to *n*-dimensional stalks on Cart for all $n \ge 0$.

$$\operatornamewithlimits{hocolim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\xrightarrow{\sim}\mathfrak{Bord}_d^{W\to U}$$

Step 1 Replace hocolim by colim Step 2 Pass to *n*-dimensional stalks on Cart for all $n \ge 0$. Step 3 Introduce a filtration (on *n*-dimensional stalks)

$$\operatorname{colim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\to B_0\to\dots\to B_d\to\mathfrak{Bord}_d^{W\to U}.$$

$$\operatornamewithlimits{hocolim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\xrightarrow{\sim}\mathfrak{Bord}_d^{W\to U}$$

Step 1 Replace hocolim by colimStep 2 Pass to *n*-dimensional stalks on Cart for all $n \ge 0$.Step 3 Introduce a filtration (on *n*-dimensional stalks)

$$\operatorname{colim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\to B_0\to\dots\to B_d\to\mathfrak{Bord}_d^{W\to U}.$$

Step 4 Prove all maps in the filtration are weak equivalences.

$$\operatorname{colim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\to B_0\to\dots\to B_d\to\mathfrak{Bord}_d^{W\to U}.$$

Definition

Given $d \ge 0$ and $(W = \mathbf{R}^d \times U \to U) \in \mathsf{FEmb}_d^{\mathrm{op}}$, the set $\mathfrak{Bord}_d^{\mathbf{R}^d \times U \to U}(V, \langle \ell \rangle, \mathbf{m})_n$ has elements:

- a smooth manifold M;
- a V-family of embeddings $M \to \mathbf{R}^d$;
- a $V \times \Delta^n$ -family of cut tuples with $m_1 \times \cdots \times m_d$ cells;
- $P: M \to \langle \ell \rangle;$
- smooth map $V \rightarrow U$;

Definition

We define $B_i(\langle \ell \rangle, \mathbf{m}) \subset \mathfrak{Botd}_d^{W \to U}(\langle \ell \rangle, \mathbf{m})$ as follows.

- An *n*-simplex is in B_i if for every $t \in \Delta^n$ the corresponding bordism over t satisfies the conditions given below.
- x ∈ B₀(m, ⟨ℓ⟩) is given by a germ f: M ⇒ W around core[0, m] that maps every connected component of the germ into some W_a ⊂ W.
- i > 0: $x \in B_i(\mathbf{m}, \langle \ell \rangle)$ if it admits a cut tuple \tilde{C} that contains the cut tuple of x (in the *i*th direction) such that for each $0 \le j < m_i$, the bordism with the same data as x, but with cut tuple in the *i*th direction given by two successive cuts \tilde{C}_j and \tilde{C}_{j+1} , belongs to B_{i-1} .

Filtration: Step 0

$$\operatorname{colim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\to B_0\to\dots\to B_d\to\mathfrak{Bord}_d^{W\to U}.$$

- An *n*-simplex is in B₀(**m**, ⟨ℓ⟩) if it is given by a germ
 f: M ⇒ W around core[0, **m**] that maps every connected
 component of the germ into some W_a ⊂ W.
- colim: Same, but f maps the entire core into some $W_a \subset W$.

$$\operatorname{colim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\to B_0\to\dots\to B_d\to\mathfrak{Bord}_d^{W\to U}.$$

- B₀: every connected component of the bordism factors through some W_a ⊂ W.
- colim: the entire bordism factors through some $W_a \subset W$.
$$\operatorname{colim}_{n\in\Delta^{\operatorname{op}}}\coprod_{\alpha:[n]\to A}\mathfrak{Bord}_d^{W_\alpha\to U_\alpha}\to B_0\to\dots\to B_d\to\mathfrak{Bord}_d^{W\to U}.$$

- *B*₀: every connected component of the bordism factors through some *W*_a ⊂ *W*.
- colim: the entire bordism factors through some $W_a \subset W$.

Proposition

The map $\operatorname{colim} \to B_0$ is a weak equivalence in $\operatorname{sPSh}(\Gamma \times \Delta^{\times d})_{\mathsf{loc}}$.

Proposition

The map $\operatorname{colim} \to B_0$ is a weak equivalence in $\operatorname{sPSh}(\Gamma \times \Delta^{\times d})_{\operatorname{loc}}$.

Proposition

The map $\operatorname{colim} \to B_0$ is a weak equivalence in $\operatorname{sPSh}(\Gamma \times \Delta^{\times d})_{\operatorname{loc}}$.

Proof.

Evaluate on an arbitrary object of Δ^{×d}, obtaining a map in sPSh(Γ);

Proposition

The map $\operatorname{colim} \to B_0$ is a weak equivalence in $\operatorname{sPSh}(\Gamma \times \Delta^{\times d})_{\mathsf{loc}}$.

- Evaluate on an arbitrary object of Δ^{×d}, obtaining a map in sPSh(Γ);
- Introduce a filtration on B₀: B₀^k is the union of B₀^{k-1} and the part of B₀ whose bordisms have at most k connected components;

Proposition

The map $\operatorname{colim} \to B_0$ is a weak equivalence in $\operatorname{sPSh}(\Gamma \times \Delta^{\times d})_{\operatorname{loc}}$.

- Evaluate on an arbitrary object of Δ^{×d}, obtaining a map in sPSh(Γ);
- Introduce a filtration on B₀: B₀^k is the union of B₀^{k-1} and the part of B₀ whose bordisms have at most k connected components;
- Present every map B₀^{k-1} → B₀^k as a transfinite composition of cobase changes of generating acyclic cofibrations of Γ-objects in simplicial sets.

- B_0 : every connected component of the bordism factors through some $W_a \subset W$.
- B_i: bordisms that can be chopped in the *i*th direction so that every piece belongs to B_{i-1}.

- B_0 : every connected component of the bordism factors through some $W_a \subset W$.
- B_i: bordisms that can be chopped in the *i*th direction so that every piece belongs to B_{i-1}.

Proposition

The map $B_{i-1} \to B_i$ is a weak equivalence in $\operatorname{sPSh}(\Gamma \times \Delta^{\times d})_{\mathsf{loc}}$ for every i > 0.

Proposition

The map $B_{i-1} \rightarrow B_i$ is a weak equivalence in $\operatorname{sPSh}(\Gamma \times \Delta^{\times d})_{\mathsf{loc}}$ for every i > 0.

Proposition

The map $B_{i-1} \to B_i$ is a weak equivalence in $\operatorname{sPSh}(\Gamma \times \Delta^{\times d})_{\text{loc}}$ for every i > 0.

Proof.

• Evaluate $B_{i-1} \to B_i$ on an arbitrary object X of $\Gamma \times \Delta^{\times (d-1)}$, obtaining a map $B_{i-1}(X) \to B_i(X)$ in $\mathrm{sPSh}(\Delta)$;

- Evaluate $B_{i-1} \to B_i$ on an arbitrary object X of $\Gamma \times \Delta^{\times (d-1)}$, obtaining a map $B_{i-1}(X) \to B_i(X)$ in $\mathrm{sPSh}(\Delta)$;
- Extract the kth simplicial degree (for some k ≥ 0), obtaining a map in PSh(Δ) = sSet;

Proof.

- Evaluate $B_{i-1} \to B_i$ on an arbitrary object X of $\Gamma \times \Delta^{\times (d-1)}$, obtaining a map $B_{i-1}(X) \to B_i(X)$ in $\mathrm{sPSh}(\Delta)$;
- Extract the kth simplicial degree (for some k ≥ 0), obtaining a map in PSh(Δ) = sSet;
- The resulting simplicial set has
 - vertices: germs of cuts (embedded in W);
 - edges: bordisms between cuts (embedded in W);
 - 2-simplices: composition of bordisms;
 - everything is in smooth families indexed by Δ^k ;
 - bordisms must belong to B_{i-1} respectively B_i .

Want to show: $B_{i-1} \rightarrow B_i$ is a categorical weak equivalence in the Joyal model structure on simplicial sets.

Intermission: Necklace categories

■ *X* → *Y*: a map of simplicial sets (not necessarily quasicategories).

- *X* → *Y*: a map of simplicial sets (not necessarily quasicategories).
- $X_0 \rightarrow Y_0$ an isomorphism of sets.

- *X* → *Y*: a map of simplicial sets (not necessarily quasicategories).
- $X_0 \rightarrow Y_0$ an isomorphism of sets.
- Want to know whether $X \rightarrow Y$ is a categorical weak equivalence.

- X → Y: a map of simplicial sets (not necessarily quasicategories).
- $X_0 \rightarrow Y_0$ an isomorphism of sets.
- Want to know whether $X \rightarrow Y$ is a categorical weak equivalence.
- Fix vertices $x, y \in X_0$.

- X → Y: a map of simplicial sets (not necessarily quasicategories).
- $X_0 \rightarrow Y_0$ an isomorphism of sets.
- Want to know whether $X \rightarrow Y$ is a categorical weak equivalence.
- Fix vertices $x, y \in X_0$.
- Want a model for the simplicial map $\operatorname{Map}_X(x, y) \to \operatorname{Map}_Y(x, y)$.

- X → Y: a map of simplicial sets (not necessarily quasicategories).
- $X_0 \rightarrow Y_0$ an isomorphism of sets.
- Want to know whether $X \rightarrow Y$ is a categorical weak equivalence.
- Fix vertices $x, y \in X_0$.
- Want a model for the simplicial map $\operatorname{Map}_X(x, y) \to \operatorname{Map}_Y(x, y)$.
- Answer: Dugger–Spivak necklace categories.

Intermission: Necklace categories

• X: a simplicial set (not necessarily a quasicategory).

X: a simplicial set (not necessarily a quasicategory).
Fix vertices x, y ∈ X₀.

- X: a simplicial set (not necessarily a quasicategory).
- Fix vertices $x, y \in X_0$.
- The simplicial set $Map_X(x, y)$ is the nerve of the necklace category $N_{x,y}$.

- X: a simplicial set (not necessarily a quasicategory).
- Fix vertices $x, y \in X_0$.
- The simplicial set Map_X(x, y) is the nerve of the necklace category N_{x,y}.
- Objects (necklaces from x to y): simplicial maps $\Delta^{n_1} \vee \cdots \vee \Delta^{n_k} \to X$, endpoints map to x and y.

- X: a simplicial set (not necessarily a quasicategory).
- Fix vertices $x, y \in X_0$.
- The simplicial set Map_X(x, y) is the nerve of the necklace category N_{x,y}.
- Objects (necklaces from x to y): simplicial maps $\Delta^{n_1} \vee \cdots \vee \Delta^{n_k} \to X$, endpoints map to x and y.
- Morphisms: commutative triangles.

- X: a simplicial set (not necessarily a quasicategory).
- Fix vertices $x, y \in X_0$.
- The simplicial set Map_X(x, y) is the nerve of the necklace category N_{x,y}.
- Objects (necklaces from x to y): simplicial maps $\Delta^{n_1} \vee \cdots \vee \Delta^{n_k} \to X$, endpoints map to x and y.
- Morphisms: commutative triangles.
- Morphism 1: $\Delta^a \vee \Delta^b \to \Delta^{a+b}$ (endpoint-preserving).

- X: a simplicial set (not necessarily a quasicategory).
- Fix vertices $x, y \in X_0$.
- The simplicial set Map_X(x, y) is the nerve of the necklace category N_{x,y}.
- Objects (necklaces from x to y): simplicial maps $\Delta^{n_1} \vee \cdots \vee \Delta^{n_k} \to X$, endpoints map to x and y.
- Morphisms: commutative triangles.
- Morphism 1: $\Delta^a \vee \Delta^b \to \Delta^{a+b}$ (endpoint-preserving).
- Morphism 2: $\Delta^a \rightarrow \Delta^b$ (endpoint-preserving).

Intermission: Necklace categories of bordisms

• $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).

Intermission: Necklace categories of bordisms

- $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).
- Fix vertices $x, y \in X_0$, i.e., germs of cuts embedded into W.

Intermission: Necklace categories of bordisms

- $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).
- Fix vertices $x, y \in X_0$, i.e., germs of cuts embedded into W.
- Necklaces from x to y: composable chains of bordisms in B_{i-1} (or B_i) joined together by joint cuts.

- $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).
- Fix vertices $x, y \in X_0$, i.e., germs of cuts embedded into W.
- Necklaces from x to y: composable chains of bordisms in B_{i-1} (or B_i) joined together by joint cuts.
- Morphism 1: Δ^a ∨ Δ^b → Δ^{a+b}: convert a joint cut to an ordinary cut (only if allowed by B_{i-1}).

- $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).
- Fix vertices $x, y \in X_0$, i.e., germs of cuts embedded into W.
- Necklaces from x to y: composable chains of bordisms in B_{i-1} (or B_i) joined together by joint cuts.
- Morphism 1: Δ^a ∨ Δ^b → Δ^{a+b}: convert a joint cut to an ordinary cut (only if allowed by B_{i-1}).
- Morphism 2: $\Delta^a \rightarrow \Delta^b$: insert new compatible ordinary cuts.

- $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).
- Fix vertices $x, y \in X_0$, i.e., germs of cuts embedded into W.
- Necklaces from x to y: composable chains of bordisms in B_{i-1} (or B_i) joined together by joint cuts.
- Morphism 1: Δ^a ∨ Δ^b → Δ^{a+b}: convert a joint cut to an ordinary cut (only if allowed by B_{i-1}).
- Morphism 2: $\Delta^a \rightarrow \Delta^b$: insert new compatible ordinary cuts.
- Observation: the ambient composed bordism never changes ⇒ can fix it in advance.

Necklace categories of bordisms have contractible nerves: 1

• $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).
- $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).
- Fix vertices $x, y \in X_0$ together with a bordism M from x to y (in B_i , not necessarily in B_{i-1}).

- $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).
- Fix vertices $x, y \in X_0$ together with a bordism M from x to y (in B_i , not necessarily in B_{i-1}).
- Claim: the category of necklaces from x to y that compose to M has a contractible nerve.

- $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).
- Fix vertices $x, y \in X_0$ together with a bordism M from x to y (in B_i , not necessarily in B_{i-1}).
- Claim: the category of necklaces from x to y that compose to M has a contractible nerve.
- Proof: Morse theory on *M*.

- $X = B_{i-1}$ or B_i , evaluated at $X \in \Gamma \times \Delta^{\times (d-1)}$ and some $[I] \in \Delta$ (smooth families of bordisms indexed by Δ^I).
- Fix vertices $x, y \in X_0$ together with a bordism M from x to y (in B_i , not necessarily in B_{i-1}).
- Claim: the category of necklaces from x to y that compose to M has a contractible nerve.
- Proof: Morse theory on *M*.
- This implies $B_{i-1} \rightarrow B_i$ is a weak equivalence.

The big picture

Necklace categories of bordisms have contractible nerves: 2

Necklace categories of bordisms have contractible nerves: 2

Proof: Morse theory on *M*.

- Proof: Morse theory on *M*.
- Pick a Morse function on *M* with distinct critical values.

- Proof: Morse theory on *M*.
- Pick a Morse function on *M* with distinct critical values.
- Cut out a small neighborhood of each critical point.

- Proof: Morse theory on *M*.
- Pick a Morse function on *M* with distinct critical values.
- Cut out a small neighborhood of each critical point.
- Chop up the remaining cylinders into small bumps.

- Proof: Morse theory on *M*.
- Pick a Morse function on *M* with distinct critical values.
- Cut out a small neighborhood of each critical point.
- Chop up the remaining cylinders into small bumps.
- All neighborhoods can be chosen to be subordinate to the open cover of W.

- Proof: Morse theory on *M*.
- Pick a Morse function on *M* with distinct critical values.
- Cut out a small neighborhood of each critical point.
- Chop up the remaining cylinders into small bumps.
- All neighborhoods can be chosen to be subordinate to the open cover of W.
- How does this help us to show contractibility of necklace categories?

Necklace categories of bordisms have contractible nerves: 3

A Kan complex X is contractible if and only if any map $\partial \Delta^n \to X$ can be simplicially homotoped to a map that extends along $\partial \Delta^n \to \Delta^n$.

• Apply this theorem to the fibrant replacement X of the nerve of the necklace category of B_{i-1} (or B_i) from x to y.

- Apply this theorem to the fibrant replacement X of the nerve of the necklace category of B_{i-1} (or B_i) from x to y.
- Pick some map ∂∆ⁿ → X; its data is given by a collection of cut tuples in the bordism M.

- Apply this theorem to the fibrant replacement X of the nerve of the necklace category of B_{i-1} (or B_i) from x to y.
- Pick some map ∂Δⁿ → X; its data is given by a collection of cut tuples in the bordism M.
- Chop up *M* as explained on the previous slide.

- Apply this theorem to the fibrant replacement *X* of the nerve of the necklace category of *B*_{*i*−1} (or *B*_{*i*}) from *x* to *y*.
- Pick some map ∂Δⁿ → X; its data is given by a collection of cut tuples in the bordism M.
- Chop up *M* as explained on the previous slide.
- By induction on the Morse decomposition, push the cuts past each small region in the Morse decomposition, with some cutting and gluing of cuts.

- Apply this theorem to the fibrant replacement *X* of the nerve of the necklace category of *B*_{*i*−1} (or *B*_{*i*}) from *x* to *y*.
- Pick some map ∂Δⁿ → X; its data is given by a collection of cut tuples in the bordism M.
- Chop up *M* as explained on the previous slide.
- By induction on the Morse decomposition, push the cuts past each small region in the Morse decomposition, with some cutting and gluing of cuts.
- At the final step, all cuts have been collapsed to the source cut of *M*.