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Outline

1 (∞, d)-categories via d-fold complete Segal spaces.

2 Symmetric monoidal structure via Γ-spaces.

3 Smooth structure via cartesian spaces.

4 The bordism category.

5 Geometric structures on bordisms.

6 Descent for field theories (locality).

Models: We use model categories for the above gadgets. Model
structures will always be given by a left Bousfield localization of
some category of presheaves on a small category C.
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Higher categories

Everyone knows what a category is.

Higher categories seek to generalize a category (or 1-category)
to include “morphisms between morphisms” and even
“morphisms between morphisms between morphisms” and
even...

There are different ways of making this precise. Categories
internal to categories (i.e. a double category). Categories
enriched in categories (i.e., a strict 2-category). By induction,
one defines n-categories.

These notions are not good enough in practice! Many
naturally occurring examples are not strict (e.g., fundamental
2-groupoid).

Keeping track of the coherence data is notoriously annoying
(see Todd Trimble’s weak 4-category!).
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What is an (∞, d)-category?

We use the d-fold Segal space formalism (Segal, Rezk, Barwick).
Let’s start with (∞, 1)-categories (i.e. d = 1).

Definition

A Segal space is a simplicial object in sSet, i.e. a functor
X•: ∆

op → sSet, such that

1 It is fibrant in Fun(∆op, sSet)inj = Fun(∆op, sSet)Reedy;

2 (Segal’s special ∆ condition) it is local with respect to the
maps

∆n ⨿∆0 ∆m → ∆n+m,

What does this mean, morally?
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Segal’s ∆ condition (along with fibrancy) means that for each
n,m ∈ N, the square

Xm+n
p0,...,m

//

pm,...,m+n

��

Xm

pm

��

Xn p0
// X0

is a homotopy pullback square.

Morally, the space Xn is the space of composable n-chains of
morphisms in X1. For example, if n = 2:

X1 ×X0 X1 X2 X1

x y

z

x y
h

z
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Completeness

Let E be the nerve of the groupoid

Ob: = {x , y} Mor: = {f : x → y , f −1: y → x , idx , idy}

Definition

A complete Segal space is a Segal space that is local with respect
to the canonical map E → ∆0.

This amounts to forcing X0 to be equivalent to the invertible part
of X•.

Definition

An (∞, 1)-category is a complete Segal space.
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An example

Let C be a small category.

Let C× denote the maximal
subgroupoid in C, i.e., the core.
Define the functor X : ∆op → sSet by Xn = N((C[n])×), for
example,

X0 = N(C×), X1 = N((C→)×).

One can check this gives a Segal space. It is complete, since
the functor C× → (C→)× sending

x

∼=
��
y

7→
x

id //

∼=
��

x

∼=
��

y
id // y

is fully faithful and essentially surjective onto the full
subgroupoid on invertible morphisms in C.
Note that the naive thing: Xn = N(C)n is not complete!
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d-fold complete Segal spaces

Definition

A d-fold complete Segal space is a d-fold simplicial object
X : (∆op)×d → sSet such that

1 It is fibrant in Fun((∆op)×d , sSet)inj

2 It is a Segal space in all directions.

3 It is complete in all directions.
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Something is still missing...

We have encoded a d-categorical version of a double category.

We need a preferred composition direction to get an
(∞, d)-category.

For m ∈ ∆×d , let m̂ be defined by

[m̂j ] =

{
[0] , if there is i < j with mi = 0
[mj ] , otherwise.

Definition

An (∞, d)-category is a d-fold complete Segal space that is local
with respect to the maps m → m̂ (globularity condition).

We have an (∞, 1)-category of all (∞, d)-categories

Cat∞,d : = Fun((∆op)×d , sSet)inj,loc
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We have an (∞, 1)-category of all (∞, d)-categories

Cat∞,d : = Fun((∆op)×d , sSet)inj,loc
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Globular vs multiple

Let C be a double category, i.e., a category internal to
categories.

C has a category of objects C0 and category of morphisms C1,
along with a source and target map s, t: C1 → C0, an identity
morphism functors e: C0 → C1 and a composition morphism
◦: C1 ×C0 C1 → C1.
One can think of C as encoding a sort of 2-category. The
2-morphisms are 1-morphisms ϕ ∈ Mor(C1), which can be
pictures as cells

s(α)
α //

s(ϕ)

��

t(α)

t(ϕ)

��

ϕ��

a(β)
β

// t(β)
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This can be turned into a bisimplicial space X••.

The above
diagram gives a vertex in X11.

X•• is not globular, since being local w.r.t. the morphism
([0], [1]) → ([0], [0]) implies that the vertical morphisms are
identities.

Let C be a strict 2-category. A 2-morphism is a morphism
ϕ ∈ Mor(C(x , y)). It can be pictured as a 2-cell

ϕ

��

x

α

��

β

AA
y

This can be turned into a globular bisimplicial space.
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Adding symmetric monoidal structure

We use Segal’s Γ-spaces.

Definition

The category Γ is the opposite category of the following category.

Objects are of the form ⟨ℓ⟩ = {∗, 1, 2, . . . , ℓ}, ℓ ∈ N.
Morphisms are functions f : ⟨ℓ⟩ → ⟨k⟩ sending ∗ to ∗.

Similar to Segal spaces, we define Γ-spaces as follows:

Definition

A Γ-space is a functor X : Γop → sSet such that

1 It is fibrant in Fun(Γop, sSet)inj;

2 (Segal’s special Γ condition) it is local with respect to the
maps

⟨ℓ⟩ ⨿⟨∗⟩ ⟨k⟩ → ⟨ℓ+ k⟩, ∅ → ⟨∗⟩
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An example

How does this encode symmetric monoidal structure?

Let M be a commutative monoid. We can turn M into a
Γ-set by sending

⟨ℓ⟩ 7→ M×ℓ.

A morphism f : ⟨ℓ⟩ → ⟨k⟩ is sent to a map f∗:M
×ℓ → M×k

whose i-th component is

f∗(x)i =

{ ∑
j∈f −1(i)\{∗} xj 1 ≤ i ≤ k

∗ i = ∗

Can encode the nerve of a permutative category (C,⊕) as a
Γ-space by assigning X (⟨ℓ⟩) = N(C)×ℓ. Structure maps use the
symmetric monoidal structure.
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Definition

A symmetric monoidal (∞, d)-category is a functor
X : Γop × (∆op)×d → sSet such that

1 It is fibrant in Fun(Γop × (∆op)×d , sSet)inj

2 It is a Segal space in all directions.

3 It is complete in all directions.

4 It satisfies the globular condition (optional).

5 Is satisfies Segal’s special Γ-condition.
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Adding smooth structure

Definition

The category Cart is the category whose objects are open subsets
of Rn, for some n ∈ N, that are diffeomorphic to Rn. Morphisms
are smooth maps.

Definition

A smooth space is a functor X : Cartop → sSet such that

1 It is fibrant in Fun(Cartop, sSet)inj

2 (Descent condition) it is local with respect to Čech covers

c{Uα} → U,

Here, · · · //
////
∐

αβ Uαβ
////
∐

α Uα
hocolim// c{Uα} // U
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An example

How does this encode smooth structure?

Let X be a smooth manifold.

Then we can turn X into a
smooth space by assigning

U 7→ C∞(U,X ), U ∈ Cart.

A morphism f :U → V is sent to the map g 7→ g ◦ f ,
g ∈ C∞(V ,X ). Being local with respect to the Čech
morphisms just says that X is a sheaf:

C∞(U,X ) ∼= lim
{ ∏

α C
∞(Uα,X )

//
//
∏

αβ C
∞(Uαβ,X )

}
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Definition

A smooth symmetric monoidal (∞, d)-category is a functor
X : Cartop × Γop × (∆op)×d → sSet such that

1 It is fibrant in Fun(Cartop × Γop × (∆op)×d , sSet)inj

2 It is a Segal space in all directions.

3 It is complete in all directions.

4 It satisfies the globular condition (optional).

5 It satisfies Segal’s special Γ-condition.

6 It satisfies descent.

The (∞, 1)-category of all smooth symmetric monoidal
(∞, d)-categories is presented by a big left Bousfield localization

C∞Cat⊗∞,d : = PSh∆(Cart× Γ×∆×d)inj,loc
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The (∞, 1)-category of all smooth symmetric monoidal
(∞, d)-categories is presented by a big left Bousfield localization

C∞Cat⊗∞,d : = PSh∆(Cart× Γ×∆×d)inj,loc
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The bordism category

To say what a bordism is, we need the notion of a cut tuple

A cut for a submersion p:M → U (with d-dimensional fibers)
is a triple (C<,C=,C >) of subsets of M such that

There is smooth h:M → R with 0 a (fiberwise) regular value,
C= = h−1(0),C< = h−1(−∞, 0),C> = h−1(0,∞).

A cut [m]-tuple is a collection of cuts Cj = (Cj<,Cj=,Cj>),
j ∈ [m], such that

C≤0 ⊂ C≤1 ⊂ . . . ⊂ C≤m

h •
•

•
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Definition

For fixed m ∈ ∆×d , ⟨ℓ⟩ ∈ Γ and U ∈ Cart, we define the simplicial
set

Bordd(U, ⟨ℓ⟩,m)

as the nerve of the following groupoid:

Objects:

1 A d-dimensional manifold M.
2 For each 1 ≤ i ≤ d , a cut [mi ]-tuple C i for the projection

p:M × U → U.
3 A choice of map P:M × U → ⟨ℓ⟩, partitioning the set of

connected components into ℓ disjoint subsets.

such that ⋔

Morphisms: cut respecting diffeomorphisms.

100/105 19/28



Definition

For fixed m ∈ ∆×d , ⟨ℓ⟩ ∈ Γ and U ∈ Cart, we define the simplicial
set

Bordd(U, ⟨ℓ⟩,m)

as the nerve of the following groupoid:

Objects:

1 A d-dimensional manifold M.

2 For each 1 ≤ i ≤ d , a cut [mi ]-tuple C i for the projection
p:M × U → U.

3 A choice of map P:M × U → ⟨ℓ⟩, partitioning the set of
connected components into ℓ disjoint subsets.

such that ⋔

Morphisms: cut respecting diffeomorphisms.

101/105 19/28



Definition

For fixed m ∈ ∆×d , ⟨ℓ⟩ ∈ Γ and U ∈ Cart, we define the simplicial
set

Bordd(U, ⟨ℓ⟩,m)

as the nerve of the following groupoid:

Objects:

1 A d-dimensional manifold M.
2 For each 1 ≤ i ≤ d , a cut [mi ]-tuple C i for the projection

p:M × U → U.

3 A choice of map P:M × U → ⟨ℓ⟩, partitioning the set of
connected components into ℓ disjoint subsets.

such that ⋔

Morphisms: cut respecting diffeomorphisms.

102/105 19/28



Definition

For fixed m ∈ ∆×d , ⟨ℓ⟩ ∈ Γ and U ∈ Cart, we define the simplicial
set

Bordd(U, ⟨ℓ⟩,m)

as the nerve of the following groupoid:

Objects:

1 A d-dimensional manifold M.
2 For each 1 ≤ i ≤ d , a cut [mi ]-tuple C i for the projection

p:M × U → U.
3 A choice of map P:M × U → ⟨ℓ⟩, partitioning the set of

connected components into ℓ disjoint subsets.

such that ⋔

Morphisms: cut respecting diffeomorphisms.

103/105 19/28



Definition

For fixed m ∈ ∆×d , ⟨ℓ⟩ ∈ Γ and U ∈ Cart, we define the simplicial
set

Bordd(U, ⟨ℓ⟩,m)

as the nerve of the following groupoid:

Objects:

1 A d-dimensional manifold M.
2 For each 1 ≤ i ≤ d , a cut [mi ]-tuple C i for the projection

p:M × U → U.
3 A choice of map P:M × U → ⟨ℓ⟩, partitioning the set of

connected components into ℓ disjoint subsets.

such that ⋔

Morphisms: cut respecting diffeomorphisms.

104/105 19/28



Definition

For fixed m ∈ ∆×d , ⟨ℓ⟩ ∈ Γ and U ∈ Cart, we define the simplicial
set

Bordd(U, ⟨ℓ⟩,m)

as the nerve of the following groupoid:

Objects:

1 A d-dimensional manifold M.
2 For each 1 ≤ i ≤ d , a cut [mi ]-tuple C i for the projection

p:M × U → U.
3 A choice of map P:M × U → ⟨ℓ⟩, partitioning the set of

connected components into ℓ disjoint subsets.

such that ⋔

Morphisms: cut respecting diffeomorphisms.

105/105 19/28



Geometric structures

We encode geometric structures on bordisms via sheaves on a
certain category.

Let FEmbd be the category whose objects are submersions
p:M → U with d-dimensional fibers, U ∈ Cart.

Morphisms are fiberwise open embeddings (over U).

We topologize FEmbd by taking covering families to be
{pα:Mα → Uα} such that {Mα} is an open cover of M.

Definition

A fiberwise d-dimensional geometric structure is a simplicial
presheaf on FEmbd .
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Tangential structures

Let BGL(d) be the simplicial presheaf on FEmbd defined by

(p:M → U) 7→ Vectd(M).

Let τ : (p:M → U) → BGL(d) be the fiberwise tangent
bundle.

Let Y → BGL(d) be any morphism of simplicial presheaves.

Define the simplicial presheaf

τY (p:M → U): = Γ(M,M ×BGL(d) Y ).

Such simplicial presheaves encode tangential structures. , e.g.
Y = BG,BString(d),BString(d)∇,BFivebrane(d).

Examples of simplicial presheaves on FEmbd include conformal
structures, Riemannian metrics, pseudo-Riemannian metrics, maps
to a fixed manifold, or combinations of these.
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Bordisms with geometric structure

Definition

Let S ∈ PSh∆(FEmbd).

For fixed m ∈ ∆×d , ⟨ℓ⟩ ∈ Γ and U ∈ Cart,
we define the simplicial set

BordSd (U, ⟨ℓ⟩,m)

as the diagonal of the nerve of the following simplicial groupoid:

Objects:
∐

(M,P) S(M × U → U)× Cut(M × U)

Morphisms:
∐

(M,P)→(M̃,P̃)
S(M̃ × U → U)× Cut(M̃ × U)

The simplicial set Cut(M × U) has l-simplices given by a
∆l -family of cut m-tuples on M × U.

118/121 22/28



Bordisms with geometric structure

Definition

Let S ∈ PSh∆(FEmbd). For fixed m ∈ ∆×d , ⟨ℓ⟩ ∈ Γ and U ∈ Cart,
we define the simplicial set

BordSd (U, ⟨ℓ⟩,m)

as the diagonal of the nerve of the following simplicial groupoid:

Objects:
∐

(M,P) S(M × U → U)× Cut(M × U)

Morphisms:
∐

(M,P)→(M̃,P̃)
S(M̃ × U → U)× Cut(M̃ × U)

The simplicial set Cut(M × U) has l-simplices given by a
∆l -family of cut m-tuples on M × U.

119/121 22/28



Bordisms with geometric structure

Definition

Let S ∈ PSh∆(FEmbd). For fixed m ∈ ∆×d , ⟨ℓ⟩ ∈ Γ and U ∈ Cart,
we define the simplicial set

BordSd (U, ⟨ℓ⟩,m)

as the diagonal of the nerve of the following simplicial groupoid:

Objects:
∐

(M,P) S(M × U → U)× Cut(M × U)

Morphisms:
∐

(M,P)→(M̃,P̃)
S(M̃ × U → U)× Cut(M̃ × U)

The simplicial set Cut(M × U) has l-simplices given by a
∆l -family of cut m-tuples on M × U.

120/121 22/28



Bordisms with geometric structure

Definition

Let S ∈ PSh∆(FEmbd). For fixed m ∈ ∆×d , ⟨ℓ⟩ ∈ Γ and U ∈ Cart,
we define the simplicial set

BordSd (U, ⟨ℓ⟩,m)

as the diagonal of the nerve of the following simplicial groupoid:

Objects:
∐

(M,P) S(M × U → U)× Cut(M × U)

Morphisms:
∐

(M,P)→(M̃,P̃)
S(M̃ × U → U)× Cut(M̃ × U)

The simplicial set Cut(M × U) has l-simplices given by a
∆l -family of cut m-tuples on M × U.

121/121 22/28



Sg

0

2

3

0 1 2 3

1

∆ structure map

Γ structure map repartitions set of connected components.

Cart structure map pulls back bundles of bordisms along a
smooth map f :U → V .
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The geometrically framed bordism category

The geometric structure is a representable presheaf of the
form Rd × U → U, for some cartesian space U.

(Rd × U → U)(M → V ) =


M

f //

��

Rd × U

��

V
g

// U


Fix m ∈ ∆×d , ⟨ℓ⟩ ∈ Γ and V ∈ Cart. A vertex in

BordR
d×U→U

d (V , ⟨ℓ⟩,m) is family of V -family of chopped
manifolds, together with a partition of the set of connected
components and a fiberwise embedding into Rd .

Note that we do not have closed d-manifolds as bordisms!
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Smooth field theories and locality

Fix a target category T ∈ C∞Cat⊗∞,d . Fix a geometric structure
S ∈ PSh∆(FEmbd). We define

FFTd ,T (S): = Fun⊗(BordSd ,T )

Fun⊗(−,−) is (∞, d)-category obtained by forgetting
structure on the internal (∞, 1)-hom.

Theorem

The functor

FFTd ,T : PSh∆(FEmbd)
op
inj,loc → Cat∞,d

is an ∞-sheaf (i.e. FFTd ,T preserves all homotopy limits).
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Relation to the cobordism hypothesis

The sheaf property of FFTd ,T is half the cobordism hypothesis.

Define the functor

Cat∞,d → PSh∆(FEmbd)inj,loc, T 7→ FFT×
d ,T =:T×

d

The left adjoint is the functor

Bordd : PSh∆(FEmbd)inj,loc → Cat∞,d , S 7→ BordSd .

The theorem can be rephrased by saying that the above
adjunction is Quillen at the level of the Čech local model
structure.
By the universal property of the adjunction, we have an
equivalence of derived mapping spaces

Fun⊗(BordSd ,T ) ≃ Map(S,T×
d ).
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Plan for talks 3 and 4

In the next talk, Dmitri will sketch the proof of the codescent
property.

In the final talk, I will sketch the proof of the geometrically
framed case.
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