The geometric cobordism hypothesis

Lecture 2: Definitions
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Outline

(00, d)-categories via d-fold complete Segal spaces.
Symmetric monoidal structure via I'-spaces.
Smooth structure via cartesian spaces.

The bordism category.

Geometric structures on bordisms.

[@ Descent for field theories (locality).

Models: We use model categories for the above gadgets. Model
structures will always be given by a left Bousfield localization of
some category of presheaves on a small category C.
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categories

Everyone knows what a category is.

Higher categories seek to generalize a category (or 1-category)
to include “morphisms between morphisms” and even
“morphisms between morphisms between morphisms” and
even...

There are different ways of making this precise. Categories
internal to categories (i.e. a double category). Categories
enriched in categories (i.e., a strict 2-category). By induction,
one defines n-categories.

These notions are not good enough in practice! Many
naturally occurring examples are not strict (e.g., fundamental
2-groupoid).

Keeping track of the coherence data is notoriously annoying
(see Todd Trimble's weak 4-category!).
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What is an (oo, d)-category?

We use the d-fold Segal space formalism (Segal, Rezk, Barwick).
Let's start with (oo, 1)-categories (i.e. d = 1).

Definition
A Segal space is a simplicial object in sSet, i.e. a functor
Xo: A°P — sSet, such that

It is fibrant in Fun(A°P, sSet)inj = Fun(A°P, sSet)Reedy;

(Segal's special A condition) it is local with respect to the
maps
A" Tlpo AT — AT

What does this mean, morally?
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m Segal's A condition (along with fibrancy) means that for each
n,m € N, the square

is a homotopy pullback square.
Morally, the space X, is the space of composable n-chains of
morphisms in X;. For example, if n = 2:

X1 Xx, X1 X1
V4
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Completeness

m Let E be the nerve of the groupoid

Ob:={x,y} Mor:={f:x —y, f_liy — x,idy,id, }

Definition
A complete Segal space is a Segal space that is local with respect
to the canonical map E — AO.

This amounts to forcing Xp to be equivalent to the invertible part
of X,.

Definition

An (o0, 1)-category is a complete Segal space.
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An example

m Let C be a small category. Let C* denote the maximal
subgroupoid in C, i.e., the core.
= Define the functor X: A% — sSet by X, = N((C[")*), for
example,
Xo = N(C*), Xi=N((C7)X).

m One can check this gives a Segal space. It is complete, since
the functor C* — (C7)* sending

X x4,y

lg — lg lg

y id
y—"y

is fully faithful and essentially surjective onto the full
subgroupoid on invertible morphisms in C.
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An example

m Let C be a small category. Let C* denote the maximal
subgroupoid in C, i.e., the core.
= Define the functor X: A% — sSet by X, = N((C[")*), for
example,
Xo = N(C*), Xi=N((C7)X).

m One can check this gives a Segal space. It is complete, since
the functor C* — (C7)* sending

X x4,y

lg — lg lg

y id
y—"y

is fully faithful and essentially surjective onto the full
subgroupoid on invertible morphisms in C.

m Note that the naive thing: X, = N(C), is not complete!
42/42  7/28
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X: (A°P)*9 — sSet such that

It is fibrant in Fun((A°P)*?, sSet)in;
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Something is still missing...

m We have encoded a d-categorical version of a double category.
m We need a preferred composition direction to get an

(00, d)-category.
m For m € AX9, let fr be defined by

. [0], if thereis i < j with m; =0
[y] = :
[mj], otherwise.

An (oo, d)-category is a d-fold complete Segal space that is local
with respect to the maps m — m (globularity condition).

m We have an (oo, 1)-category of all (oo, d)-categories

Catoo,d: = Fun((AOp) Xd, SSet)ianOC
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m Let C be a double category, i.e., a category internal to
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m C has a category of objects Cy and category of morphisms Cy,
along with a source and target map s, t: C; — Cp, an identity
morphism functors e: Cg — C; and a composition morphism
o: C1 X Co C1 — C1.
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Globular vs multiple

m Let C be a double category, i.e., a category internal to
categories.

m C has a category of objects Cy and category of morphisms Cy,
along with a source and target map s, t: C; — Cp, an identity
morphism functors e: Cg — C; and a composition morphism
o: C1 X Co C1 — C1.

m One can think of C as encoding a sort of 2-category. The
2-morphisms are 1-morphisms ¢ € Mor(Cy), which can be
pictures as cells

s(a) —*— t(a)
s(®) Jo t(¢)

a(B3) —5 t(8)
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m This can be turned into a bisimplicial space X,,.
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m This can be turned into a bisimplicial space Xqe. The above
diagram gives a vertex in Xii.

B X, is not globular, since being local w.r.t. the morphism
([0],[1]) — ([0], [0]) implies that the vertical morphisms are
identities.

m Let C be a strict 2-category.
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m This can be turned into a bisimplicial space Xqe. The above
diagram gives a vertex in Xii.

B X, is not globular, since being local w.r.t. the morphism
([0],[1]) — ([0], [0]) implies that the vertical morphisms are
identities.

m Let C be a strict 2-category. A 2-morphism is a morphism
¢ € Mor(C(x,y)). It can be pictured as a 2-cell

m This can be turned into a globular bisimplicial space.
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The category I is the opposite category of the following category.
m Objects are of the form (¢) = {x,1,2,... ¢}, £ € N.
m Morphisms are functions f: (¢) — (k) sending * to x.

Similar to Segal spaces, we define -spaces as follows:
A T-space is a functor X:I°P — sSet such that
It is fibrant in Fun(I°P, sSet )inj;

(Segal’s special ' condition) it is local with respect to the
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m Let M be a commutative monoid. We can turn M into a
I-set by sending
0y — M**.

m A morphism f: (¢) — (k) is sent to a map f,: M*¢ — M*k
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Can encode the nerve of a permutative category (C,®) as a
M-space by assigning X((£)) = N(C)**.
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An example

How does this encode symmetric monoidal structure?

m Let M be a commutative monoid. We can turn M into a
I-set by sending
0y — M**.

m A morphism f: (¢) — (k) is sent to a map f,: M*¢ — M*k
whose i-th component is

£(x); = { Yjerin ¥ LSi<k

* = %

Can encode the nerve of a permutative category (C,®) as a
M-space by assigning X((£)) = N(C)**. Structure maps use the
symmetric monoidal structure.

75/75  13/28



A symmetric monoidal (oo, d)-category is a functor
X: TP x (A°P)*9 — sSet such that
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Definition
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A symmetric monoidal (oo, d)-category is a functor
X: TP x (A°P)*9 — sSet such that

It is fibrant in Fun(l°P x (AOP)Xd,sSet)inj

A It is a Segal space in all directions.

N

It is complete in all directions.
It satisfies the globular condition (optional).
Is satisfies Segal’s special -condition.
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Adding smooth structure

Definition
The category Cart is the category whose objects are open subsets

of R”, for some n € N, that are diffeomorphic to R"”. Morphisms
are smooth maps.

Definition
A smooth space is a functor X: Cart®® — sSet such that
It is fibrant in Fun(Cart®P, sSet)iy;

(Descent condition) it is local with respect to Cech covers

ctlad 5y,

Here, .. S Ha,@ Uaﬁ — Ha U, hocolim c(Ua} U
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How does this encode smooth structure?

m Let X be a smooth manifold.
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An example

How does this encode smooth structure?

m Let X be a smooth manifold. Then we can turn X into a
smooth space by assigning

U~ C>®(U,X), U e Cart.

m A morphism f: U — V is sent to the map g+ g o f,
g € C>®(V,X).

85/86  16/28



An example

How does this encode smooth structure?

m Let X be a smooth manifold. Then we can turn X into a
smooth space by assigning

U~ C>®(U,X), U e Cart.

m A morphism f: U — V is sent to the map g+ gof,
g € C*®(V, X). Being local with respect to the Cech
morphisms just says that X is a sheaf:

(U, X) 2 lim { T, €(Ua X) == Ty C(Uns, X) |
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A smooth symmetric monoidal (oo, d)-category is a functor
X: Cart? x P x (A°P)*9 — sSet such that
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A smooth symmetric monoidal (oo, d)-category is a functor
X: Cart? x P x (A°P)*9 — sSet such that

It is fibrant in Fun(Cart® x [P x (A°P)*9 sSet)y;

A It is a Segal space in all directions.

N

It is complete in all directions.

3]
It satisfies the globular condition (optional).
It satisfies Segal's special I'-condition.

6]

It satisfies descent.
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A smooth symmetric monoidal (oo, d)-category is a functor
X: Cart? x P x (A°P)*9 — sSet such that

It is fibrant in Fun(Cart® x [P x (A°P)*9 sSet)y;

It is a Segal space in all directions.

It is complete in all directions.
It satisfies the globular condition (optional).

It satisfies Segal's special I'-condition.

@ It satisfies descent.

The (00, 1)-category of all smooth symmetric monoidal
(00, d)-categories is presented by a big left Bousfield localization

C®Catf 4= PSha(Cart x T x A 10c
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The bordism category
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The bordism category

To say what a bordism is, we need the notion of a cut tuple
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The bordism category

To say what a bordism is, we need the notion of a cut tuple

m A cut for a submersion p: M — U (with d-dimensional fibers)
is a triple (C., C—, C >) of subsets of M such that
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The bordism category

To say what a bordism is, we need the notion of a cut tuple

m A cut for a submersion p: M — U (with d-dimensional fibers)
is a triple (C., C—, C >) of subsets of M such that

m There is smooth h: M — R with 0 a (fiberwise) regular value,
C- = h71(0),C. = h™1(—00,0),Cs = h™1(0,0).
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The bordism category

To say what a bordism is, we need the notion of a cut tuple

m A cut for a submersion p: M — U (with d-dimensional fibers)
is a triple (C., C—, C >) of subsets of M such that

m There is smooth h: M — R with 0 a (fiberwise) regular value,
C- = h71(0),C. = h™1(—00,0),Cs = h™1(0,0).

m A cut [m]-tuple is a collection of cuts C; = (Cj, Gj=, Cj».),
J € [m], such that

CcoCCcaC...CCcpy
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Definition
For fixed m € AX? (¢) € T and U € Cart, we define the simplicial
set

Bordy (U, (£), m)

as the nerve of the following groupoid:
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Definition
For fixed m € AX? (¢) € T and U € Cart, we define the simplicial
set

Bordy (U, (£), m)

as the nerve of the following groupoid:

m Objects:
A d-dimensional manifold M.
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Definition
For fixed m € AX? (¢) € T and U € Cart, we define the simplicial
set

Bordy (U, (£), m)

as the nerve of the following groupoid:

m Objects:

A d-dimensional manifold M. _
For each 1 < j < d, a cut [m;]-tuple C' for the projection
p:Mx U— U.
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Definition
For fixed m € AX? (¢) € T and U € Cart, we define the simplicial
set

Bordy (U, (£), m)

as the nerve of the following groupoid:

m Objects:
A d-dimensional manifold M.
For each 1 < i < d, a cut [m;]-tuple C' for the projection
p:Mx U— U.
A choice of map P: M x U — (¢), partitioning the set of
connected components into £ disjoint subsets.
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Definition
For fixed m € AX? (¢) € T and U € Cart, we define the simplicial
set

Bordy (U, (£), m)

as the nerve of the following groupoid:

m Objects:

A d-dimensional manifold M.

For each 1 < i < d, a cut [m;]-tuple C' for the projection
p:Mx U— U.

A choice of map P: M x U — (¢), partitioning the set of
connected components into £ disjoint subsets.

such that
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Definition
For fixed m € AX? (¢) € T and U € Cart, we define the simplicial
set

Bordy (U, (£), m)

as the nerve of the following groupoid:

m Objects:

A d-dimensional manifold M.

For each 1 < i < d, a cut [m;]-tuple C' for the projection
p:Mx U— U.

A choice of map P: M x U — (¢), partitioning the set of
connected components into £ disjoint subsets.

such that m
m Morphisms: cut respecting diffeomorphisms.
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Geometric structures
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Geometric structures

We encode geometric structures on bordisms via sheaves on a
certain category.
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Geometric structures

We encode geometric structures on bordisms via sheaves on a
certain category.

m Let FEmby be the category whose objects are submersions
p: M — U with d-dimensional fibers, U € Cart.
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Geometric structures

We encode geometric structures on bordisms via sheaves on a
certain category.

m Let FEmby be the category whose objects are submersions
p: M — U with d-dimensional fibers, U € Cart.

m Morphisms are fiberwise open embeddings (over U).
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Geometric structures

We encode geometric structures on bordisms via sheaves on a
certain category.

m Let FEmby be the category whose objects are submersions
p: M — U with d-dimensional fibers, U € Cart.

m Morphisms are fiberwise open embeddings (over U).

m We topologize FEmb, by taking covering families to be
{pa: Mo — Uy} such that {M,} is an open cover of M.

Definition
A fiberwise d-dimensional geometric structure is a simplicial
presheaf on FEmby.
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Tangential structures

m Let BGL(d) be the simplicial presheaf on FEmb, defined by
(p: M — U) — Vectg(M).
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Tangential structures

m Let BGL(d) be the simplicial presheaf on FEmb, defined by
(p: M — U) — Vectg(M).

m Let 7: (p: M — U) — BGL(d) be the fiberwise tangent
bundle.
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Tangential structures

m Let BGL(d) be the simplicial presheaf on FEmb, defined by
(p: M — U) — Vectg(M).

m Let 7: (p: M — U) — BGL(d) be the fiberwise tangent
bundle.

m Let Y — BGL(d) be any morphism of simplicial presheaves.

113/117  21/28



Tangential structures

m Let BGL(d) be the simplicial presheaf on FEmb, defined by
(p: M — U) — Vectg(M).

m Let 7: (p: M — U) — BGL(d) be the fiberwise tangent
bundle.

m Let Y — BGL(d) be any morphism of simplicial presheaves.
m Define the simplicial presheaf

v(p:M —= U):=T(M,M XBGL(d) Y).
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Tangential structures

m Let BGL(d) be the simplicial presheaf on FEmb, defined by
(p: M — U) — Vectg(M).

Let 7: (p: M — U) — BGL(d) be the fiberwise tangent
bundle.

Let Y — BGL(d) be any morphism of simplicial presheaves.
Define the simplicial presheaf

v(p:M —= U):=T(M,M XBGL(d) Y).

Such simplicial presheaves encode tangential structures.
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Tangential structures

m Let BGL(d) be the simplicial presheaf on FEmb, defined by
(p: M — U) — Vectg(M).

Let 7: (p: M — U) — BGL(d) be the fiberwise tangent
bundle.

Let Y — BGL(d) be any morphism of simplicial presheaves.
Define the simplicial presheaf

v(p:M —= U):=T(M,M XBGL(d) Y).

Such simplicial presheaves encode tangential structures. , e.g.
Y = BG, BString(d), BString(d), BFivebrane(d).
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Tangential structures

m Let BGL(d) be the simplicial presheaf on FEmb, defined by
(p: M — U) — Vectg(M).

Let 7: (p: M — U) — BGL(d) be the fiberwise tangent
bundle.

Let Y — BGL(d) be any morphism of simplicial presheaves.
Define the simplicial presheaf

v(p:M —= U):=T(M,M XBGL(d) Y).

Such simplicial presheaves encode tangential structures. , e.g.
Y = BG, BString(d), BString(d), BFivebrane(d).

Examples of simplicial presheaves on FEmby include conformal
structures, Riemannian metrics, pseudo-Riemannian metrics, maps

to a fixed manifold, or combinations of these.
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Bordisms with geometric structure

Let S € PSha (FEmby).
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Bordisms with geometric structure

Definition
Let S € PSha(FEmby). For fixed m € AX? (¢) € T and U € Cart,
we define the simplicial set

Bord$ (U, (¢), m)

as the diagonal of the nerve of the following simplicial groupoid:
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Bordisms with geometric structure

Definition
Let S € PSha(FEmby). For fixed m € AX? (¢) € T and U € Cart,
we define the simplicial set

Bord$ (U, (¢), m)

as the diagonal of the nerve of the following simplicial groupoid:
= Objects: [[(py,p) S(M x U — U) x Cut(M x V)
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Bordisms with geometric structure

Definition
Let S € PSha(FEmby). For fixed m € AX? (¢) € T and U € Cart,
we define the simplicial set

Bord$ (U, (¢), m)

as the diagonal of the nerve of the following simplicial groupoid:
= Objects: [[(py,p) S(M x U — U) x Cut(M x V)

® Morphisms: ]_[(M’P)_)(m’,;) S(M x U — U) x Cut(M x U)

m The simplicial set Cut(M x U) has /-simplices given by a
A'-family of cut m-tuples on M x U.
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m A structure map
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m A structure map
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Fooo

\
H4---

T "I

m A structure map

m [ structure map repartitions set of connected components.
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H4- -z

T "I

m A structure map
m [ structure map repartitions set of connected components.

m Cart structure map pulls back bundles of bordisms along a
smooth map f: U — V.
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The geometrically framed bordism category

m The geometric structure is a representable presheaf of the
form R x U — U, for some cartesian space U.
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The geometrically framed bordism category

m The geometric structure is a representable presheaf of the
form R x U — U, for some cartesian space U.
MR U
(R x U = U)(M — V) = l l

v—2 U

m Fixme AX9, () €T and V € Cart.
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The geometrically framed bordism category

m The geometric structure is a representable presheaf of the
form R x U — U, for some cartesian space U.

M—LRIx U
(R x U = U)(M — V) = l l
v—E U
m Fixmec AX9, ({) €T and V € Cart. A vertex in
BordeXU_)U(V, (€), m) is family of V-family of chopped
manifolds, together with a partition of the set of connected
components and a fiberwise embedding into RY.
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The geometrically framed bordism category

m The geometric structure is a representable presheaf of the
form R x U — U, for some cartesian space U.

M- RIx U
(R x U = U)(M — V) = l l

v—2 U

m Fixmec AX9, ({) €T and V € Cart. A vertex in
BordeXU_)U(V, (€), m) is family of V-family of chopped
manifolds, together with a partition of the set of connected
components and a fiberwise embedding into RY.

m Note that we do not have closed d-manifolds as bordisms!
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Smooth field theories and locality
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Smooth field theories and locality

: ®
Fix a target category T € C“Catoo’d.
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Smooth field theories and locality

Fix a target category T € C""Cat;@;> 4- Fix a geometric structure
Se PShA(FEmbd).
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Smooth field theories and locality

Fix a target category T € Co"Catg> 4- Fix a geometric structure
S € PSha(FEmby). We define

FFTy 7(S): = Fun®(BordS, T)
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Smooth field theories and locality

Fix a target category T € Co"Cati> 4- Fix a geometric structure
S € PSha(FEmby). We define

FFTy 7(S): = Fun®(Bord$, T)

m Fun®(—, —) is (0o, d)-category obtained by forgetting
structure on the internal (oo, 1)-hom.
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Smooth field theories and locality

Fix a target category T € Co"Catfi> 4- Fix a geometric structure
S € PSha(FEmby). We define

FFTy 7(S): = Fun®(Bord$, T)

m Fun®(—, —) is (0o, d)-category obtained by forgetting
structure on the internal (oo, 1)-hom.

Theorem

The functor
FFTd,T: PShA(FEmbd)Op — Catoo,d

inj,loc

is an oo-sheaf (i.e. FFTy 1 preserves all homotopy limits).
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Relation to the cobordism hypothesis

The sheaf property of FFT4 7 is half the cobordism hypothesis.
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Relation to the cobordism hypothesis

The sheaf property of FFT4 7 is half the cobordism hypothesis.
m Define the functor

Catoo’d — PShA(FEmbd)ianoc, T — FFT;T =: T;
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Relation to the cobordism hypothesis

The sheaf property of FFT4 7 is half the cobordism hypothesis.
m Define the functor

Catoo’d — PShA(FEmbd)ianoc, T — FFT;(,T = T‘;(

m The left adjoint is the functor
Bordg: PSha(FEmby)injioc — Cateo.d, S+ Bord.
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Relation to the cobordism hypothesis

The sheaf property of FFT4 7 is half the cobordism hypothesis.
m Define the functor

Catoo’d — PShA(FEmbd)ianoc, T — FFT;T =: T‘;(

m The left adjoint is the functor
Bordg: PSha(FEmby)injioc — Cateo.d, S+ Bord.

m The theorem can be rephrased by saying that the above
adjunction is Quillen at the level of the Cech local model
structure.
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Relation to the cobordism hypothesis

The sheaf property of FFT4 7 is half the cobordism hypothesis.
m Define the functor

Catoo’d — PShA(FEmbd)ianoc, T — FFT;T =: T‘;(

m The left adjoint is the functor
Bordg: PSha(FEmby)injioc — Cateo.d, S+ Bord.

m The theorem can be rephrased by saying that the above
adjunction is Quillen at the level of the Cech local model
structure.

m By the universal property of the adjunction, we have an
equivalence of derived mapping spaces

Fun®(Bord3, T) ~ Map(S, T).
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Plan for talks 3 and 4

m In the next talk, Dmitri will sketch the proof of the codescent
property.

144/145  28/28



Plan for talks 3 and 4

m In the next talk, Dmitri will sketch the proof of the codescent
property.

m In the final talk, | will sketch the proof of the geometrically
framed case.
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