The classification of two-dimensional extended nontopological field theories

Dmitri Pavlov (Texas Tech University, Lubbock, Texas)

These slides: https://dmitripavlov.org/greifswald.pdf arXiv:2011.01208, arXiv:2111.01095 (joint with Daniel Grady)

Main theorem 1: conformal field theory

Theorem

The following smooth ∞-categories are equivalent:

- extended conformal field theories;
- Serre-twisted homotopy coherent representations of the Lie group $\mathbf{R}^{2} \rtimes \widetilde{\operatorname{Conf}}(2)$ on a 2-dualizable* object.
Notation:
- $\widetilde{\operatorname{Conf}}(2)$: the universal covering of $\operatorname{Conf}(2)$.
- $\operatorname{Conf}(2): z \mapsto \sum_{k \geq 1} a_{k} z^{k}, a_{1} \neq 0$, group operation: composition.
- Serre-twisted: restricting to $\mathbf{Z} \subset \widetilde{\operatorname{Conf}}(2) \subset \mathbf{R}^{2} \rtimes \widetilde{\operatorname{Conf}}(2)$ yields Serre automorphisms.
- Example: if Serre automorphisms are trivial, get representations of $\mathbf{R}^{2} \rtimes \operatorname{Conf}(2)$.

Main theorem 2: 2|1-Euclidean field theory

Theorem

The following smooth ∞-categories are equivalent:

- extended 2|1-Euclidean field theories;
- Serre-twisted homotopy coherent representations of the Lie supergroup Euc(2|1) on a 2-dualizable object.

Notation:

- $\widetilde{\operatorname{Euc}}(2 \mid 1)$: the universal covering of $\operatorname{Euc}(2 \mid 1)=\mathbf{R}^{2 \mid 1} \rtimes \operatorname{Spin}(2)$.
- Serre-twisted: restricting to $\mathbf{Z} \subset \widetilde{\operatorname{Euc}(2 \mid 1) ~ y i e l d s ~ S e r r e ~}$ automorphisms.
- Serre automorphisms trivial \Longrightarrow representations of Euc(2|1).

Origins of functorial field theory

■ 1948 (Feynman): path integral formulation of quantum mechanics

- 1949 (Feynman-Kac): the Feynman-Kac formula

■ Later: path integral used in QFT, no longer rigorous

- 1980s (Witten): properties of path integrals for (conformal) field theory
- 1980s (Segal): mathematical formulation of conformal field theory

Further developments

■ late 1980s (Atiyah, Kontsevich, ...): topological theories: easier to construct and study, but less relevant for physics
■ 1992 (Freed, Lawrence): extended field theories (correspond to locality in physics)
■ 1995 (Baez-Dolan): the topological cobordism and tangle hypotheses
■ 2002 (Stolz-Teichner): modern formulation of nontopological field theories (including supersymmetry); the Stolz-Teichner program on 2|1-EFTs and TMF

- 2004 (Costello): the ($\infty, 2$)-category of topological 2-dimensional bordisms
- 2006 (Hopkins-Lurie); 2015 (Calaque-Scheimbauer): the (∞, d)-category of topological bordisms

Previous results on the topological cobordism hypothesis

- 2008 (Lurie): outline of a proof of the topological cobordism hypothesis
- 2017 (Ayala-Francis): a different approach, conditional on a conjecture
■ 2004 (Costello), 2009 (Schommer-Pries): the 2-dimensional topological cobordism hypothesis
- 2006 (Galatius-Madsen-Tillmann-Weiss); 2011 (Bökstedt-Madsen); 2017 (Schommer-Pries): the invertible case

Low-dimensional nontopological field theories

Examples of 2-dimensional nonextended nontopological field theories:

- 2007 (Pickrell): Riemannian 2-dimensional field theory
- 2018 (Runkel-Szegedy): volume-dependent 2-dimensional field theory
Classifications of holonomy maps, transport functors, and 1-dimensional nontopological field theories:

■ 1990 (Barrett), 1994 (Caetano-Picken), 2007 (Schreiber-Waldorf): parallel transport for bundles
■ 2000 (Mackaay-Picken), 2002 (Bunke-Willerton-Turner), 2008 (Schreiber-Waldorf): parallel transport for gerbes
■ 2015 (Berwick-Evans-P.), 2020 (Ludewig-Stoffel): 1-dimensional field theories

Features of the geometric bordism category

- Locality: k-bordisms with corners of all codimensions (up to d) with compositions in d directions
\Longrightarrow symmetric monoidal d-category of bordisms
- Isotopy: chain complexes to encode BV-BRST
\Longrightarrow must encode (higher) diffeomorphisms between bordisms
\Longrightarrow symmetric monoidal (∞, d)-categories
■ Geometric (nontopological) structures on bordisms: Riemannian/Lorentzian metrics, complex/conformal/symplectic/contact structures, principal G-bundles with connection and isos, higher gauge fields (Kalb-Ramond, Ramond-Ramond)
\Longrightarrow an ($\infty, 1$)-sheaf of geometric structures
- Smoothness: values of field theories depend smoothly on bordisms
$\Longrightarrow(\infty, 1)$-sheaf of (∞, d)-categories of bordisms

How to compose bordisms

Geometric structures

Definition

Given $d \geq 0$, the site FEmb_{d} has
■ Objects: submersions $T \rightarrow U$ with d-dimensional fibers, where $U \cong \mathbf{R}^{n}$ is a cartesian manifold;

- Morphisms: commutative squares with $T \rightarrow T^{\prime}$ a fiberwise open embedding over a smooth map $U \rightarrow U^{\prime}$;
- Covering families: open covers on total spaces T.

Geometric structures

Definition

Given $d \geq 0$, the site FEmb_{d} has

- Objects: submersions with d-dimensional fibers;
- Morphisms: fiberwise open embeddings;
- Covering families: open covers on total spaces T.

Definition

Given $d \geq 0$, a d-dimensional geometric structure is a simplicial presheaf \mathcal{S} : $\mathrm{FEmb}_{d}^{\mathrm{op}} \rightarrow$ sSet.

Example:

- $T \rightarrow U \mapsto$ the set of fiberwise Riemannian metrics on $T \rightarrow U$;

■ $\left(T \rightarrow T^{\prime}, U \rightarrow U^{\prime}\right) \mapsto$ the restriction map from T^{\prime} to T.

Examples of geometric structures

- fiberwise Riemannian, Lorentzian, pseudo-Riemannian metrics; positive/negative sectional/Ricci curvature;
■ fiberwise conformal, complex, symplectic, contact, Kähler structures;
- fiberwise foliations, possibly with transversal metrics;
- smooth map to a target manifold M (traditional σ-model);
$■$ smooth map to an orbifold or ∞-sheaf on manifolds;
- fiberwise etale map or an open embedding into a target manifold N;
■ fiberwise topological structures: orientation, framing, etc.
- fiberwise differential n-forms (possibly closed).

Examples of geometric structures: gauge transformations

Definition

- Send a d-manifold M to (the nerve of) the groupoid $B_{\nabla} G(M)$:
- Objects: principal G-bundles on T with a fiberwise connection on $T \rightarrow U$ (gauge fields);
- Morphisms: connection-preserving isomorphisms (gauge transformations).

Examples of geometric structures: (higher) gauge transformations

■ Principal G-bundles with connection on M (gauge fields, e.g., the electromagnetic field);

- Bundle gerbe with connection on M (B-field, Kalb-Ramond field).
- Bundle 2-gerbe with connection on M (supergravity C-field).
- Bundle ($d-1$)-gerbes with connection on M (Deligne cohomology, Cheeger-Simons characters, ordinary differential cohomology, circle d-bundles).
- Geometric tangential structures: geometric Spin ${ }^{c}$-structure, String (Waldorf), Fivebrane (Sati-Schreiber-Stasheff), Ninebrane (Sati). (Vanishing of anomaly.)
- differential K-theory (Ramond-Ramond field). Requires ∞-groupoids.

The geometric cobordism hypothesis

Ingredients:

- A dimension $d \geq 0$.

■ A smooth symmetric monoidal (∞, d)-category \mathcal{V} of values.
■ A d-dimensional geometric structure \mathcal{S} : $\mathrm{FEmb}_{d}^{\mathrm{op}} \rightarrow$ sSet.
Constructions:

- The smooth symmetric monoidal (∞, d)-category of bordisms $\mathfrak{B o r d}{ }_{d}^{\mathcal{S}}$ with geometric structure \mathcal{S}.
- A d-dimensional functorial field theory valued in \mathcal{V} with geometric structure \mathcal{S} is a smooth symmetric monoidal (∞, d)-functor $\mathfrak{B o r d}_{d}^{\mathcal{S}} \rightarrow \mathcal{V}$.
- The simplicial set of d-dimensional functorial field theories valued in \mathcal{V} with geometric structure \mathcal{S} is the derived mapping simplicial set

$$
\mathrm{FFT}_{d, \mathcal{V}}(\mathcal{S})=\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}{ }_{d}^{\mathcal{S}}, \mathcal{V}\right) .
$$

Can be refined to a derived internal hom.

The geometric cobordism hypothesis

Conjectures (for topological field theories):

- Freed, Lawrence (1992): $\mathrm{FFT}_{d, \mathcal{V}}$ is an ∞-sheaf.

■ Baez-Dolan (1995), Hopkins-Lurie (2008):

$$
\operatorname{FFT}_{d, \mathcal{V}}(\mathcal{S}) \simeq \mathbf{R} \operatorname{Map}\left(\mathcal{S}, \mathcal{V}^{\times}\right)
$$

\mathcal{V}^{\times}: fully dualizable objects and invertible morphisms.

The geometric cobordism hypothesis

Conjectures (for topological field theories):

- Freed, Lawrence (1992): $\mathrm{FFT}_{d, \mathcal{V}}$ is an ∞-sheaf.

■ Baez-Dolan (1995), Hopkins-Lurie (2008): $\operatorname{FFT}_{d, \mathcal{V}}(\mathcal{S}) \simeq \mathbf{R} \operatorname{Map}\left(\mathcal{S}, \mathcal{V}^{\times}\right)$.

Theorem (Grady-P., The geometric cobordism hypothesis)
Part I (Locality): $\mathfrak{B o r d}_{d}$ is a left adjoint functor:

$$
\mathbf{R} \operatorname{Map}\left(\mathfrak{B o r d}{\underset{d}{d}}_{\mathcal{S}}^{\mathcal{S}}, \mathcal{V}\right) \simeq \mathbf{R} \operatorname{Map}\left(\mathcal{S}, \mathcal{V}_{d}^{\times}\right)
$$

where $\mathcal{V}_{d}^{\times}=\mathrm{FFT}_{d, \mathcal{V}}$, i.e., $\mathcal{V}_{d}^{\times}(T \rightarrow U)=\mathrm{FFT}_{d, \mathcal{V}}(T \rightarrow U)$.
Part II (Framed GCH): The evaluation-at-points map

$$
\mathcal{V}_{d}^{\times}\left(\mathbf{R}^{d} \times U \rightarrow U\right)=\mathrm{FFT}_{d, \mathcal{V}}\left(\mathbf{R}^{d} \times U \rightarrow U\right) \rightarrow \mathcal{V}^{\times}(U)
$$

is a weak equivalence of simplicial sets functorial in U.

Computing with GCH

- How to compute \mathcal{V}_{d}^{\times}?
- How to compute $\mathbf{R} \operatorname{Map}\left(\mathcal{S}, \mathcal{V}_{d}^{\times}\right)$?

Computing \mathcal{V}_{d}^{\times}

- Already know $\mathcal{V}_{d}^{\times}\left(\mathbf{R}^{d} \times U \rightarrow U\right) \simeq \mathcal{V}^{\times}(U)$, functorial in $U \in$ Cart.
- What are the structure maps for functoriality in FEmb_{d} ?
- Step 1: Guess a map $\mathcal{W} \rightarrow \mathcal{V}_{d}^{\times}$.
- Step 2: For every U, prove $\mathcal{W}\left(\mathbf{R}^{d} \times U \rightarrow U\right) \rightarrow \mathcal{V}_{d}^{\times}\left(\mathbf{R}^{d} \times U \rightarrow U\right) \rightarrow \mathcal{V}^{\times}(U)$ is a weak equivalence.

Example ($\mathcal{V}=\mathrm{B}^{d} \mathrm{U}(1)$; prequantum FFTs)

- Step 1a: $\mathcal{W}\left(\mathbf{R}^{d} \times U \rightarrow U\right)=U \Gamma\left(\Omega_{U}^{d}\left(\mathbf{R}^{d} \times U\right) \leftarrow \cdots \leftarrow\right.$ $\left.\Omega_{U}^{1}\left(\mathbf{R}^{d} \times U\right) \leftarrow \mathrm{C}^{\infty}\left(\mathbf{R}^{d} \times U, \mathrm{U}(1)\right)\right)$.
- Step 1b: $\mathcal{W} \rightarrow \mathcal{V}_{d}^{\times}: \omega \mapsto\left(B \mapsto \exp \left(\frac{i}{\hbar} \int_{B} \omega\right)\right)$.
- Step 2: Poincaré lemma:
$\mathcal{W}\left(\mathbf{R}^{d} \times U \rightarrow U\right) \xrightarrow{\sim} \mathrm{B}^{d} \mathrm{C}^{\infty}(U, \mathrm{U}(1))$

How to compute $\operatorname{RMap}(\mathcal{S}, \mathcal{W})$?

Two main options:

- Use the theory of natural operations, working on the site FEmb_{d}.
Examples: differential characteristic classes yield prequantum field theories.
- Use an adjunction to switch to a different category: Fun(Cart $\left.{ }^{\text {op }}, \mathrm{sSet}^{\mathrm{O}(d)}\right)$.
Examples: classification of conformal or Euclidean field theories.

Categories of geometric structures

Proposition

The functors q^{*} and ι^{*} are right Quillen equivalences.

$$
\mathcal{S h}\left(\mathrm{FEmb}_{d}\right) \stackrel{\rho^{*}}{q^{*}} \mathfrak{S h}\left(\mathfrak{F} \mathfrak{E m b} \mathfrak{m}_{d}\right) \xrightarrow{\iota^{*}} \mathcal{S h}(\mathrm{Cart})^{\mathrm{O}(d)}
$$

$\operatorname{Sh}\left(\mathrm{FEmbCart}{ }_{d}\right) \stackrel{\rho^{*}}{\longleftarrow} \operatorname{Sh}\left(\mathfrak{F e m b c a r t}{ }_{d}\right)$.

- $\operatorname{Sh}(C)$: simplicial presheaves on C, Čech-local model structure
- $\mathfrak{F E m b}{ }_{d}$: like FEmb_{d}, but enriched in spaces
- FEmbCart ${ }_{d}$: full subcategory of FEmb_{d} on

$$
\mathrm{D}_{U}:=\left(\mathbf{R}^{d} \times U \rightarrow U\right)
$$

■ $\mathfrak{F E m b C a r t} \mathfrak{E}_{d}$: equivalent to Cart $\times \mathrm{BO}(d)$ by C^{∞} Kister-Mazur

Categories of geometric structures

Proposition

The functors q^{*} and ι^{*} are right Quillen equivalences.

$\operatorname{Sh}\left(\mathrm{FEmbCart}_{d}\right) \stackrel{\rho^{*}}{\longleftarrow} \operatorname{Sh}\left(\mathfrak{F E m b e} \mathrm{Cart}_{d}\right)$.

The functor $\rho_{!}$adds " d-thin homotopies" to a geometric structure. d-dimensional holonomy is invariant under d-thin homotopies.
$d=1$: Kobayashi, Barrett, Caetano-Picken
$d>1$: Bunke-Turner-Willerton, Picken, Mackaay-Picken

Categories of geometric structures

Proposition

The functors q^{*} and ι^{*} are right Quillen equivalences.

$$
\begin{aligned}
& \mathcal{S h}\left(\mathrm{FEmb}_{d}\right) \stackrel{\rho^{*}}{\longleftarrow} \operatorname{Sh}\left(\mathfrak{F E m b}{ }_{d}\right) \xrightarrow{\iota^{*}} \operatorname{Sh}(\mathrm{Cart})^{\mathrm{O}(d)} \\
& q^{*} \downarrow q^{*} \downarrow \text { in }
\end{aligned}
$$

$\operatorname{Sh}\left(\mathrm{FEmbCart}_{d}\right) \stackrel{\rho^{*}}{\longleftarrow} \operatorname{Sh}\left(\mathfrak{F E m b e \mathfrak { F a r t } _ { d }) .}\right.$

Recipe to compute $\mathbf{R} \operatorname{Map}\left(\mathcal{S}, \rho^{*} \mathcal{V}_{d}^{\times}\right)$.
■ Use q^{*} to move to FEmbCart $_{d} / \mathfrak{F} \mathfrak{E m b C a r t}{ }_{d}$. (Suppressed from the notation.)
$■ \mathbf{R} \operatorname{Map}\left(\mathcal{S}, \rho^{*} \mathcal{V}_{d}^{\times}\right) \simeq \mathbf{R} \operatorname{Map}\left(\rho_{!} \mathcal{S}, \mathcal{V}_{d}^{\times}\right)$.

- Compute $\rho_{!} \mathcal{S}$.
$■ \mathbf{R} \operatorname{Map}\left(\rho_{!} \mathcal{S}, \mathcal{V}_{d}^{\times}\right) \simeq \mathbf{R} \operatorname{Map}\left(\iota^{*} \rho_{!} \mathcal{S}, \iota^{*} \mathcal{V}_{d}^{\times}\right) .\left(\mathrm{C}^{\infty}\right.$ Kister-Mazur $)$

How to compute $\rho_{!} \mathcal{S}$?

Notation:
■ FEmbCart $_{d}$: Objects $\mathrm{D}_{U}=\left(\mathbf{R}^{d} \times U \rightarrow U\right)$, morphisms: fiberwise open embeddings.

- $\mathfrak{F E m b C a r t}{ }_{d}$: Objects \mathfrak{D}_{U}, space of morphisms.
- ρ : FEmbCart $_{d} \rightarrow \mathfrak{F E m b C a r t}{ }_{d}$: inclusion.
- $\rho_{!}: \mathcal{S h}\left(\mathrm{FEmbCart}_{d}\right) \rightarrow \mathcal{S h}\left(\mathfrak{F E m b C a r t}_{d}\right)$: left Kan extension.

Computation:

- $\rho_{!} \mathcal{S}=\rho_{!} \operatorname{hocolim}_{\mathrm{D}_{U} \rightarrow \mathcal{S}} Y\left(\mathrm{D}_{U}\right)=\operatorname{hocolim}_{\mathrm{D}_{U} \rightarrow \mathcal{S}} Y\left(\mathfrak{D}_{U}\right)$.
- Evaluate on \mathfrak{D}_{W} :

$$
\left(\rho_{!} \mathcal{S}\right)\left(\mathfrak{D}_{W}\right)=\underset{D_{U} \rightarrow \mathcal{S}}{\operatorname{hocolim}} \mathfrak{F E m b e d a r t}_{d}\left(\mathfrak{D}_{W}, \mathfrak{D}_{U}\right)
$$

- $\mathfrak{F} \mathfrak{E m b C a r t}{ }_{d}\left(\mathfrak{D}_{W}, \mathfrak{D}_{U}\right)$ is 1-truncated. Ob: $\varphi: \mathrm{D}_{W} \rightarrow \mathrm{D}_{U}$. Mor $\gamma: \varphi \rightarrow \varphi^{\prime}$: isotopy classes of isotopies from φ to φ^{\prime} (form a Z-torsor).

How to compute $\rho_{!} \mathcal{S}$?

- $\rho_{!} \mathcal{S}=\rho_{!} \operatorname{hocolim}_{\mathrm{D}_{U} \rightarrow \mathcal{S}} Y\left(\mathrm{D}_{U}\right)=\operatorname{hocolim}_{\mathrm{D}_{U} \rightarrow \mathcal{S}} Y\left(\mathfrak{D}_{U}\right)$.
- Evaluate on \mathfrak{D}_{W} :

$$
\left(\rho_{!} \mathcal{S}\right)\left(\mathfrak{D}_{W}\right)=\underset{\mathrm{D}_{U} \rightarrow \mathcal{S}}{\operatorname{hocolim}_{\mathfrak{F}} \mathfrak{E m b C a r t}}\left(\mathfrak{D}_{W}, \mathfrak{D}_{U}\right) .
$$

■ $\mathfrak{F E m b C a r t}{ }_{d}\left(\mathfrak{D}_{W}, \mathfrak{D}_{U}\right)$ is 1-truncated. Ob: $\varphi: \mathrm{D}_{W} \rightarrow \mathrm{D}_{U}$. Mor $\gamma: \varphi \rightarrow \varphi^{\prime}$: isotopy classes of isotopies from φ to φ^{\prime} (form a Z-torsor).

- Thomason's theorem: hocolim computed as the Grothendieck construction F. $\mathrm{Ob}: \mathrm{D}_{W} \xrightarrow{\varphi} \mathrm{D}_{U} \xrightarrow{g} \mathcal{S}$. Mor $(\varphi, g) \rightarrow\left(\varphi^{\prime}, g^{\prime}\right)$: $\beta: \mathrm{D}_{U} \rightarrow \mathrm{D}_{U^{\prime}}: g=g^{\prime} \beta, \gamma: \beta \varphi \rightarrow \varphi^{\prime}$.

How to compute $\rho_{!} \mathcal{S}$?

- $\mathfrak{F E m b C a r t}{ }_{d}\left(\mathfrak{D}_{W}, \mathfrak{D}_{U}\right)$ is 1-truncated. Ob: $\varphi: \mathrm{D}_{W} \rightarrow \mathrm{D}_{U}$. Mor $\gamma: \varphi \rightarrow \varphi^{\prime}$: isotopy classes of isotopies from φ to φ^{\prime} (form a Z-torsor).
- Thomason's theorem: hocolim computed as the Grothendieck construction F. Ob: $\mathrm{D}_{W} \xrightarrow{\varphi} \mathrm{D}_{U} \xrightarrow{g} \mathcal{S}$. Mor $(\varphi, g) \rightarrow\left(\varphi^{\prime}, g^{\prime}\right)$: $\beta: \mathrm{D}_{U} \rightarrow \mathrm{D}_{U^{\prime}}: g=g^{\prime} \beta, \gamma: \beta \varphi \rightarrow \varphi^{\prime}$.

- $\mathrm{BC}^{\infty}\left(W, \mathbf{R}^{2} \rtimes \widetilde{\operatorname{Conf}}(2)\right)$. Ob: germ of D_{W} around 0 . Mor: displacement + automorphism of a germ.

How to compute $\rho_{!} \mathcal{S}$?

- Thomason's theorem: hocolim computed as the Grothendieck construction F. Ob: $\mathrm{D}_{W} \xrightarrow{\varphi} \mathrm{D}_{U} \xrightarrow{g} \mathcal{S}$. Mor $(\varphi, g) \rightarrow\left(\varphi^{\prime}, g^{\prime}\right)$: $\beta: \mathrm{D}_{U} \rightarrow \mathrm{D}_{U^{\prime}}: g=g^{\prime} \beta, \gamma: \beta \varphi \rightarrow \varphi^{\prime}$.

- $\mathrm{BC}^{\infty}\left(W, \mathbf{R}^{2} \rtimes \widetilde{\operatorname{Conf}}(2)\right)$. Ob: germ of D_{W} around 0 . Mor: displacement + automorphism of a germ.
- Projection functor $\pi: F \rightarrow \mathrm{BC}^{\infty}\left(W, \mathbf{R}^{2} \rtimes \widetilde{\operatorname{Conf}}(2)\right)$.
$■(\varphi, g) \mapsto$ germ of D_{W} around 0.
- $(\beta, \gamma) \mapsto B: W \rightarrow \mathbf{R}^{2} \rtimes \widetilde{\operatorname{Conf}}(2)$

How to compute $\rho_{!} \mathcal{S}$?

- Grothendieck construction F:

- $\mathrm{BC}^{\infty}\left(W, \mathbf{R}^{2} \rtimes \widetilde{\operatorname{Conf}}(2)\right)$. Ob: germ of D_{W} around 0 . Mor: displacement + automorphism of a germ.
- Projection functor $\pi: F \rightarrow \mathrm{BC}^{\infty}\left(W, \mathbf{R}^{2} \rtimes \widetilde{\operatorname{Conf}}(2)\right)$.
- $(\varphi, g) \mapsto$ germ of D_{W} around 0 .
- $(\beta, \gamma) \mapsto B: W \rightarrow \mathbf{R}^{2} \rtimes \widetilde{\operatorname{Conf}}(2)$
- $\left(\varphi^{\prime}\right)^{-1} \gamma$ is an isotopy class of isotopies $\left(\varphi^{\prime}\right)^{-1} \beta \varphi \rightarrow \operatorname{id}_{D_{w}}$.
- $W \rightarrow \mathbf{R}^{2}$: the displacement of the origin.
- $W \rightarrow \widetilde{\operatorname{Conf}(2): ~ t h e ~ g e r m ~ o f ~ e m b e d d i n g ~}+$ winding number.

How to compute $\rho_{!} \mathcal{S}$?

- Grothendieck construction F:

- $\mathrm{BC}^{\infty}\left(W, \mathbf{R}^{2} \rtimes \widetilde{\operatorname{Conf}}(2)\right)$. Ob: germ of D_{W} around 0 . Mor: displacement + automorphism of a germ.
- Projection functor $\pi: F \rightarrow \mathrm{BC}^{\infty}\left(W, \mathbf{R}^{2} \rtimes \widetilde{\operatorname{Conf}}(2)\right)$.
$\square(\varphi, g) \mapsto$ germ of D_{W} around 0 .
- $(\beta, \gamma) \mapsto B: W \rightarrow \mathbf{R}^{2} \rtimes \widetilde{\operatorname{Conf}}(2)$

■ $\left(\varphi^{\prime}\right)^{-1} \gamma$ is an isotopy class of isotopies $\left(\varphi^{\prime}\right)^{-1} \beta \varphi \rightarrow \operatorname{id}_{D_{w}}$.

- $W \rightarrow \mathbf{R}^{2}$: the displacement of the origin.
- $W \rightarrow \widetilde{\operatorname{Conf}(2): ~ t h e ~ g e r m ~ o f ~ e m b e d d i n g ~}+$ winding number.
- Quillen's Theorem A : $* / \pi$ is a directed poset \Longrightarrow weakly contractible nerve

How to compute $\rho_{!} \mathcal{S}$?

- $\mathrm{BC}^{\infty}\left(W, \mathbf{R}^{2} \rtimes \widetilde{\operatorname{Conf}}(2)\right)$. Ob: germ of D_{W} around 0 . Mor: displacement + automorphism of a germ.
- Projection functor $\pi: F \rightarrow \mathrm{BC}^{\infty}\left(W, \mathbf{R}^{2} \rtimes \widetilde{\operatorname{Conf}}(2)\right)$.
$■(\varphi, g) \mapsto$ germ of D_{W} around 0 .
- $(\beta, \gamma) \mapsto B: W \rightarrow \mathbf{R}^{2} \rtimes \widetilde{\operatorname{Conf}}(2)$

■ $\left(\varphi^{\prime}\right)^{-1} \gamma$ is an isotopy class of isotopies $\left(\varphi^{\prime}\right)^{-1} \beta \varphi \rightarrow \mathrm{id}_{\mathrm{D}_{w}}$.

- $W \rightarrow \mathbf{R}^{2}$: the displacement of the origin.
- $W \rightarrow \widetilde{\text { Conf(2): the germ of embedding }+ \text { winding number. }}$
- Quillen's Theorem A: $* / \pi$ is a directed poset \Longrightarrow weakly contractible nerve
- Theorem: $(\rho!\mathcal{S})\left(\mathfrak{D}_{W}\right) \simeq \mathrm{BC}^{\infty}\left(W, \mathbf{R}^{2} \rtimes \widetilde{\operatorname{Conf}}(2)\right)$.

How to compute $\rho_{!} \mathcal{S}$?

- $\mathrm{BC}^{\infty}\left(W, \mathbf{R}^{2} \rtimes \widetilde{\operatorname{Conf}}(2)\right)$. Ob: germ of D_{W} around 0 . Mor: displacement + automorphism of a germ.
- Projection functor $\pi: F \rightarrow \mathrm{BC}^{\infty}\left(W, \mathbf{R}^{2} \rtimes \widetilde{\operatorname{Conf}}(2)\right)$.
- $(\varphi, g) \mapsto$ germ of D_{W} around 0 .
- $(\beta, \gamma) \mapsto B: W \rightarrow \mathbf{R}^{2} \rtimes \widetilde{\operatorname{Conf}}(2)$
- $\left(\varphi^{\prime}\right)^{-1} \gamma$ is an isotopy class of isotopies $\left(\varphi^{\prime}\right)^{-1} \beta \varphi \rightarrow \mathrm{id}_{\mathrm{D}_{w}}$.
- $W \rightarrow \mathbf{R}^{2}$: the displacement of the origin.
- $W \rightarrow \widetilde{\operatorname{Conf}}(2)$: the germ of embedding + winding number.
- Quillen's Theorem A: $* / \pi$ is a directed poset \Longrightarrow weakly contractible nerve
- Theorem: $(\rho!\mathcal{S})\left(\mathfrak{D}_{W}\right) \simeq \mathrm{BC}^{\infty}\left(W, \mathbf{R}^{2} \rtimes \widetilde{\operatorname{Conf}}(2)\right)$.
- Theorem: $\mathbf{R} \operatorname{Map}\left(\mathcal{S}, \mathcal{V}_{d}^{\times}\right) \simeq \mathbf{R} \operatorname{Map}\left(\mathrm{B}\left(\mathbf{R}^{2} \rtimes \widetilde{\operatorname{Conf}}(2)\right), \iota^{*} \mathcal{V}_{d}^{\times}\right)$.

Applications (current)

- Consequence of the GCH: smooth invertible FFTs are classified by the smooth Madsen-Tillmann spectrum. (Previous work: Galatius-Madsen-Tillmann-Weiss, Bökstedt-Madsen, Schommer-Pries.)
■ The Stolz-Teichner conjecture: concordance classes of extended FFTs have a classifying space. (Proof: Locality + the smooth Oka principle (Berwick-Evans-Boavida de Brito-P.).
- Construction of power operations on the level of FFTs (extending Barthel-Berwick-Evans-Stapleton).
■ (Grady) The Freed-Hopkins conjecture (Conjecture 8.37 in Reflection positivity and invertible topological phases)

Applications (ongoing)

■ Construction of prequantum FFTs from geometric/topological data. Differential characteristic classes as FFTs. (cf. Berthomieu 2008; Bunke-Schick 2010; Bunke 2010).

- Atiyah-Singer index invariants (index, η-invariant, determinant line, index gerbe) as a fully extended FFT (cf. Bunke 2002; Hopkins-Singer 2002; Bunke-Schick 2007).
- Quantization of functorial field theories. Examples: 2d Yang-Mills.

Happy birthday Uli!

Example: the prequantum Chern-Simons theory (1)

Input data:
■ G: a Lie group;

- $\mathcal{S}=\mathrm{B}_{\nabla} G$ (fiberwise principal G-bundles with connection);
- $\mathcal{V}=\mathrm{B}^{3} \mathrm{U}(1)$ (a single k-morphism for $k<3$; 3-morphisms are $\mathrm{U}(1)$ as a Lie group).
Output data: a fully extended 3-dimensional G-gauged FFT:

$$
\mathfrak{B o r d}{ }_{3}^{B_{\nabla} G} \rightarrow \mathrm{~B}^{3} \mathrm{U}(1)
$$

- Closed 3-manifold $M \mapsto$ the Chern-Simons action of M;

■ Closed 2-manifold $B \mapsto$ the prequantum line bundle of B;

- Closed 1-manifold $C \mapsto$ the Wess-Zumino-Witten gerbe (B-field) of C (Carey-Johnson-Murray-Stevenson-Wang);
- Point \mapsto the Chern-Simons 2-gerbe (Waldorf).

Example: the prequantum Chern-Simons theory (2)

Step 1 Compute $\mathcal{V}_{3}^{\times}=\left(\mathrm{B}^{3} \mathrm{U}(1)\right)_{3}^{\times}$.
Step 1a W is the fiberwise Deligne complex of $T \rightarrow U$:

$$
W(T \rightarrow U)=\Omega^{3} \leftarrow \Omega^{2} \leftarrow \Omega^{1} \leftarrow \mathrm{C}^{\infty}(T, \mathrm{U}(1))
$$

Step 1b $W \rightarrow \mathcal{V}_{3}^{\times}$: a fiberwise 3-form ω on $T \rightarrow U$ \mapsto framed FFT: 3-bordism $B \mapsto \exp \left(\int_{B} \omega\right)$.
Step 1c The composition

$$
W(T \rightarrow U) \rightarrow \mathcal{V}_{3}^{\times}(T \rightarrow U) \rightarrow \mathcal{V}^{\times}(U)=\mathrm{B}^{3} \mathrm{C}_{\mathrm{fconst}}^{\infty}(T, \mathrm{U}(1))
$$

is a weak equivalence by the Poincaré lemma.

Example: the prequantum Chern-Simons theory (2)

Step 1 Compute $\mathcal{V}_{3}^{\times}=\left(\mathrm{B}^{3} \mathrm{U}(1)\right)_{3}^{\times}$.
Step 1a W is the fiberwise Deligne complex of $T \rightarrow U$:

$$
W(T \rightarrow U)=\Omega^{3} \leftarrow \Omega^{2} \leftarrow \Omega^{1} \leftarrow \mathrm{C}^{\infty}(T, \mathrm{U}(1))
$$

Step 1b $W \rightarrow \mathcal{V}_{3}^{\times}$: a fiberwise 3-form ω on $T \rightarrow U$ \mapsto framed FFT: 3-bordism $B \mapsto \exp \left(\int_{B} \omega\right)$.
Step 1c The composition

$$
W(T \rightarrow U) \rightarrow \mathcal{V}_{3}^{\times}(T \rightarrow U) \rightarrow \mathcal{V}^{\times}(U)=\mathrm{B}^{3} \mathrm{C}_{\text {fconst }}^{\infty}(T, \mathrm{U}(1))
$$

is a weak equivalence by the Poincaré lemma.
Step 2 Construct a point in

$$
\begin{gathered}
\mathbf{R} \operatorname{Map}\left(\mathrm{B}_{\nabla} G, W\right) \\
=\mathbf{R} \operatorname{Map}\left(\Omega^{1}(-, \mathfrak{g}) / / \mathrm{C}^{\infty}(-, G), \mathrm{B}^{3} \mathrm{C}_{\text {fconst }}^{\infty}(-, \mathrm{U}(1))\right) .
\end{gathered}
$$

(Brylinski-McLaughlin 1996, Fiorenza-Sati-Schreiber 2013)
Step 2' Even better: can compute the whole space $\mathbf{R} \operatorname{Map}\left(\mathrm{B}_{\nabla} G, W\right)$.

Example: the prequantum Chern-Simons theory (2)

Step 1 Result: $\mathcal{V}_{3}^{\times}=\left(B^{3} U(1)\right)_{3}^{\times}=B^{3} C_{\text {fconst }}^{\infty}(-, U(1))$.
Step 2 Construct a point in

$$
\begin{gathered}
\mathbf{R} \operatorname{Map}\left(\mathrm{B}_{\nabla} G, W\right) \\
=\mathbf{R} \operatorname{Map}\left(\Omega^{1}(-, \mathfrak{g}) / / \mathrm{C}^{\infty}(-, G), \mathrm{B}^{3} \mathrm{C}_{\text {fconst }}^{\infty}(-, \mathrm{U}(1))\right) .
\end{gathered}
$$

(Brylinski-McLaughlin 1996, Fiorenza-Sati-Schreiber 2013)
Step 2' Even better: can compute the whole space $\mathbf{R} \operatorname{Map}\left(B_{\nabla} G, W\right)$.

Quantization of functorial field theories

X : the prequantum geometric structure
Y : the quantum geometric structure (e.g., a point)

$d=1$: recover the Spin^{c} geometric quantization when X is a smooth manifold, $Y=\operatorname{Riem}_{1 \mid 1}, \mathcal{V}=$ Fredholm complexes.

