Measurable locales, commutative von Neumann algebras, and measure theory

Dmitri Pavlov (Texas Tech University, Lubbock)

These slides: https://dmitripavlov.org/denton.pdf

Gelfand-type duality for commutative von Neumann algebras. Journal of Pure and Applied Algebra 226:4 (2022), 106884, 1–53. arXiv:2005.05284 Theorem (P.) The following categories are equivalent.

- HStonean (Dixmier): hyperstonean topological spaces and open maps.
- HStoneanLoc: hyperstonean locales and open maps.
- MLoc: measurable locales (opposite category of complete Boolean algebras admitting a measure).
- CVNA^{op}: opposite category of commutative von Neumann algebras and normal *-homomorphisms.
- CSLEMS: compact strictly localizable enhanced measurable spaces. (The category for measure theory.)

 Measurable spaces. Objects: (X, M), X: set, M ⊂ 2^X: σ-algebra (measurable subsets). Morphisms: measurable maps f: (X, M) → (X', M'): f: X → X' (maps of sets), m' ∈ M' ⇒ f⁻¹m' ∈ M.

Defect: does not identify morphisms equal almost everywhere.

Measurable spaces. Objects: (X, M), X: set, M ⊂ 2^X: σ-algebra (measurable subsets).
 Morphisms: measurable maps f: (X, M) → (X', M'): f: X → X' (maps of sets), m' ∈ M' ⇒ f⁻¹m' ∈ M.

Defect: does not identify morphisms equal almost everywhere.

■ Measure spaces: Objects: (X, M, μ) , μ : $M \rightarrow [0, \infty]$: measure. Morphisms: $[f]_{\sim}$: $(X, M, \mu) \rightarrow (X', M', \mu')$, $f: X \rightarrow X'$; $f \sim f'$ if $\mu\{x \in X \mid f(x) \neq f'(x)\} = 0$ (equality a.e.).

Major defect: composition does not respect \sim .

Minor defect: μ is not always given (e.g., smooth manifold).

Categories of measure theory

What is a good category for measure theory? Possible answers:

 Measurable spaces. Objects: (X, M), X: set, M ⊂ 2^X: σ-algebra (measurable subsets). Morphisms: measurable maps f: (X, M) → (X', M'): f: X → X' (maps of sets), m' ∈ M' ⇒ f⁻¹m' ∈ M.

Defect: does not identify morphisms equal almost everywhere.

■ Measure spaces: Objects: (X, M, μ) , μ : $M \rightarrow [0, \infty]$: measure. Morphisms: $[f]_{\sim}$: $(X, M, \mu) \rightarrow (X', M', \mu')$, $f: X \rightarrow X'$; $f \sim f'$ if $\mu\{x \in X \mid f(x) \neq f'(x)\} = 0$ (equality a.e.).

Major defect: composition does not respect \sim .

Minor defect: μ is not always given (e.g., smooth manifold).
Enhanced measurable spaces: Objects: (X, M, N), N ⊂ M: σ-ideal of negligible subsets (closed under countable unions, passage to subsets: n₂ ⊂ n₁ ∈ N ⇒ n₂ ∈ N). Morphisms: [f]_~; f ~ f' if {x ∈ X | f(x) ≠ f'(x)} ∈ N.

Measure spaces: Objects: (X, M, μ) , μ : $M \to [0, \infty]$: measure. Morphisms: $[f]_{\sim}$: $(X, M, \mu) \to (X', M', \mu')$, $f: X \to X'$; $f \sim f'$ if $\mu\{x \in X \mid f(x) \neq f'(x)\} = 0$ (equality a.e.).

Major defect: composition does not respect \sim .

Minor defect: μ is not always given (e.g., smooth manifold).

 Enhanced measurable spaces: Objects: (X, M, N), N ⊂ M: σ-ideal of negligible subsets (closed under countable unions, passage to subsets: n₂ ⊂ n₁ ∈ N ⇒ n₂ ∈ N). Morphisms: [f]_∼; f ∼ f' if {x ∈ X | f(x) ≠ f'(x)} ∈ N.

Major defect: composition does not respect \sim .

 Enhanced measurable spaces: Objects: (X, M, N), N ⊂ M: σ-ideal of negligible subsets (closed under countable unions, passage to subsets: n₂ ⊂ n₁ ∈ N ⇒ n₂ ∈ N). Morphisms: [f]_~; f ~ f' if {x ∈ X | f(x) ≠ f'(x)} ∈ N.

Major defect: composition does not respect \sim . $g \sim g' \Rightarrow g \circ f \sim g' \circ f$: requires $f^{-1}\{x \mid g(x) \neq g'(x)\} \in N$.

■ Enhanced measurable spaces: Objects: (X, M, N), $N \subset M$: σ -ideal of negligible subsets (closed under countable unions, passage to subsets: $n_2 \subset n_1 \in N \Rightarrow n_2 \in N$).

Major defect: composition does not respect \sim . $g \sim g' \Rightarrow g \circ f \sim g' \circ f$: requires $f^{-1}\{x \mid g(x) \neq g'(x)\} \in N$. Morphisms $[f]_{\sim}: (X, M, \mu) \rightarrow (X', M', \mu'), f: X \rightarrow X';$ $m' \in M' \Rightarrow f^{-1}m' \in M$ and $n' \in N' \Rightarrow f^{-1}n' \in N$.

■ Enhanced measurable spaces: Objects: (X, M, N), $N \subset M$: σ -ideal of negligible subsets (closed under countable unions, passage to subsets: $n_2 \subset n_1 \in N \Rightarrow n_2 \in N$).

Major defect: composition does not respect \sim . $g \sim g' \Rightarrow g \circ f \sim g' \circ f$: requires $f^{-1}\{x \mid g(x) \neq g'(x)\} \in N$. Morphisms $[f]_{\sim}: (X, M, \mu) \rightarrow (X', M', \mu'), f: X \rightarrow X';$ $m' \in M' \Rightarrow f^{-1}m' \in M$ and $n' \in N' \Rightarrow f^{-1}n' \in N$.

Example: Real measurable functions on X are morphisms $(X, M, N) \rightarrow (\mathbf{R}, \text{Borel}, \{\emptyset\}).$

Example: (**R**, Lebesgue, Lebesgue_{$\mu=0$}) \rightarrow (**R**, Borel, { \emptyset }) is not invertible.

 Enhanced measurable spaces: Objects: (X, M, N), N ⊂ M: σ-ideal of negligible subsets (closed under countable unions, passage to subsets: n₂ ⊂ n₁ ∈ N ⇒ n₂ ∈ N). g ~ g' ⇒ g ∘ f ~ g' ∘ f: requires f⁻¹{x | g(x) ≠ g'(x)} ∈ N.

Morphisms $[f]_{\sim}: (X, M, \mu) \to (X', M', \mu'), f: X \to X';$ $m' \in M' \Rightarrow f^{-1}m' \in M \text{ and } n' \in N' \Rightarrow f^{-1}n' \in N.$

Example: Real measurable functions on X are morphisms $(X, M, N) \rightarrow (\mathbf{R}, \text{Borel}, \{\emptyset\}).$

Example: (**R**, Lebesgue, Lebesgue_{$\mu=0$}) \rightarrow (**R**, Borel, { \emptyset }) is not invertible.

Defect (Fremlin): $\exists f: X \to X, X = 2^{\mathbb{R}}, \forall x: f(x) \neq x$, but: $m \in M_X \Rightarrow f^{-1}m \oplus m \in N_X.$

 Enhanced measurable spaces: Objects: (X, M, N), N ⊂ M: σ-ideal of negligible subsets (closed under countable unions, passage to subsets: n₂ ⊂ n₁ ∈ N ⇒ n₂ ∈ N). g ~ g' ⇒ g ∘ f ~ g' ∘ f: requires f⁻¹{x | g(x) ≠ g'(x)} ∈ N.

Morphisms $[f]_{\sim}: (X, M, \mu) \to (X', M', \mu'), f: X \to X';$ $m' \in M' \Rightarrow f^{-1}m' \in M \text{ and } n' \in N' \Rightarrow f^{-1}n' \in N.$

Defect (Fremlin): $\exists f: X \to X, X = 2^{\mathbb{R}}, \forall x: f(x) \neq x,$ but: $m \in M_X \Rightarrow f^{-1}m \oplus m \in N_X.$

Morphisms: $[f]_{\approx}$; $f \approx f'$ if $(m \in M' \Rightarrow f^{-1}m \oplus g^{-1}m \in N)$ (weak equality almost everywhere).

Categories of measure theory

What is a good category for measure theory? Possible answers:

- Enhanced measurable spaces: Objects: (X, M, N), $N \subset M$: σ -ideal of negligible subsets (closed under countable unions, passage to subsets: $n_2 \subset n_1 \in N \Rightarrow n_2 \in N$). $g \sim g' \Rightarrow g \circ f \sim g' \circ f$: requires $f^{-1}\{x \mid g(x) \neq g'(x)\} \in N$.
 - Morphisms $[f]_{\sim}: (X, M, \mu) \to (X', M', \mu'), f: X \to X';$ $m' \in M' \Rightarrow f^{-1}m' \in M \text{ and } n' \in N' \Rightarrow f^{-1}n' \in N.$
 - Defect (Fremlin): $\exists f: X \to X, X = 2^{\mathbb{R}}, \forall x: f(x) \neq x,$ but: $m \in M_X \Rightarrow f^{-1}m \oplus m \in N_X.$
 - Morphisms: $[f]_{\approx}$; $f \approx f'$ if $(m \in M' \Rightarrow f^{-1}m \oplus g^{-1}m \in N)$ (weak equality almost everywhere).
 - $\begin{array}{l} \sim \Rightarrow \approx: \text{ always.} \\ \approx \Rightarrow \sim: \text{ if } (X', M', N') \text{ is countably separated, e.g.,} \\ (\mathbf{R}, \text{Borel}, \{\emptyset\}). \end{array}$

Objects: enhanced measurable spaces (X, M, N);

- X: set
- M: σ -algebra of measurable subsets of X
- $N \subset M$: σ -ideal of negligible subsets of X

Morphisms $(X, M, N) \rightarrow (X', M', N')$: $[f]_{\approx}$

• $f: X \to X'$ map of sets

•
$$m' \in M' \Rightarrow f^{-1}m' \in M$$

$$n' \in N' \Rightarrow f^{-1}n' \in N$$

•
$$f \approx g$$
 if $m' \in M' \Rightarrow f^{-1}m' \oplus g^{-1}m' \in N$.

Objects: enhanced measurable spaces (X, M, N);

- X: set
- M: σ -algebra of measurable subsets of X
- $N \subset M$: σ -ideal of negligible subsets of X

Morphisms $(X, M, N) \rightarrow (X', M', N')$: $[f]_{\approx}$

• $f: X \to X'$ map of sets

•
$$m' \in M' \Rightarrow f^{-1}m' \in M$$

$$n' \in N' \Rightarrow f^{-1}n' \in N$$

•
$$f \approx g$$
 if $m' \in M' \Rightarrow f^{-1}m' \oplus g^{-1}m' \in N$.

Defect: Too many objects; all of measure theory fails.

Objects: enhanced measurable spaces (X, M, N);

- X: set
- M: σ -algebra of measurable subsets of X
- $N \subset M$: σ -ideal of negligible subsets of X

Morphisms $(X, M, N) \rightarrow (X', M', N')$: $[f]_{\approx}$

• $f: X \to X'$ map of sets

•
$$m' \in M' \Rightarrow f^{-1}m' \in M$$

•
$$n' \in N' \Rightarrow f^{-1}n' \in N$$

•
$$f \approx g$$
 if $m' \in M' \Rightarrow f^{-1}m' \oplus g^{-1}m' \in N$.

Defect: Too many objects; all of measure theory fails.

Theorem (I. Segal, 1950.) (X, M, N) satisfies Radon–Nikodym $\iff (X, M, N)$ satisfies Riesz representation theorem $(L^1)^* \cong L^{\infty}$ $\iff L^{\infty}(X, M, N)$ is a von Neumann algebra $\iff M/N$ is a complete Boolean algebra admitting a measure Objects: enhanced measurable spaces (X, M, N);

• $N \subset M$: σ -ideal of negligible subsets of X

Morphisms $(X, M, N) \rightarrow (X', M', N')$: $[f]_{\approx}$

• $f: X \to X'$ map of sets

•
$$m' \in M' \Rightarrow f^{-1}m' \in M$$

$$n' \in N' \Rightarrow f^{-1}n' \in N$$

•
$$f \approx g$$
 if $m' \in M' \Rightarrow f^{-1}m' \oplus g^{-1}m' \in N$.

Theorem (I. Segal, 1950.) (X, M, N) satisfies Radon–Nikodym $\iff (X, M, N)$ satisfies Riesz representation theorem $(L^1)^* \cong L^{\infty}$ $\iff L^{\infty}(X, M, N)$ is a von Neumann algebra $\iff M/N$ is a complete Boolean algebra admitting a measure

Definition (I. Segal): (X, M, N) is localizable if M/N is a complete Boolean algebra that admits a faithful measure.

Objects: localizable enhanced measurable spaces (X, M, N);

- *M*/*N* is a complete Boolean algebra that admits a faithful measure
- Morphisms $(X, M, N) \rightarrow (X', M', N')$: $[f]_{\approx}$
 - $f: X \to X'$ map of sets
 - $m' \in M' \Rightarrow f^{-1}m' \in M$
 - $n' \in N' \Rightarrow f^{-1}n' \in N$
 - $f \approx g$ if $m' \in M' \Rightarrow f^{-1}m' \oplus g^{-1}m' \in N$.

Objects: localizable enhanced measurable spaces (X, M, N);

 M/N is a complete Boolean algebra that admits a faithful measure

Morphisms $(X, M, N) \rightarrow (X', M', N')$: $[f]_{\approx}$

- $f: X \to X'$ map of sets
- $m' \in M' \Rightarrow f^{-1}m' \in M$

$$n' \in N' \Rightarrow f^{-1}n' \in N$$

•
$$f \approx g$$
 if $m' \in M' \Rightarrow f^{-1}m' \oplus g^{-1}m' \in N$.

Three defects: $f: (X, M, N) \rightarrow (X', M', N')$ is a morphism

- $\exists f: [f^{-1}]: M'/N' \to M/N$ is discontinuous.
- $\exists f$ such that $[f^{-1}]$ is invertible, but f is not.
- $\exists f$: f does not have a measurable image.

Three defects: $f: (X, M, N) \rightarrow (X', M', N')$ is a morphism

■
$$\exists f: [f^{-1}]: M'/N' \to M/N$$
 is discontinuous.

■ $\exists f$ such that $[f^{-1}]$ is invertible, but f is not.

■ $\exists f$: f does not have a measurable image.

Definition: (X, M, N) is strictly localizable if $(X, M, N) = (\coprod_i X_i, \prod_i M_i, \prod_i N_i)$, where (X_i, M_i, N_i) is σ -finite. Definition (Marczewski, 1953): (X, M, N) is compact if

■ \exists compact class $K \subset M$: $\forall m \in M \setminus N$: $\exists k \in K \setminus N$: $k \subset m$.

 $K \subset M$ is a compact class if

$$\forall K' \subset K: (\forall K'' \subset_{\mathsf{finite}} K': \bigcap K'' \neq \emptyset) \Rightarrow \bigcap K' \neq \emptyset.$$

Example: measurable spaces with a Radon measure are compact and strictly localizable.

Three defects: $f:(X, M, N) \rightarrow (X', M', N')$ is a morphism

■
$$\exists f: [f^{-1}]: M'/N' \to M/N$$
 is discontinuous.

- $\exists f$ such that $[f^{-1}]$ is invertible, but f is not.
- $\exists f: f$ does not have a measurable image.

Definition: (X, M, N) is strictly localizable if $(X, M, N) = (\coprod_i X_i, \prod_i M_i, \prod_i N_i)$, where (X_i, M_i, N_i) is σ -finite. Definition (Marczewski, 1953): (X, M, N) is compact if

■ \exists compact class $K \subset M$: $\forall m \in M \setminus N$: $\exists k \in K \setminus N$: $k \subset m$.

 $K \subset M$ is a compact class if

$$\forall K' \subset K: (\forall K'' \subset_{\mathsf{finite}} K': \bigcap K'' \neq \emptyset) \Rightarrow \bigcap K' \neq \emptyset.$$

Example: measurable spaces with a Radon measure are compact and strictly localizable.

Proposition (Fremlin): (X, M, N) compact, (X', M', N') strictly localizable \Rightarrow the measurable image of $f: X \rightarrow X'$ exists.

Objects: enhanced measurable spaces (X, M, N)

- X: set; M: σ -algebra; N: σ -ideal
- (X, M, N) is strictly localizable ($\coprod \sigma$ -finite)
- (X, M, N) is compact (like Radon measures)

Morphisms: $[f]_{\approx}$ (weak equality almost everywhere)

- $m' \in M' \Rightarrow f^{-1}m' \in M; n' \in N' \Rightarrow f^{-1}n' \in N$
- $f \approx f'$ if for all $m' \in M'$: $f^{-1}m' \oplus f'^{-1}m' \in N$

Objects: enhanced measurable spaces (X, M, N)

- X: set; M: σ -algebra; N: σ -ideal
- (X, M, N) is strictly localizable ($\coprod \sigma$ -finite)
- (X, M, N) is compact (like Radon measures)

Morphisms: $[f]_{\approx}$ (weak equality almost everywhere)

- $\blacksquare m' \in M' \Rightarrow f^{-1}m' \in M; \ n' \in N' \Rightarrow f^{-1}n' \in N$
- $f \approx f'$ if for all $m' \in M'$: $f^{-1}m' \oplus f'^{-1}m' \in N$

An equivalent category: measurable locales

Definition: MLoc = LBAlg^{op}; LBAlg: localizable Boolean algebras:

- Objects: Dedekind-complete and admit a faithful measure.
- Morphisms: continuous homomorphisms.

Objects: enhanced measurable spaces (X, M, N)

- X: set; M: σ -algebra; N: σ -ideal
- (X, M, N) is strictly localizable ($\coprod \sigma$ -finite)
- (X, M, N) is compact (like Radon measures)

Morphisms: $[f]_{\approx}$ (weak equality almost everywhere)

Definition: MLoc = LBAlg^{op}; LBAlg: localizable Boolean algebras:

- Objects: Dedekind-complete and admit a faithful measure.
- Morphisms: continuous homomorphisms.

CSLEMS → MLoc: $(X, M, N) \mapsto M/N$; $[f]_{\approx} \mapsto f^{-1}$ (Fremlin). CSLEMS → CVNA^{op}: $(X, M, N) \mapsto L^{\infty}(X, M, N)$; CSLEMS → HStonean: Gelfand spectrum of $L^{\infty}(X, M, N)$ MLoc → CSLEMS: Loomis–Sikorski, 1948: X: Stone spectrum; N: meager; M: Baire (meager \oplus open) CSLEMS → MLoc → CSLEMS: requires the theorems of von Neumann–Maharam (1958) and Ionescu Tulcea (1965).

Souvenirs to take home

- CSLEMS: compact strictly localizable enhanced measurable spaces.
- Equivalent to: (2) measurable locales, (3) commutative von Neumann algebras, (4) hyperstonean locales / (5) spaces.
 Measure theory wants to be (point) free:
 - MLoc \rightarrow Locale: full (!) subcategory
 - HStoneanLoc → LocaleOpen: full subcategory

CSLEMS is a closed monoidal category (for VNA: Kornell, 2012)

- ⊗: measure-theoretic (not categorical) product.
- Hom(X, Y) = Y^X: enhanced measurable space of equivalence classes of measurable maps.
- enhancements etc. crucial for the existence of Hom.
- evaluation morphism: $X \otimes \text{Hom}(X, Y) \rightarrow Y$.
- adjunction property: $X \to \text{Hom}(Y, Z) \iff X \otimes Y \to Z$.
- Aumann, 1960: negative results for the non-enhanced case.

Future work

- Measurable Serre–Swan theorem; applications: Haar measure, spectral theorem.
- Pushforwards/pullbacks for L^p-spaces and disintegration theorems.
- Measurable correspondences; measurable Markov category.

- Measurable Serre–Swan theorem; applications: Haar measure, spectral theorem.
- Pushforwards/pullbacks for L^p-spaces and disintegration theorems.
- Measurable correspondences; measurable Markov category.

Thank you!