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Abstract. We construct a model structure on the category of coalgebras over a cooperad in a combinatorial
monoidal model category satisfying some mild additional conditions. We verify these assumptions for a large
variety of examples, recovering many existing results and obtaining new ones, such as a model structure on
oplax monoidal functors.

1 Introduction

2 Cotransfer of model structures

Given a functor F : C → D to a model category D, one can ask for a model structure on C whose weak
equivalences are created by the functor. For right adjoint functors, with fibrations created by the functor
(i.e., transferred model structures), a criterion for the existence of such model structures was given by Kan,
see, for example, Lemma 2.12 in Barwick [LR] or Theorem 11.3.2 in Hirschhorn [ModCat]. In this purely
expository section we review the analog of this result for left adjoint functors F , with cofibrations created
by the functor F , i.e., cotransferred model structures.

Several results for the existence of cotransferred model structures are found in the literature. Apart
from numerous results for the case of abelian categories (e.g., chain complexes), one should mention the
theorems of Hess (Corollary 5.15 in [HHGE], a general result using Postnikov presentations), and Hess and
Shipley (Theorem 5.8 in [Comonad], an application of the previous result for coalgebras over a comonad).
A recent result by Makkai and Rosický (Remark 3.8 in [CellCat]), combined with the Smith recognition
theorem, immediately yields a rather general existence criterion, stated and proved below as the cotransfer
theorem 2.2. Bayeh, Hess, Karpova, Kȩdziorek, Riehl, and Shipley [LeftInd] give further applications of the
results by Hess and Shipley, and in Theorem 2.23 they give an exposition of the cotransfer theorem 2.2,
though the proof there is rather indirect.

We start by formalizing the definition of a (co)transferred structure.

Definition 2.1. Given a right (left) adjoint functor C → D and a model structure on D, the (co)transferred
model structure on C, if it exists, is the unique model structure whose weak equivalences and (co)fibrations
(hence also acyclic (co)fibrations) are precisely those maps that are mapped by F to weak equivalences and
(co)fibrations in D.

Typically, the only nontrivial part in constructing a transferred model structure is to prove that cobase
changes of acyclic cofibrations in C are weak equivalences in C. In a similar way, the only nontrivial part
in constructing a cotransferred model structure usually amounts to proving that maps with a right lifting
property with respect to all cofibrations in C are weak equivalences in C.

The following result offers a formalization of this thesis for the case of combinatorial model categories.
It is a direct consequence of the Smith recognition theorem, a theorem by Makkai and Paré (inclusion of
accessible categories and functors into all categories and functors creates PIE-limits), and a similar recent
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result by Makkai and Rosický about combinatorial categories, i.e., locally presentable categories equipped
with a weakly saturated class of morphisms generated by a set, for which the forgetful functor also creates
PIE-limits.

Cotransfer theorem 2.2. (Makkai, Paré, Rosický, Smith.) Suppose F : C → D is a cocontinuous functor
between locally presentable categories, where D is equipped with a combinatorial model structure. If the
maps that have the right lifting property with respect to all cofibrations in C are weak equivalences in C,
then the cotransferred structure on C exists and is combinatorial. Used in 2.0*, 2.0*, 2.4, 2.4, 3.0*, 3.9*.

Proof. We use the Smith recognition theorem, see Theorem 1.7, Propositions 1.15 and 1.19 in Beke [ShHMC],
Proposition A.2.6.8 in Lurie [HTT], or Proposition 2.2 in Barwick [LR]. The category C is locally presentable
by assumption. The class of weak equivalences in C satisfies the 2-out-of-3 property because so does its
image under F and it is an accessible subcategory of the category of morphisms in C by Theorem 5.1.6 in
Makkai and Paré [AccCat] or by Corollary A.2.6.5 in Lurie [HTT]. The class of (acyclic) cofibrations in C is
closed under weak saturation because the functor F is cocontinuous. Furthermore, by Remark 3.8 in Makkai
and Rosický [CellCat], the resulting class of (acyclic) cofibrations in C is the weak saturation of a set of
morphisms. The remaining condition is the lifting property that appears in the statement.

Example 2.3. Suppose F : C → D is a fully faithful cocontinuous functor between locally presentable cate-
gories, where D is equipped with a combinatorial model structure. If the weak saturation of the cofibrations
in C consists of all cofibrations in D, then the cotransferred model structure on C along F exists and is
combinatorial. We have recovered Theorem 2.1 in Haraguchi [Corefl] for the locally presentable case.

Counterexample 2.4. We demonstrate that the lifting property is essential for the validity of the cotransfer
theorem 2.2. Consider the fully faithful inclusion of simplicial groups into simplicial monoids. Its right adjoint
takes the (levelwise) simplicial group of invertible elements (alias units) and can be computed by taking the
pullback of the diagram M ×M →M ×M ← 1, where the first map is x, y 7→ xy, yx and the second map is
∗ 7→ 1, 1. Equip simplicial monoids with the model structure transferred from simplicial sets. All conditions
of the cotransfer theorem 2.2 are satisfied for the inclusion functor except for the lifting property. We claim
that the cotransferred model structure on simplicial groups does not exist. Indeed, if such a model structure
existed, the right adjoint must map acyclic fibrations to weak equivalences. Kan’s fibrant replacement
functor Ex∞ for simplicial sets preserves finite limits. In particular, it lifts to a fibrant replacement functor on
simplicial monoids. Furthermore, preservation of finite limits implies that the units of a fibrant replacement
can be computed as the fibrant replacement of units, in particular, they are weakly equivalent to the original
units. It remains to construct a weakly contractible simplicial monoid (not necessarily fibrant) whose units
are not weakly contractible. We construct such a monoid as the nerve of a strict monoidal category. The
monoid of objects is Z/2. The monoid of morphisms is the submonoid of Z/2 × Z/2 × Z≥0 consisting of
triples (a, b, x) such that x > 0 if a 6= b. The source and target of (a, b, x) are a and b respectively. The
identity map is a 7→ (a, a, 0) and the composition map is (b, c, y) ◦ (a, b, x) = (a, c, x+ y). The units of this
strict monoidal category form a discrete category on Z/2, which is not weakly contractible.
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3 Enriched cotransfer of model structures

Using a classical path object argument due to Quillen (see the last paragraph in the proof of Theorem 4
in §II.4 of [HoAlg] for the case of transferred structures), we can give a practical criterion to verify the lifting
condition in the cotransfer theorem 2.2 using enrichments.

For a general expository account of enriched categories we refer the reader to Chapter 6 in Borceux
[CatAlg]. We recall several facts that are of particular importance to us.

Notation 3.1. Henceforth V is a locally presentable closed symmetric monoidal category.

A V-enriched category D (henceforth simply a V-category) is V-(co)complete if it admits small V-
weighted (co)limits (henceforth simply V-(co)limits). By Theorem 6.6.14 in Borceux [CatAlg] this amounts
to saying that the underlying category of D is (co)complete, D is (co)powered over V, and any enriched
corepresentable (representable) functor sends ordinary (co)limits to limits.

A V-functor between V-(co)complete V-categories is V-(co)continuous if it preserves small V-(co)limits.
By Corollary 6.6.15 in Borceux [CatAlg], a V-functor is V-(co)continuous if and only if it preserves V-
(co)powerings and its underlying functor is (co)continuous. In particular, right (left) V-adjoint V-functors
are V-(co)continuous V-functors. By Theorem 6.7.6 in Borceux [CatAlg] a V-functor between V-(co)complete
V-categories is right (left) V-adjoint if and only if it preserves V-(co)powerings and its underlying ordinary
functor is a right (left) adjoint.

The following definition of monoidal and enriched model categories is standard, except that we prefer
to deal with unit axioms separately. It implies that any symmetric monoidal model category is canonically
enriched over itself.

Definition 3.2. A symmetric monoidal model category is a symmetric monoidal category V equipped with
a model structure such that the monoidal product ⊗:V × V → V is a left Quillen bifunctor. For any such V
a V-enriched model category (henceforth simply a V-model category) is a V-complete and V-cocomplete
V-category C equipped with a model structure such that the V-copowering ⊗:V × C → C is a left Quillen
bifunctor (equivalently, the powering Vop × C → C is a right Quillen bifunctor, equivalently, the enriched
hom Cop × C → V is a right Quillen bifunctor). A left (right) Quillen V-functor is a left (right) V-adjoint
V-functor whose underlying functor is a left (right) Quillen functor.

Definition 3.3. If F : C → D is a right (left) V-adjoint V-functor andD is equipped with a V-model structure,
then the (co)transferred V-model structure (if it exists) is the unique V-model structure on C such that the
underlying model structure on C is (co)transferred from D along F .

Proposition 3.4. Suppose F : C → D is a V-functor between V-complete and V-cocomplete V-categories
and D is equipped with a V-model structure. If the (co)transferred model structure on C exists, then it is
also a (co)transferred V-model structure.

Proof. The only thing to prove is that the V-powering Vop×C → C (respectively the V-copowering V×C → C)
is a right (left) Quillen bifunctor. Indeed, (co)fibrations and acyclic (co)fibrations in C are created by the
V-(co)continuous V-functor F , which in particular preserves V-(co)powerings. This immediately reduces the
right (left) Quillen bifunctor axiom for the (co)powering of C to that of D.

Definition 3.5. An interval in a symmetric monoidal model category V is a factorization 1t 1→ 1̂→ 1 of
the codiagonal 1 t 1 → 1 of the monoidal unit 1 in V such that the map 1 t 1 → 1̂ is a cofibration and the
map 1̂→ 1 is a weak equivalence in V. In other words, an interval is a cylinder object for the monoidal unit
in V.

Remark 3.6. An interval can be constructed by factoring the codiagonal map 1 t 1 → 1 as a cofibration
followed by an acyclic fibration. Furthermore, using the lifting property of acyclic fibrations with respect to
cofibrations one can construct a morphism from any interval to such an interval. (A morphism of intervals
is simply a map of intermediate objects with the two obvious triangles commuting.) The 2-out-of-3 property
shows that the resulting morphism is a weak equivalence, thus any two intervals can be connected by a single
zigzag of weak equivalences.

Unit axiom 3.7. A V-model category D satisfies the unit axiom for some interval 1 t 1 → 1̂ → 1 in V if
for any cofibrant object X in D the morphism (1̂→ 1)⊗X is a weak equivalence in D.
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Remark 3.8. It is unclear whether the unit axiom for some interval implies the unit axiom for all other
intervals. This is true if we require 1̂ to be cofibrant, which usually holds in practice.

Enriched cotransfer theorem 3.9. Suppose F : C → D is a V-cocontinuous V-functor between locally
presentable V-categories. Furthermore, suppose that V is a monoidal model category with an interval 1̂,
D is equipped with a combinatorial V-model structure satisfying the unit axiom, and C admits an endo-
functor Q: C → C with a natural transformation q:Q → id such that FQ lands in cofibrant objects in D
and the natural transformation F (q) has weak equivalences in D as its components. Then the cotransferred
combinatorial V-model structure on C exists. Used in 5.2*.

Proof. Using the cotransfer theorem 2.2, the only condition to verify is that a morphism f :X → Y in C that
has a right lifting property with respect to all cofibrations in C is a weak equivalence in C. We consider the
commutative square

QX
qX−−−→ XyQf

yf

QY
qY−−−→ Y.

Using the cofibrancy of QY and the right lifting property of f , we construct a diagonal arrow d:QY → X
such that fd = qY .

Quillen’s cylinder object argument considers the commutative diagram

QX tQX
(d◦Qf,qX)−−−−−−−−−→ Xy yf

1̂⊗QX
fqXp−−−−−−−−−→ Y,

where p = (1̂ → 1) ⊗ QX is a weak equivalence by the unit axiom. The left map is a cofibration because
QX is cofibrant and 1 t 1 → 1̂ is a cofibration, so we can construct a diagonal arrow e: 1̂ ⊗ QX → X (not
to be confused with the map qXp) that makes both triangles commutative.

The two component maps QX → 1̂ ⊗ QX of the left arrow are weak equivalences and yield the same
map in the homotopy category. Indeed, postcomposing with the weak equivalence p gives us two identity
maps QX → QX. If instead we postcompose with the diagonal map e, we can use the commutativity of the
upper triangle to deduce that the two components of the upper arrow yield the same map in the homotopy
category. The second component qX is a weak equivalence, hence so is the first component d ◦Qf .

Looking now at the original square diagram we see that in a composable triple (Qf, d, f) the two
compositions fd = qY and d ◦ Qf are weak equivalences, hence all three maps Qf , d, and f are weak
equivalences by the 2-out-of-6 property. In particular, the map f is a weak equivalence, as desired.
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4 Lax comonads

Although the result of the previous section is quite general, it says nothing about how to obtain a
cofibrant replacement (Q, q) that satisfies the given properties. Of course, one can always use the small
object argument to factor ∅ → X as a cofibration ∅ → QX and a map QX → X with a right lifting
property with respect to all cofibrations, however, there is no way to establish that the latter map is a
weak equivalence. A particularly important example of a left adjoint functor along which one might want to
cotransfer a model structure is given by the forgetful functor from the category of coalgebras over a comonad
in a category D to D. In this section we give a criterion that allows us to construct the pair (Q, q) in such a
setting. In fact, we allow for a slightly more general notion of a lax comonad, which allows us to treat the
case of coalgebras over cooperads, as explained below.

An important class of comonads is given by cooperads. Recall that a coooperad is an operad in the
opposite category. Operads can be defined as monoids in the category of symmetric sequences with the
substitution product and cooperads can be similarly defined as comonoids in the category of symmetric
sequences with the decomposition product (defined in a dual fashion). If one wants to use the definition of
(co)operads as (co)monoids in symmetric sequences, there is a subtlety involved: symmetric sequences form a
monoidal category if the monoidal product preserves coproducts in each argument, which is usually satisfied
in practice. However, for cooperads one would have to require the monoidal product to preserve products
in each variable, which often fails in practice. For example, already in the case of a cartesian monoidal
structure such a condition would imply that the natural transformation A× (B×C)→ (A×B)× (A×C) is
an isomorphism, in particular, for the case when B = C is the terminal object, the diagonal map A→ A×A
is an isomorphism for any A, which fails unless the underlying category is the terminal category.

In the absence of such commutation conditions, one can still write down a candidate for the substitution
product X ◦Y ◦Z of three symmetric sequences together with two noninvertible maps X ◦Y ◦Z → (X ◦Y )◦Z
and X ◦ Y ◦ Z → X ◦ (Y ◦ Z). Such a structure (together with maps for higher arities) can be organized
into a (normal) oplax monoidal category, as defined by Day and Street [Lax]. (Normal refers to the fact
that in arity 1 the multiplication map D1 → D is the identity map, whereas oplax refers to the direction of
arrows for the associator maps; a lax monoidal category has maps going in the opposite direction.) (Normal)
oplax monoidal categories can be concisely defined as (normal) oplax monoids (i.e., strong monoidal oplax
functors from the category of finite ordered sets with the disjoint union) in the (large) monoidal 2-category
of categories equipped with the cartesian product. Operads can then be defined as monoids (with the
appropriately generalized unbiased definition of monoids) in this normal oplax monoidal category. See
Ching [Monoid] for more details about this definition of operads. Similarly, cooperads can be defined as
comonoids in the normal lax monoidal category of symmetric sequences equipped with the decomposition
product. All of this generalizes to the colored case. Gambino and Joyal [Colored] give a definition of colored
operads as monoids in the appropriate monoidal category. The above remarks about (op)lax monoidal
categories also apply in this case. We now briefly recall the relevant definitions of comonoids and comodules
in a lax monoidal category.

Definition 4.1. A lax monoidal category is a strong monoidal lax functor from the category of finite ordered
sets with disjoint union to the large 2-category of categories, functors, and natural transformations with the
cartesian product. A lax monoidal category is normal if identity maps are mapped to identity functors and
the associator maps are identities whenever one of the original maps is an identity.

Remark 4.2. Concretely, a lax monoidal category is a category D equipped with multiplication functors
µn:Dn → D for all n ≥ 0 and associator transformations af :µnµf → µm, where f :m→ n is a morphism of
finite ordered sets and µf denotes

∏
i∈n µf−1(i). The associator maps have to satisfy the obvious compatibility

condition for composable triples of morphisms. Normality means that µ1 = idD, aidm
= id, am→1 = id.

Lax bicategories are defined in the obvious way as the many-objects analog of lax monoidal categories,
in the same way as bicategories are the many-objects analog of monoidal categories. Thus a lax bicategory
with one object is essentially the same thing as a lax monoidal category. The primary example of a lax
bicategory one should keep in mind is the lax bicategory of sets, symmetric collections between sets (with
the composition given by the decomposition product), and their transformations. For a set W , the category
of W -colored cooperads can then be defined as the category of comonoids in the lax monoidal category of
endomorphisms of W in this lax bicategory.
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Definition 4.3. A lax bicategory is given by a class of objects O, a hom category Map(X0, X1) for any pair
of objects (X0, X1), composition functors ◦X :Map(Xn−1, Xn)× · · · ×Map(X0, X1)→ Map(X0, Xn) for any
finite family of objects X0, . . . , Xn (n ≥ 0), and associator transformations ◦Xn0

,Xn1
,...,Xnm

(◦Xnm−1
,...,Xnm

×
· · · × ◦Xn0 ,...,Xn1

)→ ◦X0,X1,...,Xnm
that satisfy the obvious compaitibility condition.

We now define comonoids in a lax monoidal category. Again, the primary example to keep in mind is
that of colored cooperads.

Definition 4.4. A comonoid in a lax monoidal category D is an object M in D together with comul-
tiplication maps mn:M → µn(M, . . . ,M) such that the coassociativity property holds: the composition
M → µm(M, . . . ,M) → µm(µn0(M, . . . ,M), . . . , µnm−1(M, . . . ,M)) → µN (M, . . . ,M) equals the map mN

for any m ≥ 0 and any m-tuple n, where ni ≥ 0 and N =
∑

i ni. A comonoid is normal if m1 = idM .

Remark 4.5. The maps mn for n ≤ 2 together with coassociativity conditions for N ≤ 3 are sufficient to
define comonoids, see Proposition 3.4 in Ching [Monoid].

Definition 4.6. A left comodule over a comonoid O in a lax monoidal category D is an object L in D together
with comultiplication map ln:L → µn+1(M, . . . ,M,L) (with n copies of M) such that the coassociativity
condition is satisfied: the composition

L→ µm+1(M, . . . ,M,L)→ µm+1(µn0(M, . . . ,M), . . . , µnm−1(M, . . . ,M), µnm+1(M, . . . ,M,L))

→ µN+1(M, . . . ,M,L)

equals the map lN for any m ≥ 0 and any (m + 1)-tuple n, where ni ≥ 0 and N =
∑

i ni. A comodule
is normal if l0 = idL. Morphisms of comodules are morphisms of the underlying objects that preserve the
structure strictly.

Remark 4.7. The maps ln for n ≤ 1 together with coassociativity conditions for N ≤ 2 are sufficient to
define comodules, see Remark 3.7 in Ching [Monoid]. Note that there is a shift in indexing for l because we
don’t count the object L when we enumerate terms, which explains occasional +1.

For similar reasons one fails to obtain a (co)monad in the classical sense from a (co)operad when the
commutation conditions are not met. Instead, one gets what we call an oplax monad for an operad and a lax
comonad for a cooperad. Henceforth we focus on comonads. The idea behind the following definition is that
for a cooperad O the resulting normal lax comonad T has components of the form Tn(X) = O◦· · ·◦O◦X, with
n copies of O (n can be any finite ordered set) and ◦ denoting the corresponding (n+1)-fold monoidal product
in the normal lax monoidal category of symmetric sequences with the decomposition product. Morphisms
of finite ordered sets (e.g., 2 → 1) induce natural transformations of the corresponding components (e.g.,
T1 → T2), which play the role of comultiplication morphisms. The oplax structure Tm+n → Tm ◦ Tn is
induced by the oplax structure on the monoidal category.

Definition 4.8. A lax comonad on a category D is a lax monoidal functor T from the opposite category of
finite ordered sets equipped with the disjoint union to the category of endofunctors on D equipped with the
composition. A lax comonad is normal if the lax unit morphism id→ T∅ is an isomorphism.

Remark 4.9. Concretely, a lax comonad is a sequence of functors Tn:D → D for n ≥ 0 together with
comultiplication maps Tm ← Tn for m → n that satisfy the coassociativity condition and the associator
maps Tm ◦ Tn → Tm+n that are compatible with the comultiplication maps using the associators.

Proposition 4.10. Any comonoid O in a lax monoidal category D induces a normal lax comonad TO

defined as follows: TO
n (−) = µn+1(O, . . . , O,−) = O ◦ · · · ◦ O ◦ −, TO

f :TO
m ← TO

n is the composition
af ◦ µn+1(mf−1(1), . . . ,mf−1(n),−), and the lax maps Tm ◦ Tn → Tm+n are the associator maps am,n+1.

Definition 4.11. A coalgebra over a lax comonad T in a category D is an object L in D together with
comultiplication maps ln:L→ TnL that satisfiy the coassociativity relation: the composition of

L
lm−−→TmL

Tm(lnm )−−−−−−−→Tm(TnmL)
Tf (TnmL)−−−−−−−−−→TnTnmL

am,n−−−−→TNL
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equals lN . A coalgebra is normal if l0:X → T0X coincides with the lax unit morphism of the comonad. (In
particular, if the comonad is normal, l0 is the identity map.) Morphisms of coalgebras are morphisms of the
underlying objects that preserve the structure strictly.

Proposition 4.12. Given a left module L over a comonoid O in a lax monoidal category D, we get a coal-
gebra L over the lax comonad TO by taking the same underlying object and the comultiplication morphisms
given by those of the left module.

Proposition 4.13. The category of coalgebras over a lax comonad T in a cocomplete category D is itself
cocomplete and the forgetful functor creates colimits.

Proof. Given a small indexing category I, consider an I-shaped diagram L of coalgebras in D. Apply the
forgetful functor U to L and denote by X the colimit of the resulting diagram UL in D. We equip X with a
structure of a T -coalgebra as follows. The map X → Tn(X) is defined using the universal property of maps
out of X: the component ULi → Tn(X) is the composition ULi → Tn(ULi)→ Tn(X), where the first map
is the structure map of Li and the second map is induced by the inclusion ULi → X. The coassociativity
relation is likewise verified on individual components of X. It remains to prove that any cocone Li → Y
yields a unique morphism X → Y . On the level of underlying objects we get a unique morphism by the
universal property of colimits in D. The colinearity condition is again verified on individual components
of X.

Definition 4.14. An lax comonad is accessible if its individual components Tn are accessible functors.

Proposition 4.15. The category of coalgebras over an accessible lax comonad in D is accessible or locally
presentable if D is.

Proof. As established before, colimits in the category of coalgebras are created by the forgetful functor to D,
so it is enough to establish accessibility. Theorem 5.1.6 in Makkai and Paré [AccCat] proves that the forgetful
functor from the 2-category of accessible categories, accessible functors, and natural transformations to the
2-category of categories, functors, and natural transformations creates 2-limits weighted by the 2-category
of categories. (2-limits are homotopy limits in this setting.) Thus it is sufficient to construct the category
of coalgebras as such a 2-limit. This is a straightforward classical construction, indeed Makkai and Paré
already observe it for coalgebras over comonads in §5.1.1 of their book. Details for the case of algebras over
monads can be found in Theorem 2.78 in Adámek and Rosický [LPAC], for example.

We finish with a brief discussion of V-enriched lax comonads and coalgebras over them.

Definition 4.16. A lax V-comonad on a V-category D is defined in the same way as an ordinary lax
comonad, with V-endofunctors on D replacing ordinary endofunctors on D. Coalgebras over a lax V-comonad
are defined in exactly the same way, with the involved morphisms taken from the underlying category of D.
The enriched hom between coalgebras is defined as the subobject of the enriched hom between the underlying
objects by imposing the axioms of coalgebras in the obvious fashion.

Proposition 4.17. The V-category C of coalgebras over a lax V-comonad T in a V-cocomplete V-category D
is V-cocomplete and the forgetful V-functor creates V-colimits. If D is locally presentable, then so is C.

Proof. The proof reproduces verbatim the proof for ordinary categories. For expository purposes we briefly
discuss the copowering of coalgebras over V. Given a coalgebra (L,L→ TnL) over T and an object E ∈ V,
we have E ⊗ (L,L→ TnL) = (E ⊗L,E ⊗L→ E ⊗ TnL→ Tn(E ⊗L)), where the last map comes from the
structure of a V-functor on Tn.
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5 Lax comonadic cotransfer

Armed with the tools developed in the previous section, we can now formulate and prove a cotransfer
theorem for the category of coalgebras over a lax V-comonad.

Definition 5.1. Given a lax V-comonad T on a V-category D, an endofunctor Q:D → D, and a nat-
ural transformation q:Q → idD, a commutator for (T,Q, q) is a family E of natural transformations
En:QTn → TnQ that satisfies the additional assumptions of coassociativity for Q and colinearity for q.
The coassociativity condition requires that for any coalgebra X over T the composition of

QX
Qln−−−→QTnX

En−−−→TnQX −−−→TnTmQX

must be equal to

QX
Qln−−−→QTnX

En−−−→TnQX
TnQlm−−−−−−→TnQTmX

TnEm−−−−−−→TnTmQX.

The colinearity condition requires the compositions of

QX
qX−−→X

ln−−→TnX and QX
Qln−−−−→QTnX

EnX−−−−→TnQX
TnqX−−−−→TnX

to coincide.

Enriched lax comonadic cotransfer theorem 5.2. Suppose T is an accessible lax V-comonad on a
locally presentable V-category D. Furthermore, suppose that V is a symmetric monoidal model category
with an interval 1̂, D is a combinatorial V-model category that satisfies the unit axiom, Q:D → D is a
functor that lands in cofibrant objects, q:Q → id is a natural weak equivalence, and E is a commutator
for (T,Q, q). Then the V-category C of coalgebras over T in D admits a cotransferred combinatorial V-model
structure along the forgetful V-functor C → D.

Proof. We verify the conditions of the enriched cotransfer theorem 3.9. As established in the previous section,
the forgetful V-functor is a V-cocontinuous V-functor between locally presentable V-categories. It remains
to construct the pair (Q, q) (abusing notation we denote them by the same letters). Given a coalgebra
(X,X → TnX) over T the functor Q maps it to (QX,QX → QTnX → TnQX), where the last map comes
from the commutator. The latter triple is a coalgebra over T by definition of a commutator. The natural
transformation q:Q→ id on C is induced by the corresponding natural transformation on D. Its components
are morphisms of coalgebras again by definition of a commutator. By construction, FQ lands in cofibrant
objects of D and F (q) is a natural weak equivalence in D.
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6 The lax comonad of a cooperad

In this section we examine lax comonads induced by cooperads in a symmetric monoidal category. See
Ching [Monoid] for a detailed description of the dual case (operads). See also Gambino and Joyal [Colored]
for a thorough exposition of colored operads. A brief overview can be found in §9.1 of the author and
Scholbach’s [Operads].

Definition 6.1. Given a finite sequence (V0, . . . , Vm) of sets of colors, the symmetric monoidal groupoid
ForestV of V -forests has as objects chains I0 → · · · → Im of maps of finite sets together with maps Ik →
Vk for all 0 ≤ k ≤ m. Isomorphisms from I to I ′ are families of bijections Ik → I ′k that make the
corresponding triangles commute. The symmetric monoidal structure is given by the componentwise disjoint
union: (I ⊗ I ′)k = Ik t I ′k. We refer to the full (nonmonoidal) subgroupoid of objects for which Im is a
singleton as V -trees. If m = 1 we talk about the symmetric monoidal groupoid of V -multicorollas and the
groupoid of V -corollas respectively. If m = 0 we talk about V -multicolors and V -colors respectively, the
latter is just the discrete groupoid on V .

Remark 6.2. The canonical inclusion of V -trees into V -forests exhibits the target as the free symmetric
monoidal groupoid on the source. In particular, the category of strong monoidal functors from V -forests
to V is canonically equivalent to the category of functors from V -trees to V via the restriction functor. We
refer to these equivalent categories as the category of V-valued V -collections and denote them by CollV (V).

Definition 6.3. The lax bicategory of V-valued colored collections has sets as objects. The category of
morphisms from V0 to V1 is the category CollV0,V1

(V) of V-valued (V0, V1)-collections. The composition
morphism associated to a sequence of objects V is given by the decomposition product CollVm−1,Vm × · · · ×
CollV0,V1 → CollV0,Vm computed as the composition of the functor CollVm−1,Vm × · · · × CollV0,V1 → CollV
induced by the functor TreeV → CorVn−1,Vn

×· · ·×CorV0,V1
and the right Kan extension functor CollV (V)→

CollV0,Vn
induced by the functor TreeV → CorV0,Vn

that discards the intermediate components of a V -tree.

Proposition 6.4. Given a colored cooperad O its lax comonad can be computed as explained in the proof.

Proof. The comonad TO induced by the cooperad O sends an object D ∈ DW to the family

v 7→ lim
w̄∈W∗

Ow̄,v ⊗
⊗
i

Dw̄i
,

where W ∗ denotes the groupoid of sequences in W (objects are elements of the free monoid on W , i.e.,
finite sequences of elements in W , and (iso)morphisms are permutations that turn the source into tar-
get). We remark that a limit over W ∗ can be computed as the product over isomorphism classes in W ∗,
where for a class represented by some sequence w we take the Aut(w)-fixed points of the value of the
diagram on w, where Aut(w) is itself the product of symmetric groups of cardinalities equal to the num-
ber of indices in w with the given value. The counit of TO is the natural transformation TD → D that
projects to the component O(v),v ⊗ Dv indexed by w̄ = (v) and then applies the counit map O(v),v → 1
of the colored cooperad O. The comultiplication of TO is the natural transformation TD → TTD = (v 7→
limw̄∈W∗ Ow̄,v ⊗

⊗
i limx̄∈W∗ Ox̄,w̄i

⊗
⊗

j Dx̄j
) whose component indexed by v is the map limȳ∈W∗ Oȳ,v ⊗⊗

i Dȳi
→ limw̄∈W∗ Ow̄,v ⊗

⊗
i limx̄i∈W∗ Ox̄i,w̄i

⊗
⊗

j Dx̄i,j
) (we renamed the indexing variable on the left

to avoid collisions and added an index to x̄ for convenience).

The monad induced by an operad in a closed symmetric monoidal category is finitely accessible, in fact,
it preserves sifted colimits because the free functor is a colimit of terms of the form On⊗X⊗n, and the latter
expression preserves sifted colimits in X. Filtered colimits do not in general commute with infinite products,
so one cannot expect the lax comonad of a cooperad to be finitely accessible. However, things improve once
one starts looking at λ-filtered colimits for higher λ.

Proposition 6.5. The lax comonad induced by a W -colored cooperad in a closed symmetric monoidal
locally λ-presentable category is κ-accessible, where κ is uncountable, κ ≥ λ, and κ > |W |.

Proof. The monoidal product with a fixed object as well as invariants under the action of a finite group
both preserve κ-filtered colimits for any κ, so it is sufficient to ensure that the infinite products used in the
definition of the lax comonad of a cooperad also preserve κ-filtered colimits. These infinite products are
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indexed by the set V of isomorphism classes of W -colored trees of some fixed depth. The set V has the same
cardinality as W if W is infinite, or the countable cardinality for a finite nonempty W .

Recall that in a λ-presentable category D small products distribute over λ-filtered colimits, i.e., for any
small family F : I → Fun(Ji,D) of λ-filtered diagrams in D (here I is a discrete set and J is a function from I
to the (large) category of λ-filtered categories) the canonical morphism

colim
̄∈
∏

i
Ji

∏
i

F (i)(̄(i))→
∏
i

colim
j∈Ji

F (i)(j)

is an isomorphism. This is seen directly for sets, whereas the case of an arbitrary locally λ-presentable
category is reduced to that of sets by taking homs from an arbitrary λ-small object, commuting it past
products and colimits (the category

∏
i Ji is λ-filtered), and observing that isomorphisms in a locally λ-

presentable category can be detected by corepresentable functors of λ-small objects.

Thus to establish κ-accessibility for κ ≥ λ it suffices to make the diagonal functor J → JV cofinal so
that the JV -indexed colimit can be replaced by the J-indexed colimit, which implies κ-accessibility. The
cofinality follows as soon as any V -indexed family of elements in J has an upper bound, which is true
whenever J is µ-filtered, where µ is the successor of the cardinality of V . Thus the accessibility index of the
induced comonad is bounded from above by the maximum of the accessibility index of D and the successor
of the cardinality of V .

7 Enriched cooperadic cotransfer

The conditions on the comonad imposed by the above theorem can be verified with relative ease when
the comonad is induced by a colored cooperad. Recall that colored cooperads can be defined as colored
operads in the opposite category.

Proposition 7.1.

Proof. Similarly, the natural transformation E:QT → TQ is constructed by expanding the definition of TO

and defining the invidual components as the compositions Q (Ow̄,v ⊗
⊗

i Dw̄i) → QOw̄,v ⊗
⊗

i QDw̄i →
Ow̄,v ⊗

⊗
i QDw̄i , where the first map comes from the oplax monoidal structure on Q and the second map

is induced by qOw̄,v
.

Enriched cooperadic admissibility criterion 7.2. Suppose V, D, Q, and q are as in the above two
theorems and D is equipped with a symmetric monoidal V-enriched model structure. If Q is oplax symmetric
monoidal, then for any W -colored cooperad O in D the category of coalgebras over O in D admits a
cotransferred model structure.

Proof. All properties of D under consideration immediately imply the same properties for DW .
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8 Oplax monoidal cofibrant replacement functors

Proposition 8.1. A symmetric monoidal model category whose objects are cofibrant admits an oplax
monoidal cofibrant replacement, namely, the identity functor with the identity natural transformation.

Examples 8.2. The cartesian model categories of simplicial sets, simplicial presheaves with the injective
model structure.

Proposition 8.3. If C is a symmetric monoidal category and D is a combinatorial symmetric monoidal
model category with an oplax monoidal cofibrant replacement (Q, q), then the projective model structure
on DC is a symmetric monoidal model category (via Day convolution) with a componentwise oplax monoidal
cofibrant replacement.

Proof. Generating (acyclic) cofibrations of DC can be obtained by tensoring corepresentable functors of
objects of C with generating (acyclic) cofibrations of D. This immediately implies the pushout product
axiom. Likewise, the unit axiom of D implies the unit axiom for DC . Given an oplax monoidal cofibrant
replacement (Q, q) for D, we construct one for DC as follows.

Example 8.4. If D is a combinatorial symmetric monoidal model category with an oplax monoidal cofibrant
replacement (Q, q) such that Q is also oplax monoidal with respect to coproducts, then the combinatorial
symmetric monoidal model category of symmetric sequences in D admits an oplax monoidal cofibrant re-
placement.

Proposition 8.5. Suppose F : C → D is a strong monoidal left Quillen functor between combinatorial
symmetric monoidal model categories such that the model structure on D is transferred along the right
adjoint G of F .

Proof. We construct the functor Q as the composition of the bar construction functor and the weighted
colimit functor with respect to a cofibrant replacement W of the constant weight on the monoidal unit. We
require W to be equipped with a structure of a (componentwise) cocommutative comonoid, which gives us
a symmetric oplax monoidal structure on the W -weighted colimit functor. The bar construction is oplax
monoidal:

We also state the trivial case of left Bousfield localizations, which, however, has nice consequences.

Proposition 8.6. If a symmetric monoidal model category admits an oplax monoidal cofibrant replacement
functor, then so does any of its monoidal left Bousfield localizations.

Example 8.7. Model categories of symmetric spectra are obtained as left Bousfield localizations of R-
modules, where R is a commutative monoid in symmetric sequences in some combinatorial symmetric
monoidal model category D. Typically, R is taken to be the free commutative monoid on a symmetric
sequence concentrated in degree 1, where it is given by some object in D. Thus symmetric R-spectra in D
admit an oplax monoidal cofibrant replacement as soon as D does. In particular, simplicial symmetric spectra
and motivic symmetric spectra admit such a replacement.
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