
Structured Brown representability via concordance

Dmitri Pavlov

Department of Mathematics and Statistics, Texas Tech University
https://dmitripavlov.org/

Abstract. We establish a highly structured variant of the Brown representability theorem: given a sheaf
of spaces on the site of manifolds, we show that concordance classes of sections of this sheaf over a manifold
are representable by homotopy classes of maps from this manifold into a unique classifying space, which
is given by an explicit, easy-to-compute formula. Spaces can be replaced by simplicial groups, connective
spectra, or any other higher algebraic structure given by a simplicial algebraic theory. We use this result to
prove that concordance classes of functorial field theories (in the sense of Witten, Segal, Atiyah, and Freed)
whose underlying bordism higher category satisfies an appropriate codescent condition are representable by
a (unique) classifying space. As an added benefit, we can efficiently rederive a large variety of classical rep-
resentability results: de Rham cohomology, singular cohomology, vector bundles, K-theory, Chern character
as a morphism of E-infinity ring spectra, Quinn’s model for cobordism, equivariant de Rham theory and
equivariant K-theory, Haefliger structures, etc.
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Introduction

The classical Brown representability theorem shows that a contravariant functor from the homotopy
category of pointed CW-complexes to the category of pointed sets is representable if and only if it is half-
exact, i.e., sends coproducts to products and homotopy pushouts to weak pullbacks (meaning only the
existence condition for pullbacks is satisfied). Heller established a variant of this result: a contravariant
functor from the homotopy category of CW-complexes to the category of sets that admits a group structure
is representable if and only if it is half-exact. The representing space is always unique up to a homotopy
equivalence, and we refer to it as the classifying space.

Although this theorem is a powerful result, it suffers from a substantial defect: the proof of repre-
sentability uses an inductive cellular construction, so there is no explicit formula to compute the classifying
space. For instance, if we apply the theorem to the functor that sends a connected pointed CW-complex X
to the pointed set of isomorphism classes of n-dimensional vector bundles over X, there is no simple way
to deduce that the resulting classifying space is weakly equivalent to BO(n). In contrast, our result gives a
simple formula for the classifying space that immediately yields BO(n) in this situation.

Another disadvantage is that an algebraic structure on the values of the functor does not immediately
give rise to a corresponding algebraic structure on the classifying space. For instance, finite-dimensional
vector bundles over X form a groupoid equipped with two monoidal structures (direct sum and tensor
product) that commute up to a coherent homotopy. We refer to such a structure as an E∞-rig (i.e., a
ring without negative elements). However, the Brown representability theorem does not allow us to deduce
that the classifying space

∐
n≥0 BO(n) is also an E∞-rig. In contrast, our result shows that any algebraic

structure present on the values of the original functor is inherited by its classifying space. In particular,
this immediately equips

∐
n≥0 BO(n) with a structure of an E∞-rig. Allowed algebraic structures include

anything that can be specified using algebraic theories (alias Lawvere theories) and their homotopy coherent
analogs, and includes spaces without additional structures, ∞-groups, ∞-monoids, E∞-rigs and E∞-rings,
connective spectra, algebras over ∞-operads, connective modules over connective ring spectra, E∞-spaces,
connective chain complexes, connective dg-modules over a connective dga. The connectivity assumptions
are essential here, without them the result fails, as explained in Remark 13.3.

A third important point of distinction concerns the domain of the functor. Just like Heller, we do not
require our spaces to be pointed or connected. More importantly, the requirement that the functor is defined
for all CW-complexes and continuous maps between them is often too restrictive. For instance, one would
like to show that the de Rham cohomology functor is representable by applying the main theorem to the
functor that sends a smooth manifold X to the nth de Rham cohomology of X, an abelian group. However,
we need X to be a smooth manifold for this. Kreck and Singhof in [HCTM] established a variant of Brown’s
representability tbeorem in the context of stable homotopy theory: any sequence of contravariant functors
from the homotopy category of manifolds to abelian groups equipped with a sequence of Mayer-Vietoris
connecting homomorphisms is induced by a unique (up to a weak equivalence) spectrum. In their result
manifolds (and their maps) can be either smooth, PL, or topological. Our setup is similar, but we work in
the context of unstable homotopy theory, which, however, includes connective spectra, as explained above.

In order to allow for the above improvements, we must use a more refined input data instead of the one
usually used in the Brown representability theorem. Consider the following examples:
• a smooth manifold X is sent to the nth de Rham cohomology of X, i.e., closed differential n-forms on X
modulo exact forms;
• a space X is sent to the nth singular cohomology of X, i.e., singular n-cocycles modulo exact n-cochains;
• a smooth manifold X is sent to the set of equivalence classes of vector bundles with connection modulo
isomorphisms that ignore connections;

In all cases the resulting set is constructed as a set of equivalences classes of certain objects. Although it
might not be immediately obvious, all three equivalences relations can be described in a uniform abstract
fashion as concordance. Given a sheaf F on the site of smooth manifolds, two sections a and b of F over X
(i.e., elements or points in F (X)) are concordant if there is a section c of F over X ×R whose pullbacks to
X × 0 and X × 1 are a and b respectively. For instance, two closed differential n-forms a and b on a smooth
manifold X are concordant if there is a closed differential n-form c on X ×R whose pullbacks to X × 0 and
X × 1 are equal to a respectively b. As shown in Proposition 1.2, a concordance exists if and only if the
form a− b is exact. In the same vein, two vector bundles V and W with connections over X are concordant
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if there is a vector bundle with connection over X ×R whose fibers over X × 0 and X × 1 are isomorphic
(via a connection-preserving map) to V and W , and such an equivalence amounts to V and W becoming
isomorphic after we discard the connections.

We will revisit these examples in more detail in §1.1 and §3.1. Now we state the main definition and
theorem.

Definition 0.1. Suppose F :Manop → sSet is a simplicial presheaf. We define the concordance stack

CF := (X 7→ hocolimn∈∆op F (∆n ×X)),

where X is a smooth manifold. The simplicial set CF := CF (pt) is the concordance space of F . We have a
natural comparison map

CF (X)→ Map(CX,CF ),

see Definition 9.3 for details. (Here CX ' Sing(X), so

Map(CX,CF ) ' Map(Sing(X),CF ) ' SingMap(X, |CF |),

where the right Map denotes the internal hom in the category of compactly generated topological spaces.)

Theorem 0.2. Suppose F :Manop → sSet is a simplicial presheaf that satisfies the homotopy descent
property. The natural comparison map

CF (X)→ Map(CX,CF )

is a weak equivalence. Used in I.5*, 3.17*, 7.5*.

Remark 0.3. If we take the induced map on the connected components, the left side CF (X) becomes
F [X], the set of concordance classes of sections of F over X, whereas the right side becomes [X,CF ], the
set of homotopy classes of maps from X to CF . Madsen and Weiss in [Mumford] prove this result for the
special case of sheaves of sets. We generalize their result by allowing sheaves of spaces instead of sets, and
by considering the mapping space instead of the set of homotopy classes of maps.

Remark 0.4. As mentioned above, one can replace the target category of simplicial sets by any homotopy
variety, see Theorem 13.1 for details. Bunke, Nikolaus, and Völkl in [DiffSpec] prove this statement when X
is compact and the target is a stable ∞-category. We do not allow arbitrary stable∞-categories as a target,
and indeed, for noncompact X the main theorem is false in such generality, as explained in Remark 13.3.

Remark 0.5. Similarly, the source category of smooth manifolds can be replaced by topological or PL-
manifolds, CW-complexes or polyhedra, or even arbitrary topological spaces if we use numerable covers,
see §12.

We emphasize that Theorem 0.2 not only establishes representability, like the Brown representability
theorem, but also gives a convenient explicit formula to compute CF , namely CF = hocolimn∈∆op F (∆n).
This formula enables us to establish a relation between differential-geometric constructions (such as dif-
ferential forms and connections) and homotopy-theoretic constructions (such as Eilenberg–MacLane spaces
and topological K-theory spectra), and allows us to easily prove (or reprove in classical examples) various
representability results, as demonstrated by numerous examples in the first part of this article.

Summary. We summarize the differences between our result and classical Brown-style representability
theorems as follows.
• Our input data is a sheaf of spaces (possibly equipped with an algebraic structure) on the site of smooth
manifolds. In contrast, a typical input to a Brown-style representability theorem would be a presheaf
(not a sheaf) of sets of the form X 7→ F [X], e.g., concordance classes of the above sheaf.
• The only property of the input data that needs verification is the sheaf property, which is usually (with
some exceptions) manifestly clear for geometric reasons when applied to inputs typically used in the
construction (e.g., for differential forms and vector bundles) or a priori true by definition (e.g., for bundle
gerbes, which are constructed as the sheafification of a certain presheaf). In contrast, the analogous
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properties for Brown-style representability theorems typically require additional work to establish (e.g.,
the Mayer–Vietoris sequence for de Rham cohomology).
• Known Brown-style representability results only allow for a very limited range of algebraic structures
on spaces: pointed objects and groups. In contrast, our result allows the input data to be equipped
with an arbitrary algebraic structure, and this structure is carried over to the classifying space.
• Our result gives an explicit formula for the classifying space: CF = hocolimn∈∆op F (∆n), which makes
it easy to compute and manipulate such spaces. In contrast, the classical formulations use an inductive
cellular construction to construct the classifying space, which prevents us from doing such things.

Outline. The paper is divided into two parts. The first part uses the main theorem as a black box to discuss
a variety of applications, including de Rham cohomology in several of its incarnations, singular cohomology,
various flavors of K-theory, cobordism, as well as the less classical examples of Haefliger structures, factoriza-
tion algebras, etc. We also sketch the original motivation for this paper, the representability of concordance
classes of (nontopological) quantum field theories, but a full proof of this will appear elsewhere. The second
part contains the proof of main theorem. Our tools are sheaf- and homotopy-theoretic, and depend on a
variety of tools, including homotopy (co)limits, explicit descripting of weak equivalence using sphere fillings,
partitions of unity, etc.

Prerequisites. We assume familiarity with basic homotopy theory, including simplicial sets and their ho-
motopy (co)limits, Quillen model categories, and elementary theory of smooth manifolds, including smooth
partitions of unity. Some familiarity with homotopy descent might be helpful, but we review all the necessary
definitions.

Notation and conventions. We use the prefix ∞- or the adjectives “homotopy” or “derived” to refer to
homotopy-invariant constructions in any model for ∞-categories, e.g., model categories. All ∞-categories
used in this paper are presentable, in particular, they can be (and are) presented by combinatorial model
categories. However, except for examples our proofs are model-independent, so any other model can be used,
such as quasicategories or relative categories. Throughout the paper we work extensively with functors of the
form Manop → T , where Man is a small site of manifolds. Except for Theorem 13.1, our target category is
the relative category of spaces, which we present using simplicial sets with the Kan–Quillen model structure.
When we want to emphasize that we are working with the strict 1-categorical model, we refer to such
functors as presheaves. On the other hand, when we want to emphasize that we are working with them in a
model-independent fashion, we use the term prestack. Finally, by a stack we mean a prestack that satisfies
the homotopy descent condition. One can use other models for prestacks, such as Grothendieck fibrations
in simplicial sets over Man, in place of presheaves, see Heuts and Moerdijk [LeftFib] for an overview of the
relevant model structure and two different Quillen equivalences to simplicial presheaves. The category of
simplicial spaces with weak equivalences given by maps whose realization is a weak equivalence of spaces is
denoted sSp.
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Examples and applications

1 Differential forms

1.1. Closed differential forms and the de Rham theorem Used in I.0*.

This section considers one of the most elementary examples of an input to the main theorem, the sheaf
of closed differential n-forms for some n ≥ 0.

We start our analysis by identifying the concordance relation on closed n-forms.

Proposition 1.2. Two closed differential n-forms on a smooth manifold X are concordant if and only if
they differ by an exact form. Hence, concordances classes of closed differential n-forms on X are in bijection
with the nth de Rham cohomology of X. Used in I.0*, 1.3*, 3.17*.

Proof. Given closed differential n-forms ψ and ω on X, together with a concordance c, which is a closed
n-form on X×R, we construct an (n−1)-form χ on X such that dχ = ψ−ω. We set χ =

∫
X×[0,1]→X

c, where

the integrand c is restricted to X × [0, 1] ⊂ X ×R. By the fiberwise Stokes theorem (see Greub, Halperin,
and van Stone [CCC], Chapter VII, Problem 4(iii)), we have dχ =

∫
X×[0,1]→X

dc+ (−1)n+1(−ψ+ ω). Since

dc = 0, the first term vanishes, and adjusting the sign of χ as necessary, we see that dχ = ψ − ω. In the
other direction, if we are given χ, then we can construct c as the form (1 − t)p∗ψ + tp∗ω − dt ∧ p∗χ. The
first two terms interpolate between ψ and ω, ensuring that we have a concordance of desired type. The last
term pulls back to zero when restricted to X × 0 or X × 1 and ensures that the form is closed.

Proposition 1.3. For any n ≥ 0 there is a canonical weak equivalence CΩn
cl → K(R, n).

Proof. Eilenberg–MacLane spaces are uniquely determined by the property of having a unique nonvanishing
homotopy group. The homotopy groups of CΩn

cl can be computed using Proposition 14.2 as the pointed
concordance classes of closed differential n-forms over Sk. A minor subtlety arises from the fact that
concordance classes are pointed, which amounts to requiring the pullback of the form to the basepoint of Sk

to be 0, which is a vacuous condition unless n = 0. Similarly, concordances over Sk must pull back to the
zero form. By Proposition 1.2, concordance classes of closed n-forms on Sk for n > 0 are in bijection with
the nth de Rham cohomology of Sk, which completes the proof in this case. For n = 0 we see directly that
CΩ0

cl = R as a discrete abelian group.

Corollary 1.4. The nth de Rham cohomology is representable by K(R, n), i.e., is canonically isomorphic
to the nth ordinary cohomology with real coefficients.

1.5. Weil’s de Rham descent theorem

In this section we elaborate on the previous example and show how the machinery of concordances
allows us to recover Weil’s de Rham descent theorem [deRham], which states that the prestack Ω that sends
a smooth manifold S to the real cochain complex Ω•(S) of smooth differential forms on S is a stack.

The target category T is the category of nonnegative real chain complexes equipped with quasiisomor-
phisms. (Of course, one can obtain statements for simplicial sets or spectra by applying the Dold–Kan or
Eilenberg–MacLane functors, both of which preserve homotopy limits.) For this choice of target, CΩn

cl(S) can
be computed (by presenting the realization as the totalization of a bicomplex, for example) as the complex
Ωn

cl(S) ← Ωn
cl(S ×∆1) ← Ωn

cl(S ×∆2) ← · · · with the differentials given by alternating sum of restrictions
to individual faces.

Proposition 1.6. There is a canonical weak equivalence of prestacks CΩn
cl → Ω≤n, where Ω≤n(S) =

Ωn
cl(S)← Ωn−1(S)← · · · ← Ω0(S). Used in 1.12*, 4.5*.

Remark 1.7. An interesting observation to be made here is that this construction recovers the chain
complex of differential forms from closed differential forms and their concordances.

Proof. The morphism Ωn
cl(S ×∆k)→ Ωn−k(S) is given by the fiberwise integration (pushforward) with re-

spect to the projection S×∆k → S, where the integral is taken over the compact interiors (affine coordinates
are nonnegative) of ∆k. For k = 0 nothing happens, so we indeed land in closed forms in this case. That
this is a chain map is precisely the content of the fiberwise Stokes theorem for the case of smooth simplices.
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The map Ωn−k(S)→ Ωn
cl(S ×∆k) in the other direction is constructed by pulling back along S ×∆k → S

and taking the product with the translation invariant closed form on ∆k that integrates to 1.
By construction, the composition Ωn−k(S) → Ωn

cl(S × ∆k) → Ωn−k(S) is the identity map. The
other composition Ωn

cl(S × ∆k) → Ωn−k(S) → Ωn
cl(S × ∆k) is homotopic to the identity map via the

chain homotopy Ωn
cl(S ×∆k) → Ωn

cl(S ×∆k+1) that can be constructed explicitly. The chain homotopy
condition requires the sum of the compositions of Ωn

cl(S × ∆k) → Ωn
cl(S × ∆k+1) → Ωn

cl(S × ∆k) and
Ωn

cl(S ×∆k) → Ωn
cl(S ×∆k−1) → Ωn

cl(S ×∆k) to be equal to the difference of the identity map and the
composition Ωn

cl(S ×∆k)→ Ωn−k(S)→ Ωn
cl(S ×∆k).

Corollary 1.8. The prestack Ω≤n is a stack.

Proof. The previous proposition proved that Ω≤n is weakly equivalent to CΩn
cl. Our main theorem says

that the functor C preserves stacks and Ωn
cl is a sheaf of sets. Hence, Ω≤n is a stack of nonnegative chain

complexes concentrated in degree 0.

Corollary 1.9. (Weil’s Čech–de Rham descent theorem.) The prestack Ω = (S 7→ Ω0(S) → Ω1(S) → · · ·)
of real cochain complexes is a stack. Used in 1.12*.

Proof. This follows immediately from the previous corollary: take the homotopy truncation Ω≤n of Ω and
use the fact that a morphism of real cochain complexes is a quasiisomorphism if and only if its homotopy
truncation above any level is a quasiisomorphism of chain complexes (with the reversed grading) and the
fact that the homotopy truncation functor at any level preserves homotopy limits.

Recall that the Eilenberg–MacLane functor H can be upgraded to a functor (a zigzag of Quillen equiva-
lences) from cdgas (commutative differential graded algebras) to HR-algebras, i.e., E∞-ring spectra equipped
with a morphism from the E∞-ring spectrum HR.

Corollary 1.10. (E∞ de Rham theorem.) For a smooth manifold S there is a natural weak equivalence of
E∞-algebras over HR

H(Ω(S))→ Hom(Σ∞CS,HR),

where H(Ω(S)) is the Eilenberg–MacLane E∞-ring spectrum of the real cdga of differential forms on S.
Equivalently, there is a natural weak equivalence of real cdgas

Ω(S)→ Hom(CS,R),

where the latter term denotes the cdga of real singular cochains on S. Used in 1.12*.

Proof. The forgetful functor from real cdgas to real cochain complexes creates (i.e., preserves and reflects)
homotopy limits. Thus S 7→ Ω(S) is a stack of real cdgas because its underlying prestack of real cochain com-
plexes satisfies descent by the above corollary. Furthermore, Ω is concordance-invariant. The representability
of concordance-invariant stacks immediately implies the desired result.

1.11. Equivariant de Rham cohomology Used in 3.19*.

The purpose of this section is to illustrate that the main theorem produces interesting results not only
for representable stacks (i.e., manifolds), but also for other stacks, e.g., quotients by group actions.

Consider a smooth manifold X with an action of a Lie group G. Apart from the traditional stacky
quotient X//G we also consider the connection quotient X//

∇
G, defined as (TBun∇G × X)//G. There is a

canonical map X//
∇
G → X//G, which becomes a weak equivalence after applying C, as follows from the

homotopy cocontinuity of C and the contractibility of CTBun∇G .

In the terminology of Definition 7.22 in Freed and Hopkins [CWFAHT], the stack X//
∇
G is called the

simplicial Borel quotient and is denoted (XG)∇.

Theorem 7.28 in Freed and Hopkins [CWFAHT] shows that Map(X//
∇
G,Ω) is quasiisomorphic (or even

isomorphic, assuming the mapping space is computed individually for each degree) to the Weil model for the
G-equivariant cohomology of X, i.e., the basic subcomplex of Ω(X,Kos g∗) with the differential dX+dK , with
dX being the de Rham differential and dK the Koszul differential defined below. Here Kos g∗ = Λg∗⊗Sym g∗
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is the Koszul complex of g∗, with the differential dK(Λ1g∗) = Sym1 g∗ and dK(Sym1 g∗) = 0. A basic form
is a G-invariant form that vanishes under the substitution of any vector field coming from g.

The equivariant de Rham theorem (see, for example, Theorem 2.5.1 in Guillemin and Sternberg [SSE-
dRT]) states that the basic subcomplex is weakly equivalent to the mapping space Map(Xh

G,HR). (One
either has to apply the Dold–Kan functor to the basic subcomplex or its inverse to the mapping space, so
that the weak equivalence makes sense.) Here Xh

G denotes the homotopy quotient of X by G, as a space,
which we know is weakly equivalent to C(X//G).

Combined together, these two results tell us that the real cochain cdga Map(X//
∇
G,Ω) is weakly equiv-

alent to Map(Xh
G,HR). (Equivalently, we can work with E∞-algebras over HR.) Here we offer a simple

proof of this result that does not rely on the above theorems.

Equivariant de Rham theorem 1.12. For any smooth manifold X with an action of a Lie group G, there
is a natural weak equivalence of E∞-algebras over HR

H(Map(X//
∇
G,Ω))→ Hom(Σ∞Xh

G,HR).

Equivalently, there is a natural weak equivalence of real cochain cdgas

Map(X//
∇
G,Ω)→ Hom(Xh

G,R),

where the latter term denotes the cdga of real singular cochains on Xh
G.

Proof. The same argument as in 1.10 (the functor that forgets E∞-structures creates homotopy limits) allows
us to get rid of E∞-structures, and the same argument as in 1.9 (quasiisomorphisms of cochain complexes
are detected on their homotopy truncations in all degrees) allows us to further reduce the problem to
the case of Ωn

cl and K(R, n) instead of Ω and HR. Using Corollary , we deduce that the canonical map

Map(X//
∇
G, CΩn

cl)→ Map(C(X//
∇
G),CΩn

cl) is a weak equivalence. Finally, CΩn
cl is weakly equivalent to Ω≤n

(by 1.6) and C(X//
∇
G) is weakly equivalent to Xh

G, which completes the proof.

Remark 1.13. The above construction can be used to define the equivariant de Rham complex even if one
knows nothing about the Weil model.

2 Singular cohomology

2.1. Mapping cycles

In this section we explain how singular cohomology can be recovered from a certain presheaf of abelian
groups. The construction resembles Voevodsky’s presheaves with transfers. The smooth manifold version of
this idea was developed by Michael Weiss under the name of mapping cycles in [HWS].

We start by constructing a category MC enriched in abelian groups, whose objects are manifolds and
MC(M,N) is the abelian group given by the evaluation at M of the sheafification of the presheaf of abelian
groups on M that sends an open subset U of M to the free abelian group on the set of maps from U to N .
Concretely, a mapping cycle from M to N is given by an open cover U of M and a compatible U -family of
formal sums (with signs) of maps of the form Ui → N .

The identity map Z→ Map(M,M) sends 1 to the identity map M →M (for the singleton cover of M).
The composition Hom(M,N)⊗ Hom(L,M)→ Hom(L,N) is the unique bilinear map canonically extended
from the generators of the corresponding presheaves, where it is defined as the composition of maps of
manifolds.

The ordinary category of manifolds admits a functor into MC (after we discard the abelian group
structure) by sending a mapM → N of manifolds to itself, considered now as an element of the sheafification
using the singleton cover of M . The representable presheaves MC(−, N) are sheaves (of abelian groups) for
any manifold M , i.e., the site MC equipped with the standard topology of open covers is subcanonical.

The following proposition is a tautological consequence of the formula CF = diagF (∆•) combined with
the fact that the presheaf used to define MC(M,N) is already a sheaf when M is cartesian, so MC(M,N)
is the free abelian group on maps M → N in this case. Thus, substituting M = ∆n we get the nth term of
the singular chain complex of N . Of course, there is nothing special about Z here: one can replace abelian
groups with R-modules for any ring R, recovering singular R-chains.
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Proposition 2.2. For any manifold N we have CMC(−, N) = Z[SingN ] ' Ω∞(HZ ∧ N). In particular,
CMC(−, N)(M) =: CMC(M,N) ' Map(M,Ω∞(HZ ∧ N)) is the bivariant homology-cohomology theory
associated to the Eilenberg–MacLane spectrum (of the integers, or, more generally, any ring).

Corollary 2.3. For any manifold N the nth singular homology group of N is canonically isomorphic to the
abelian group of pointed concordance classes of MC(−, N) over Sn

∗ . Equivalently, Hn(N) ∼= ker(MC[Sn, N ]→
MC[pt, N ] = H0(N)) ∼= coker(MC[pt, N ] → MC[Sn, N ]), where [−] as usual denotes concordance classes
(with respect to the first argument in this case). Informally, Hn(N) ∼= [Sn, N ]/[pt, N ].

Substituting N = Sn
∗ and using the fact that Z[SingSn

∗ ] ' K(Z, n) is the nth Eilenberg–MacLane space,
we obtain the following result.

Corollary 2.4. For any manifold M the nth singular cohomology group of M is canonically isomorphic to
the abelian group of pointed concordance classes of MC(−,Sn

∗ ) = coker(MC(−,pt)→ MC(−,Sn)) over M .
Informally, Hn(M) ∼= [M,Sn]/[M, pt].

2.5. Local singular cochains

In this section we review a more traditional approach to singular cohomology via singular cochains. As
before, we work with manifolds, but the exposition below applies equally well to topological spaces. One
difficulty in applying our main theorem directly is that singular cochains on X do not form a sheaf with
respect to X. We are therefore led to the following definition, which fixes this problem. Throughout this
section we fix a ring of coefficients k, which we suppress in our notation.

Definition 2.6. The local singular cochain complex C• for a commutative ring k sends a manifold X to the
degreewise sheafification of the singular cochain complex of X with coefficents in k.

Remark 2.7. Concretely, a local singular n-cochain on X is an equivalence class of singular cochains
on X, where two cochains c1 and c2 are equivalent if there is an open neighborhood U of the diagonal
X ⊂ Xn+1 such that c1 and c2 coincide on any singular simplex s:∆n → X such that for any (n + 1)-
tuple x ∈ (∆n)n+1 we have s(x) ∈ U , i.e., the singular simplex s is “small” with respect to the open
neighborhood U . In particular, the closedness condition is local, so Cn

closed is a sheaf of abelian groups, in
fact, it is the sheafification of the presheaf of closed singular n-cochains.

Proposition 2.8. There exists a natural quasi-isomorphism

C(Cn
closed)(X) = (Cn

closed(X)← Cn
closed(∆

1 ×X)← Cn
closed(∆

2 ×X)← · · ·)
→ (Cn

closed(X)← Cn−1(X)← Cn−2(X)← · · · .
Proof. In chain degree k we have a map Cn

closed(∆
k × X) → Cn−k(X) given by the pushforward map f∗

(here f :∆k×X → X is the projection) in singular cohomology, defined as follows. The value of f∗c on some
singular simplex σ:∆n−k → X is defined to be the pairing of σ∗c ∈ Cclosed(∆

k×∆n−k) on the fundamental
class of ∆k ×∆n−k. More precisely, σ∗c is defined using some open cover U of ∆k ×∆n−k, and we choose
a subdivision of the compact part of ∆k×∆n−k so that each simplex is subordinate to U . The pairing does
not depend on the choice of the subdivision: any two subdivisions have a common refinement, so it suffices
to show that the value of the pairing does not change when we subdivide a single simplex, which we can
assume to be contained within some Ui. The fact that σ∗c is closed on Ui then completes the argument.
This we have defined a map f∗ in each chain degree. It commutes with the differential

Proposition 2.9. We have CCn
closed(k) ' K(k, n).

Proof. The functor C sends any sheafification morphism to a weak equivalence. Thus in the computation
of CCn

closed(k) we can use closed singular n-cochains instead of closed local singular n-cochains.

2.10. Alexander–Spanier cohomology

The construction in the previous section is closely related to the Alexander–Spanier cohomology. Indeed,
the only difference between a local singular cochain and an Alexander–Spanier cochain is that in the latter
case we replace a singular simplex with its ordered tuple of vertices.

Definition 2.11. The Alexander–Spanier cochain complex AS∗(k) for a commutative ring of coefficients k
sends a manifold X to the degreewise sheafification of the cochain complex

9



3 Bundles

3.1. Vector bundles with connection Used in I.0*.

In this section we work with either real or complex vector bundles. The notation GL(n) denotes the Lie
group GL(R, n), respectively, GL(C, n) and End(n) the Lie monoid End(Rn), respectively, End(Cn).

We concentrate our attention on two stacks, both of which are constructed by applying the nerve func-
tor to the strictification of some Grothendieck fibration in groupoids over manifolds. The stack Vect is
constructed from the Grothendieck fibration of vector bundles and isomorphisms, whereas Vect∇ is con-
structed from vector bundles with connection and connection-preserving isomorphisms.

As in the section on closed differential forms, we start by identifying the concordance relation on vector
bundles, with or without connection.

Proposition 3.2. Two vector bundles are concordant if and only if they are isomorphic. Two vector bundles
with connection are concordant if and only if they are isomorphic after discarding the connection.

Proof. We start by constructing concordances from isomorphisms. The trivial concordance solves the prob-
lem in the case without connections. Connections on a vector bundle form an affine space whose associated
vector space is the space of connection 1-forms. Given two connections ∇1 and ∇2 on X, a concordance
between them can be constructed as p∗∇1 + t(∇2 − ∇1), where p:X ×R → X is the projection map, the
summand p∗∇1 is a connection on X×R, and t(∇2−∇1) is a connection 1-form on X×R. In the opposite
direction, given a concordance between two vector bundles (possibly with connection), we construct an iso-
morphism between them by choosing a connection if necessary, and taking the parallel transport isomorphism
along the path [0, 1] in each fiber.

Proposition 3.3. There is a canonical weak equivalence CVect →
∐

n≥0 BGL(n). In particular, the latter
space classifies isomorphism classes of vector bundles. Here BGL(n) denotes the classifying space of the
simplicial group given by the singular simplicial set of GL(n), or, equivalently, the topological group GL(n).
Used in 3.16*.

Proof. There are no morphisms between vector bundles of different dimensions, so we can work one dimension
at a time. The formula for C gives CVect = hocolimn∈∆op Vect(∆n). We have natural weak equivalence
Vect(∆n)→ BC∞(∆n,GL(n)) (all vector bundles on ∆n are trivial). Therefore,

CVect ' hocolimn∈∆op BC∞(∆n,GL(n)).

Using the homotopy cocontinuity of B we transform this into Bhocolimn∈∆op C∞(∆n,GL(n)), and the inner
homotopy colimit is nothing but the singular simplicial set of GL(n), which completes the proof.

Remark 3.4. A purely grammatical adjustment of the above proofs shows that CBunG ' BG, where BG
is the classifying space of G taken with its topology and BunG is the stack of principal G-bundles and their
isomorphisms.

The case of CVect∇ can be reduced to that of CVect. Both spaces turn out to be weakly equivalent, but
only one of them can be used in the Chern–Weil machine to construct the Chern character, as we explain
later.

Proposition 3.5. There is a weak equivalence CVect∇ '
∐

n≥0 BGL(n). Used in 3.16*.

Proof. It suffices to show that the forgetful morphism Vect∇ → Vect is mapped to a weak equivalence
CVect∇ → CVect by the functor C. There is a weak equivalence from Vect∇(∆k) to the nerve of the
groupoid whose objects are connections on the trivial vector bundle with fiber Rn and morphisms are
connection-preserving isomorphism. Thus the set of objects is Ω1(∆k,End(n)) for all n ≥ 0 and the set of
all morphisms with a fixed source of dimension n is Map(∆k,GL(n)), which acts on the source 1-form by
gauge transformations, i.e., α · h = h−1(dh) + h−1αh. Consider the morphism

Vect∇(∆k)→ Vect(∆k) = BMap(∆k,GL(n))
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that forgets the 1-form. As we vary k, the resulting morphism of simplicial objects in simplicial sets is
a homotopical acyclic Kan fibration, meaning that it satisfies the homotopical analog of the sphere filling
condition: given a square diagram of simplicial objects in simplicial sets of the form

∂∆n −−−→ Vect∇(∆•)y
...
...
.↗

y
∆n −−−→ BMap(∆•,GL(n))

together with a levelwise homotopy between the two compositions, we can find a diagonal arrow such
that both triangles commute up to a levelwise homotopy and the composition of these homotopies is itself
homotopic to the original homotopy. In our case this boils down to proving that any 1-form over ∂∆n can
be extended to a 1-form over ∆n. Indeed, such a 1-form can be constructed by affine interpolation with
bump functions (here we use the fact that End(n) is a real vector space). A crucial property of homotopical
acyclic Kan fibrations is that their realization is a weak equivalence, see Theorem 4.4 in Mazel-Gee [MIC],
which completes the proof.

Remark 3.6. The case of principal G-bundles with connection is completely analogous. (Recall that the
groupoid of n-dimensional vector bundles with connection is equivalent to the groupoid of principal GL(n)-
bundles with connection.) The relevant stacks are obtained by stackifying the corresponding prestacks of
trivializable objects. For (trivializable) principal G-bundles we take S 7→ BC∞(S,G), For (trivializable)
flat G-bundles we take S 7→ C∞

lc (S,G). For (trivializable) principal G-bundles with connection we send S
to the nerve of the groupoid whose objects are elements of Ω1(S, g) (here g is the Lie algebra of G), the
set of all morphisms with a given source α ∈ Ω1(S, g) is C∞(S,G), the target of such a morphism h
is α · h = h∗θ + Adh−1 α, where θ is the Maurer–Cartan form of G. (For matrix groups like GL(n) we
recover the expression h−1(dh)+h−1αh used above.) Using an argument identical to the one in the previous
paragraph (with g-valued forms in place of End(n)-valued ones), we get a weak equivalence CBun∇G ' B(CG),
where B(CG) is simply the usual classifying space of the Lie group G. Used in 5.0*.

3.7. Virtual vector bundles and Simons–Sullivan structured vector bundles

We now extend the above result to the case of virtual vector bundles, obtaining a smooth refinement
of the spectra ko and ku. Fix a functorial model K for the homotopy group completion of E∞-semirings
(i.e., E∞-monoids in E∞-spaces with the smash product), the result being an E∞-ring, i.e., a connective
ring spectrum. For example, one can take the left derived functor of the left Quillen functor induced by the
morphism RSpan → GrRSpan of simplicial algebraic theories, as defined in §8.2 of Cranch [InfAlgTh]; as
explained in §6.8 there, vector spaces can be organized into an algebra over RSpan.

Definition 3.8. The prestack of simplicial sets VVect∇pre sends a manifold S to the homotopy group com-
pletion of the groupoid of vector bundles with connection over S and connection-preserving isomorphisms.
The stack VVect∇ is the stackification of VVect∇pre. Its sections are virtual vector bundles with connection.
The pair (VVectpre,VVect) is defined similarly.

Proposition 3.9. The concordance space of VVect∇ (or VVect) is the connective E∞-ring spectrum of real
K-theory ko (respectively complex K-theory ku).

Proof. The morphism VVect∇pre(∆
•) → VVect∇(∆•) induces a weak equivalence after realization. In-

deed, VVect∇pre(∆
•) can be computed explicitly as Z × hocolimm BMap(∆•,GL(m)) = Map(∆•,Z ×

hocolimm BGL(m)), which consists of maps that globally factor through some finite stage of the homo-
topy colimit. After stackification we get maps that locally factor through some finite stage. The weak
equivalence criterion boils down to proving that any section over ∆k whose restriction to ∂∆k comes from
some finite stage n, itself comes from some finite stage up to a concordance. Indeed, consider the open
cover that defines the given section over ∆k. We can choose a finite subcover of the interior part of ∆k.
After increasing n we may now assume that the restriction to the interior comes from a finite stage. The
standard trick with a smooth retraction of ∆k onto ∂∆k (with corners appropriately smoothened) provides
the desired lift and concordance.
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The homotopy group completion functor preserves homotopy colimits, so we can compute the realization
of VVect∇pre(∆

•) as the homotopy group completion of the realization of Vect∇(∆•). The latter was found
to be

∐
n≥0 BGL(n) above, and its homotopy group completion is by definition the connective E∞-ring

spectrum ko (respectively ku).

Corollary 3.10. Homotopy classes of maps from a manifold X to ko (respectively ku) are in bijection with
concordance classes of real (respectively complex) virtual vector bundles with (or without) connection. This
correspondence preserves the abelian group structure on both sides.

Remark 3.11. There is a canonical morphism VVect∇ → π0K(Struct), where Struct denotes the sheaf of
structured vector bundles defined by Simons and Sullivan, who prove that the right side is the differential
K-theory functor K̂0. Thus it is reasonable to expect that VVect∇ supplies a homotopy coherent version
of this construction. Indeed, in a forthcoming work with Alex Kahle [Cocycles] we show that imposing the
equivalence relation of geometric concordance on VVect∇ recovers the differential K-theory space (as opposed
to a single group). Geometric concordances are defined as concordances for which the Chern–Simons form
vanishes, and the latter makes sense in the presence of any morphism of stacks; the Chern–Weil morphism
recovers the ordinary Chern–Simons form.

3.12. Superconnections

Quillen’s superconnections give another model for K-theory classes that turns out to be more flexible
for many geometric applications.

Definition 3.13. Denote by Ω the commutative super algebra of differential forms on X (the grading being
degree mod 2) and by ΩW , where W is a Z/2-graded (i.e., super) vector bundle the Ω-module Ω ⊗Ω0 W
of W -valued differential forms on X. A superconnection ∇ on a super vector bundle V is an odd deriva-
tion ∇: ΩEnd(V ) → ΩEnd(V ) of Ω-modules, where End(V ) denotes the super algebra of endomorphisms
of V .

Remark 3.14. For a fixed manifoldX, the superconnections onX and their isomorphisms form a symmetric
monoidal groupoid SVect∇(X) with respect to the direct (Whitney) sum. Equipped with pullbacks, SVect∇

is a stack of symmetric monoidal groupoids.

Remark 3.15. Superconnections on X form a torsor over the odd part of ΩEnd(V ), which we denote
(ΩEnd(V ))odd.

Proposition 3.16. We have CSVect∇ ' CSVect '
∐

a,b≥0 BGL(a)× BGL(b).

Proof. The canonical map CSVect∇ → CSVect is a weak equivalence by the same reasoning as in Proposi-
tion 3.5. The space CSVect is a disjoint union of its components corresponding to super vector bundles of
fixed super dimension a|b, where a ≥ 0 and b ≥ 0 are arbitrary. Using the fact that over ∆n all bundles are
trivial, such a component can be computed as hocolimn∈∆op C∞(∆n,GL(Ra|b)). Maps from ∆n only see
the reduced part of GL(Ra|b), which is GL(a)×GL(b). An argument identical to the one in Proposition 3.3
completes the proof.

3.17. The Chern–Weil homomorphism and Chern character

The Chern–Weil homomorphism is a morphism of stacks of symmetric monoidal groupoids

CW:Vect∇ → Ωev
cl , (V,∇) 7→ exp(curv(∇))

from the symmetric bimonoidal groupoid of complex vector bundles with connection equipped with the
direct sum and tensor product to the abelian group of closed differential forms of (nonhomogeneous) even
degree equipped with the addition and exterior multiplication. (As usual, we have a choice where to place
the factor 2πi and signs; we elect to place it with the coefficients, so instead of integers we use the Tate
integers Z(k) := (2πi)kZ.) The source and target can be interpreted as stacks of E∞-rig spaces, i.e.,
spaces equipped with homotopy coherent addition (without inverses) and multiplication that distribute in a
homotopy coherent fashion. A convenient model is supplied by algebras over a simplicial algebraic theory,
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see §6.8 in Cranch [InfAlgTh]. (In our case the left side is 1-truncated and the right side is 0-truncated.)
This enables us to apply Theorem 0.2 in its full algebraic generality and obtain a morphism of stacks of
E∞-rig spaces ∐

k

BGL(k) ' CVect∇ → CΩev
cl '

∨
n

K(R, 2n).

We suppress a lot of additional structure in this formulation, for example, we could equip both sides with
an action of Z/2 (complex conjugation on the left and (−1)n acting on K(R, 2n) on the right) and the map
would be Z/2-equivariant. This formulation also makes it easy to see the Chern–Simons form: a concordance
of vector bundles with connections over X yields a concordance of the corresponding Chern–Weil forms, so by
Proposition 1.2 specifies a Chern–Simons form whose differential equals the difference of the corresponding
Chern–Weil forms. Similarly, higher concordances induce higher Chern–Simons forms.

We summarize our observations in the following result.

Proposition 3.18. The functor C applied to the Chern–Weil homomorphism CW yields the (unstable)
Chern character ∐

k

BGL(k)→
∨
n

K(R, 2n).

Further applying the homotopy group completion functor (see §8.2 in Cranch [InfAlgTh]) yields the Chern
character map as a morphism of E∞-ring spectra:

BU× Z→
∨
n

K(R, 2n).

There is a similar diagram for Vect∇R and BO× Z.

3.19. Equivariant K-theory and the Atiyah–Segal completion theorem

In this section we explain how the Atiyah–Segal completion theorem naturally fits within the realm of
concordances. The basic setup is identical to that of §1.11: we have a manifold X with an action of a Lie
group G. As described there, two quotients X//G and X//

∇
G are naturally associated to it.

Proposition 3.20. The space Map(X//G,Vect∇) is naturally weakly equivalent to the nerve of the groupoid
of G-equivariant vector bundles with connection over X. Analogous statements hold for vector bundles
without connection, flat vector bundles, and their virtual cousins. Likewise for principal bundles (with or
without connection or flat).

Proof. Recall that X//G is the homotopy colimit of the simplicial diagram k ∈ ∆op 7→ Gk×X. The mapping
space Map(−,Vect∇) turns this homotopy colimit into the corresponding homotopy limit. Since Vect∇ is
valued in homotopy 1-types, it is enough to look at terms in degree 0, 1, and 2. We get the homotopy limit
Vect∇(X)⇒Vect∇(G×X) ⇒⇒ Vect∇(G×G×X). The first term gives us the underlying vector bundle with
connection, the second term gives us the action of G, and the third term ensures that it is associative.

Corollary 3.21. The canonical comparison map

α:Map(X//G,VVect∇)→ Map(C(X//G),CVVect∇) = Map(Xh
G, ku)

induces the Atiyah–Segal completion map on π0.

Proof. The left side was identified above with the equivariant K-theory ofX and the right side is the K-theory
of the homotopy quotient of X as a space.
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4 Gerbes and higher gerbes

We now turn our attention to higher bundle gerbes with connection. Take an abelian group A, typically
A = U(1) or A = C×. Also fix n ≥ 0, the value n = 0 will give us smooth A-valued functions, n = 1
corresponds to principal A-bundles, and n = 2 will give us classical bundle A-gerbes. We shifted the index n
by 1 compared to the classical notation in order to better stress the relationship to classifying spaces and
the cohomological degree.

Definition 4.1. Fix n ≥ 0 and an abelian Lie group A with a Lie algebra g. We construct three stacks
as the stackification of the corresponding prestack of connective chain complexes, whose value on a smooth
manifold S is specified below.
• For the stack Grb∇n(A) of bundle (n−1)-gerbes with connection we take the Deligne complex Ωn(S, g)←
Ωn−1(S, g)← · · · ← Ω1(S, g)← C∞(S,A).

• For the stack Grb[n(A) of flat bundle (n− 1)-gerbes we replace the initial term Ωn(S, g) with Ωn
cl(S, g).

• For the stack Grbn(A) of bundle (n − 1)-gerbes (without connection) we take the smooth A-valued
functions shifted by n, i.e., C∞(S,A)[n].

Remark 4.2. The A-valued Deligne complex is the g-valued de Rham complex truncated above degree n,
but with 0-forms replaced by A-valued functions and the 0th differential C∞(S,A)→ Ω1(S, g) computed as
the tangent map of S → A. In fact, one can make sense of A-valued differential forms for any abelian Lie
group A, which gives us the above complex.

Remark 4.3. For flat bundle (n− 1)-gerbes one can also take the locally quasiisomorphic prestack

C∞
lc (S,A)[n] = C∞(S,Map(pt, A))[n],

i.e., locally constant A-valued functions shifted to degree n. In other words, flat gerbes with band A are
equivalent to gerbes with band Map(pt, A), the underlying discrete group of A.

Remark 4.4. The classical theory of bundle gerbes is recovered when we take A = U(1) and g = iR, the
imaginary numbers, which are noncanonically isomorphic to R. We could also treat complex gerbes with
connection by replacing iR and U(1) with C and C×. For A = g = R (or any real vector space V ) one
recovers the (V -valued) de Rham complex, i.e., bundle (n−1)-gerbes with connection are simply (V -valued)
differential n-forms.

Proposition 4.5. For any abelian group A we have CGrb∇n(A) ' CGrbn(A) ' BnCA and CGrb[n(A) '
Bn Map(pt, A).

Proof. For Grbn the computation is the same as for vector bundles. Indeed, Grbn(∆
m) can be computed

as BnC∞(∆m, A) and a similar argument gives us the space BnCA. For Grb∇n the homotopy colimit of the
resulting simplicial diagram can be computed as the totalization of the corresponding bicomplex of normalized
chains, whose term in bidegree (k, l) is Ωn−k(∆l, g) if k < n and C∞(∆l, A) if k = n. As shown in 1.6, for
a fixed k < n the corresponding complex Ωn−k(∆•, g) is exact and for k = n we get a complex C∞(∆•, A)
that presents CA. Thus the totalization is the chain complex that presents BnCA. In other words, smooth
bundle gerbes with or without connection have the same classifying space, as expected.

Remark 4.6. It is easy to construct an explicit chain homotopy equivalence from the above totalization
to A[n]. Nonzero terms live in bidegrees (n − k, k), where for k > 0 we have maps Ωk(∆k, g) → A give by
integration over the compact part of ∆k and applying the exponential map g → A, whereas for k = 0 we
simply take the identity map. The constructed map is nothing but the higher holonomy map. It can then
be extended to a chain homotopy in a familiar fashion.
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5 Total stacks of bundles and gerbes

In this section we explore examples that construct a smooth refinement of the notion of the total space
of a principal bundle or a bundle (n− 1)-gerbe. The statements of this section were suggested to the author
by Urs Schreiber.

Given a Lie group G, consider the universal principal G-bundle with connection TBun∇G → Bun∇G . Freed
and Hopkins [CWFAHT] denote this morphism by E∇G→ B∇G. Recall that TBun∇G is weakly equivalent
to the sheaf of 1-forms valued in the Lie algebra of G. Furthermore, the value of Bun∇G on any geometric
simplex can be computed as the groupoid of trivializable principal G-bundles with connection defined in
Remark 3.6 because any principal G-bundle on ∆n is trivial.

Likewise, given an abelian Lie group A, we can define the universal bundle (n−1)-gerbe with connection
TGrb∇nA → Grb∇nA, whose base Grb∇nA is the stackification of the prestack of A-valued Deligne complexes
(i.e., n-truncated differential forms with values in the Lie algebra of A, with 0-forms replaced by smooth
A-valued functions) and whose total stack TGrb∇nA is the stack of differential n-forms valued in the Lie
algebra of A, which one should think of as trivialized bundle (n− 1)-gerbes with band A.

Even more generally, one could consider a Lie ∞-group G and define the universal principal G-bundle
with connection. We recover the above examples when G is an ordinary Lie group or G = Bn−1A respectively,
where B denotes delooping in stacks of E∞-spaces.

Proposition 5.1. Consider a smooth manifold X and an arbitrary morphism X → Bun∇G , which classifies
a principal G-bundle with connection over X. Consider the homotopy pullback diagram

T −−−→ TBun∇Gy y
X −−−→ Bun∇G .

The stack T is the total stack of the principal G-bundle with connection classified by the map X → Bun∇G .
The concordance space functor sends this square to the homotopy pullback square

CT −−−→ ECGy y
CX −−−→ BCG.

Here CX is simply the underlying homotopy type of X, ECG → BCG is the usual universal principal G-
bundle in the sense of homotopy theory, the map CX → BCG classifies the underlying topological bundle,
and CT is the total space of that bundle, understood as a homotopy type in the traditional sense. The above
remains true if G is replaced by Bn−1A for an abelian Lie group A, Bun∇ and TBun∇ are replaced by Grb∇n
and TGrb∇n , and principal G-bundles are replaced by bundle (n− 1)-gerbes with band A.

Proof. We claim that the morphism RTBun∇G → RBun
∇
G (here RF = F∆•

is the concordance resolution,
see ) is a homotopical Kan fibration, meaning that it satisfies the homotopical analog of the horn filling
condition: given a square diagram of simplicial objects in simplicial sets (in fact, groupoids) of the form

Λn
k −−−→ TBun∇G(∆•)y
...
...
.↗

y
∆n −−−→ Bun∇G(∆•)

together with a levelwise homotopy between the two compositions, we can find a diagonal arrow such
that both triangles commute up to a levelwise homotopy and the composition of these homotopies is itself
homotopic to the original homotopy. This boils down to saying that a trivialized principal G-bundle with
connection over Λn

k together with a principal G-bundle with connection over ∆n that extends it to the
whole simplex admits an extension of the trivialization to the whole simplex. If we use the presentations of
TBun∇G(∆•) and Bun∇G(∆•) identified above, this amounts to saying that the zero 1-form over ∆n

k can be
extended to the zero 1-form over ∆n, which is tautologically true. For the statement about bundle (n− 1)-
gerbes it suffices to replace 1-forms valued in the Lie algebra of G with n-forms valued in the Lie algebra
of A.
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6 Liftings, Hirsch–Mazur, and Kirby–Siebenmann

6.1. Basic theory

Consider a morphism p:E → B of stacks. Given a morphism f :X → B of stacks, we are interested
in the stack of liftings of f , which is defined as the homotopy pullback of Hom(X,E) → Hom(X,B) ← pt,
where the right map is induced by f .

To obtain a formula for the concordance stack of the stack of liftings of f , we impose an additional
condition on E → B: we require it to be a fiber ∞-bundle with a typical fiber V . This means that there
is an effective ∞-epimorphism U → B such that the base change of E → B with respect to U → B is
equivalent to the projection U × V → U . For more details, see Definition 4.1 in Nikolaus, Schreiber, and
Stevenson [Principal].

Recall that although the concordification functor preserves finite homotopy products, it does not nec-
essarily preserve homotopy pullbacks. The following proposition offers a partial remedy for this.

Proposition 6.2. The concordification functor preserves homotopy pullbacks of stacks, where one of the
maps is an effective ∞-epimorphism.

Proof. It suffices to show that the concordance resolution of a hypercover H → X is a homotopy Kan
fibration. This follows immediately from the fact that any morphism Λn

k → H factors through some repre-
sentable M .

Corollary 6.3. The concordification of a V -fiber ∞-bundle is a CV -fiber ∞-bundle. In particular, the
concordance space has a typical fiber CV .

Corollary 6.4. The concordification of a G-principal ∞-bundle is a CG-principal ∞-bundle. In particular,
the concordance space has a typical fiber CG.

Corollary 6.5. Given a G-principal ∞-bundle E → B and a morphism f :X → B, the concordification of
the stack of liftings of f to E can be computed as the homotopy pullback of Hom(X, CE)→ Hom(X, CB)←
pt. In particular, the concordance space of liftings is either empty or a torsor over Hom(CX,CG).

6.6. Smooth tangential structures

In this section the word “manifold” can mean smooth, PL, or topological manifold, and Aut(n) denotes
the structure group of an n-dimensional tangent bundle, i.e., GL(n), PL(n), and TOP(n) respectively. The
tangent bundle of an n-manifold M is modulated by a map M → BAut(n). Recall that an n-dimensional
structure group is a morphism BG→ BAut(n), where G is an ∞-group.

Proposition 6.7. Given a structure group G→ Aut(n), the concordance space of tangential G-structures
on M is either empty or a torsor over Map(CM,CH), where H → BG→ BAut(n) is a fiber sequence.

Corollary 6.8. For any manifoldM the set of orientations ofM is a torsor over Map(M,Z/2), the groupoid
of spin (respectively spinc) structures on M is a torsor over Map(M,BZ/2) (respectively Map(M,BU(1))),
the 2-groupoid of string structures on M is a torsor over Map(M,B2U(1)).

6.9. Hirsch–Mazur theory

Proposition 6.10. For any smoothable PL-manifold M the concordance space of smoothings of M is a
torsor over Map(M,PL/O).

6.11. Kirby–Siebenmann theory

Proposition 6.12. For any topological manifold M that admits a PL-structure the concordance space of
PL-structures of M is a torsor over Map(M,TOP/PL) = Map(M,K(Z/2, 3)).
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7 Field theories and factorization algebras

7.1. Groupoids of stacks

Fix some target∞-category V and consider the prestack StV that sends a manifoldX to the∞-groupoid
of V -valued stacks on X with 1-morphisms being equivalences of stacks. The prestack StV satisfies descent
and therefore is a stack; a recent exposition of this fact can be found in our work with Gwilliam [Fact].

Proposition 7.2. The canonical map CStV (X)→ Map(CX,CStV ) is an equivalence. In particular, concor-
dance classes of V -valued stacks over X are in bijection with [X,CStV ].

7.3. Field theories

Functorial field theories (not necessarily topological) in the sense of Atiyah and Segal are functors from
some category of (n− 1)-dimensional manifolds and n-dimensional bordisms between them to the category
of vector spaces and linear maps.

Freed proposed to consider extended field theories, which are functors from the n-category whose k-
morphisms are k-dimensional manifolds with corners, considered as bordisms, to the appropriately gener-
alized target category, e.g., bundle (n − 1)-gerbes or En−1-algebras. Bordisms can also be equipped with
additional geometric structures, such as a smooth map to some target manifold X.

As observed by Stolz and Teichner in [Elliptic], the advantage of considering extended field theories is
the following result, shown in its full generality (with arbitrary geometric structures, like Riemannian metrics
or spin structures) in the upcoming paper [ExtLoc].

Theorem 7.4. The (covariant) functor X 7→ Bordn(X) from smooth manifolds to symmetric monoidal
(∞, n)-categories satisfies the homotopy codescent condition, i.e., is a costack.

Corollary 7.5. Given some target symmetric monoidal (∞, n)-category T , the prestack FTn = (X 7→
Fun⊗(Bordn(X), T )) satisfies the homotopy descent condition, i.e., is a stack. Here Fun⊗ denote the ∞-
groupoids of symmetric monoidal functors.

Applying Theorem 0.2, we immediately obtain the following result.

Proposition 7.6. Concordances classes of field theories over X (i.e., objects in FTn(X)) are representable
by the space CFTn.

One immediate application of this result involves the Stolz–Teichner program [SUSYFT], which con-
jectures a bijection between concordance classes of 2|1-dimensional Euclidean field thoeries over X and
TMF0(X), the topological modular forms spectrum of Hopkins and Miller [TMF]. The above proposition
allows us to conclude that such concordance classes are representable, which, of course, is the first step
toward identifying them with the value of some cohomology theory.

7.7. Factorization algebras

Recall that the ∞-category of factorization algebras on a site S valued in a closed symmetric monoidal
presentable ∞-category T is defined as the ∞-category of T -valued strong symmetric monoidal costacks
on S in the Weiss topology. A costack on S is a covariant functor S → T such that the induced functor
Sop → T op is a stack. The Weiss topology induced by a given Grothendieck topology C is defined by taking
all covering families τ such that τk is a covering family in C for all k ≥ 0. Here τk is the family obtained
by taking the k-fold cartesian power of every element in τ . Without the loss of generality we can assume
that our ∞-site has finite homotopy products and coproducts. The site S is equipped with the monoidal
structure given by the disjoint union, and it is in this sense that the costack must be strong monoidal.

Consider now the prestack that sends a manifold X to the ∞-category of factorization algebras on the
site of manifolds equipped with a map to X. This prestack is a stack. Hence, we obtain the following result:

Proposition 7.8. The concordance space CFA(X) of factorization algebras on the site of manifolds equipped
with a map to X is naturally weakly equivalent to Map(X,CFA). In particular, concordance classes of
factorization algebras over X are precisely homotopy classes of maps from X to CFA.

Computing the spaces CFA for some choice of the target T is an interesting open problem.
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Remark 7.9. One can also organize factorization algebras in a stack in a very different fashion. Suppose we
have a stack T of closed symmetric monoidal presentable∞-categories. The prestack that sends a manifoldX
to the∞-category of factorization algebras with values in T (X) is a stack. One can think of these as smooth
families of factorization algebras parametrized by X. The concordance space over X is again representable,
though the classifying space might be different from the one identified above.

8 Bordism

8.1. Thom spectra

Having already explored various geometric models for ordinary cohomology and K-theory, we now
proceed to another classical cohomology theory, namely cobordism. Our machinery requires sheaves on
smooth manifolds as an input, and one way to ensure that the relevant pullbacks always exist is to use the
machinery of derived smooth manifolds of Lurie and Spivak. We refer to Spivak [DSM] and Borisov and
Noel [SADDM] for the relevant facts about derived smooth manifolds. We denote by DMan the simplicial
category of derived smooth manifolds as constructed in Theorem 1 of [SADDM].

Definition 8.2. The stack Bord on the site of smooth manifolds sends a smooth manifold S to the full
subcategory of DMan/S consisting of proper maps X → S of virtual dimension 0.

Proposition 8.3. We have πkCBord ∼= πkMO.

Proof. According to Proposition 14.2, πkCBord can be computed as pointed concordance classes of Bord
over Sk. Being pointed in this context amounts to the fiber over the basepoint of Sk being empty, and
removing the basepoint turns Sk into Rk. The map into Rk is discarded after taking the concordance
classes, so what remains is simply equivalence classes of proper derived smooth manifolds of dimension k
modulo the equivalence relation of concordance, which in this case is nothing but bordism. According to
Theorem 2.6 in Spivak [DSM] the derived bordism groups coincide with the ordinary bordism groups, which
completes the proof.

Proposition 8.4. We have CBord ' MO.

Proof sketch. We establish a zigzag of weak equivalences with the Quinn model of Thom spectra, see the
paper of Laures and McClure [MultQ] for the relevant definitions. The intermediate step in the zigzag is
a simplicial subset of CBord consisting of those simplices of CBord that correspond to ordinary manifolds
and the map to ∆n is transversal at all faces of ∆n. The map to the Quinn spectrum is then given by
discarding the map ∆n while preserving the stratified structure of fibers over various faces of ∆n, which
constitutes an n-ad. It remains to observe that the induced map on homotopy groups is an isomorphism,
which is established by explicitly computing the homotopy groups as in the previous proposition.

8.5. Madsen–Tillmann spectra

Consider the stack Bordn that sends a smooth manifold S to the simplicial set Bordn(S) whose m-
simplices are smooth manifolds M equipped with a smooth map M →∆m × S whose composition with the
projection ∆m × S → S is a submersion whose fibers are smooth maps Ms → ∆m of rank at most n that
are transversal to each face of ∆m. The simplicial maps are given by pullbacks along ∆m′ → ∆m, which
exist by transversality. The prestack structure is given by pullbacks along S′ → S, which exist because the
relevant maps are submersions. Strictly speaking (pun intended), we only get a Grothendieck fibration in
sets over ∆×Man, which one can rectify to an honest functor in a standard fashion. The homotopy descent
condition is satisfied, so the prestack Bordn is a stack.

Disjoint union of manifolds turns Bordn into a stack of E∞-spaces. (As usual, the strictness issues can
be addressed by organizing the above construction into a Γ-space, for example.) This E∞-space is group-like,
the inverse of a manifold being supplied by the same manifold with the opposite orientation. The forgetful
functor from connective spectra to spaces creates homotopy limits, so we in fact get a stack of connective
spectra.

More generally, one considers manifolds with a tangential θ-structure for some fixed θ:B → BO(n). As
established by Galatius, Madsen, Tillmann, and Weiss in [CobCat] for the (n − 1, n)-dimensional slice and

18



later extended by Lurie in [TFT] to all dimensions, the concordance space of Bordn can be computed as the
Madsen–Tillmann spectrum MT(θ), defined as the Thom spectrum of the additive inverse of the pullback
of the universal n-bundle on BO(n) to B.

Proposition 8.6. The space CBordθ is weakly equivalent to the Madsen–Tillmann spectrum ΣnMT(θ).

Corollary 8.7. For any smooth manifold X the mapping space Map(X,MT(θ)) is weakly equivalent to the
concordance space of bordisms over X.

Remark 8.8. For the first n levels there is no difference between concordances of bordisms and bordisms
themselves because any concordance can be converted to a bordism. Starting from the level n the rank
condition kicks in, which prevents the stack Bordn from being concordance-invariant. Put differently, if
we fix some closed n-manifold X and take the loop space Ωn(Bordn(S), ∗) at the point ∗ given by X, we
recover the classifying space of the discrete group C∞(S,Diff(X)). The concordification functor recovers the
underlying homotopy type of Diff(X).
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Representability of concordified stacks

9 Representability of concordified stacks of spaces

A space for us is an object of the relative category sSet of simplicial sets equipped with the usual (Kan)
weak equivalences. A simplicial space is then a bisimplicial set, an object of the relative category ssSet
equipped with the levelwise weak equivalences. Our choice of terminology emphasizes that bisimplicial sets
have a preferred simplicial direction. Sets embed into spaces as discrete spaces, so simplicial sets embed into
simplicial spaces via a functor ι: sSet→ ssSet, which is defined levelwise.

The notation Map(X,Y ) always denotes the mapping space given by the simplicial set obtained by
taking the enriched hom from X to Y , where X and Y are objects in a simplicially enriched category,
e.g., simplicial sets, simplicial spaces, or simplicial presheaves. Explicitly, Map(X,Y ) is the simplicial set
n 7→ sSet(∆n×X,Y ), where sSet(−,−) denotes the hom-set and ∆n×X denotes the simplicial enrichment,
e.g., cartesian product in the case of sSet. The derived mapping space functor RMap for simplicial sets is the
functor RMap: sSetop × sSet→ sSet defined as RMap(X,Y ) = Map(X,Ex∞ Y ). We use the same notation
for simplicial presheaves and simplicial spaces, with appropriate replacements for Ex∞. The derived internal
hom functor RHom (which we only use for simplicial spaces) is the functor RHom: ssSetop× ssSet → ssSet
defined as RHom(X,Y ) = Hom(X,RY ), where R is a Reedy fibrant replacement functor.

Recall the adjoint triple λ a < a ρ, where the functor < = diag: ssSet → sSet takes diagonal of a
simplicial space, which computes its realization (homotopy colimit). Concretely, λ is the unique cocontinuous
functor sSet → ssSet that maps ∆n → ∆n,n and (ρX)m,n = Hom(∆m ×∆n, X). A realization equivalence
is a morphism of simplicial spaces whose realization is a weak equivalence of spaces. Equipping simplicial
sets with Kan weak equivalences and simplicial spaces with realization equivalences, we upgrade the above
adjoint triple to an adjoint triple of relative categories so that all three functors create (i.e., preserve and
reflect) weak equivalences. For the adjunction λ a < the unit map id → <λ is a weak equivalence and
the counit map λ< → id is a realization equivalence. For the adjunction < a ρ the unit map id → ρ< is
a realization equivalence and the counit map <ρ → id is a weak equivalence. Thus both adjunctions are
homotopy equivalences of relative categories and one can freely pass between spaces and simplicial spaces
using any of these functors. We emphasize that there is no need to derive these functors because they
preserve weak equivalences.

The standard cosimplicial object •:∆→ ∆ is given by the identity functor and can be substituted in any
place where a simplex is required, e.g., F (∆•) = (k ∈ ∆op 7→ F (∆k)) and ∆•×∆• = (k ∈ ∆op 7→∆k×∆k).
The blank − is likewise used to denote the standard precostack −:Man→ Man given by the identity functor
and can be substituted in any place where a manifold or a prestack is required, e.g., F (X × −) = (S ∈
Manop 7→ F (X × S)).

Definition 9.1. A prestack is a functor Manop → sSet, i.e., a simplicial presheaf on the site of manifolds. A
stack is a prestack F that satisfies the descent condition for open covers of manifolds: for any open cover U
of a manifold X the canonical map F (X) → holimi∈∆/I F (Ui0 ∩ · · · ∩ Uin) is a weak equivalence. A weak
equivalence of prestacks is a map F → G whose components F (X) → G(X) are weak equivalences for any
manifold X.

Definition 9.2. The concordance prestack CF of a prestack F is the prestack X 7→ <F (∆• × X). The
concordance space CF of a prestack F is the space CF (pt) = <F (∆•).

Definition 9.3. The concordance comparison map of a prestack F is a morphism of prestacks

CF (−)→ RMap(C−,CF )

that at a manifold X is given by the map of spaces

<F (∆• ×X)→ Map(<Map(∆•, X),Ex∞ <F (∆•))

whose adjoint is

<F (∆• ×X)×<Map(∆•, X)→ <F (∆• ×∆•)→ <F (∆•)→ Ex∞ <F (∆•) = Ex∞ CF,
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where the second map is induced by the diagonal map ∆• →∆• ×∆•. Used in I.1.

Definition 9.4. The prestack geometric realization functor S 7→ ‖S‖p sends a simplicial space S to the
prestack given by the weighted (homotopy) colimit S ⊗∆ ∆•. The stack geometric realization functor
S 7→ ‖S‖ sends S to the stackification of ‖S‖p. We use the same notation when S is a simplicial set,
which we first replace with the simplicial space ιS.

Remark 9.5. The functor S 7→ ‖S‖p from simplicial spaces to prestacks is left adjoint to the functor
F 7→ F (∆•) from prestacks to simplicial spaces. This adjunction is a homotopical adjunction (both functors
preserve weak equivalences).

Remark 9.6. Due to the Reedy-cosimplicial injective-presheaf cofibrancy of the cosimplicial diagram ∆•

valued in prestacks, the weighted homotopy colimit S ⊗∆ ∆• can be computed as the ordinary weighted
colimit. In particular, the resulting prestack ‖S‖p takes values in sets (i.e., discrete spaces) and its value on a
manifold X can be described concretely as the set of maps X → u(S) that factor as a smooth map U →∆n

followed by the inclusion ∆n → ‖S‖p. Here u(S) denotes the set of points of ‖S‖p, equivalently, ‖S‖. The
stackification of a prestack of sets can be computed as the ordinary sheafification. In particular, the value
of ‖S‖ on a manifold X is the set of maps X → u(S) that locally in X factor as a smooth map U → ∆n

followed by the inclusion ∆n → ‖S‖. It is instructive to look at the example of maps ∆1 → ‖Λ2
1‖. The

target ‖Λ2
1‖ looks like a cross (recall that all simplices are extended) and a map ∆1 → ‖Λ2

1‖ must locally by
a smooth map to one of the constituent lines; in particular, whenever it hits the intersection point, it must
remain there for a while.

Definition 9.7. A triangulation T of a manifold X is a morphism T → CX of simplicial sets such that
for any nondegenerate simplex ∆n → T the induced map ∆n → X is an immersion and the map from the
ordinary geometric realization of T (as a topological space) to the underlying topological space of X is a
homeomorphism of topological spaces.

Remark 9.8. Any smooth manifold admits a triangulation. The bulk of the argument is supplied by
Theorem 10.6 in Munkres [EDT]. Whitney’s extension theorem then extends each simplex in the triangulation
to an extended simplex, inductively on the dimension of the simplex. Finally, the underlying simplicial
complex of the triangulation must be turned into a simplicial set by choosing an arbitrary linear order on
the vertices of the triangulation.

Remark 9.9. The full strength of the smooth triangulation theorem is not necessary for our main result.
In fact, the only fact we need is that every smooth manifold is smoothly homotopy equivalent to a smoothly
triangulable manifold, which is quite easy to prove, see Lemma 12.3.

Theorem 9.10. The concordance comparison map of a stack F is a weak equivalence of prestacks. Used in

12.2*.

Proof. By Lemma 9.11, the concordance comparison map of F evaluated at a manifoldX is weakly equivalent
to the realization of the morphism of simplicial spaces RHom(λT, F (∆•)) → RHom(λT, ρ<F (∆•)) for a
triangulation T of X. By Lemma 9.12, the latter morphism is a realization equivalence.
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The intuition behind the following lemma is that in the concordance comparison map the manifold on
which we evaluate can be replaced with the combinatorial data of its triangulation.

Lemma 9.11. The concordance comparison map of a stack F at a manifold X triangulated by T is weakly
equivalent to the realization of the morphism of simplicial spaces

RHom(λT, F (∆•))→ RHom(λT, ρ<F (∆•))

induced by the counit map F (∆•)→ ρ<F (∆•). Used in 9.10*.

Proof. We have the following commutative diagram of spaces:

CF (X) −−−−−−−→ RMap(CX,CF )y= =

y
CHom(X,F ) −−−−−−−→ RMap(<k Map(∆k, X),<kF (∆

k))

(1)
y∼ ∼

y(2)
CHom(‖T‖, F ) −−−−−−−→ RMap(T,<kF (∆

k))

(3)
y∼= ∼

x(4)
<k Map(‖T‖ ×∆k, F ) RMap(<λT,<kF (∆

k))

(5)
y∼ ∼=

x(6)
<k Map(‖T ×∆k‖, F ) RMap(λT, ρ<kF (∆

k))

(7)
y∼= ∼

x(8)
<k Map(‖T ×∆k‖p, F ) RMap(ιT, ρ<kF (∆

k))

(9)
y∼=

x(10)
<k Map(ιT × ι∆k, F (∆•))

∼=−−−−−−−→
(11)

<Hom(ιT, F (∆•)).

If X is a representable prestack, the canonical maps Map(X,−) → RMap(X,−) and Hom(X,−) →
RHom(X,−) are weak equivalences. We also have Map(X,F ) = F (X) and Hom(X,F ) = F (X × −). A
weak equivalence F → F ′ of prestacks induces a weak equivalence of morphisms of simplicial spaces used in
the statement. Thus we can fibrantly replace F in the injective model structure on simplicial presheaves.
Under this assumption, the underived Map and Hom above actually compute their derived versions: all
simplicial presheaves are injectively cofibrant and the target F is injectively fibrant. Furthermore, the
injective fibrancy of F implies the Reedy fibrancy of the simplicial space F (∆•) because the latter amounts
to the right lifting property of F with respect to the map ‖∂∆n‖p → ‖∆n‖p, which is an injective cofibration.

The map (1) is induced by the morphism of stacks ‖T‖ → X, which is a concordance equivalence of
stacks by Lemma 9.13. The functor Hom(−, F ) preserves this concordance equivalence and the functor C
sends concordance equivalences of stacks to weak equivalences of spaces. The map (2) is induced by the
weak equivalence of spaces T → <k Map(∆k, X). The map (3) expands the definition of the functor C.
The map (4) is induced by the weak equivalence of spaces T → <λT . The map (5) is induced by the map
‖T ×∆k‖ → ‖T‖ × ‖∆k‖ = ‖T‖ ×∆k. Its two components are induced by the projections T × ∆k → T
and T × ∆k → ∆k and the map itself is a concordance equivalence by Lemma 9.13. The map (5) is the
evaluation at the point of the same map with Map replaced by Hom. Thus suffices to show that the latter
map is a weak equivalence of prestacks. The functor Hom(−, F ) preserves concordance equivalences and
< sends the resulting simplicial diagram of concordance equivalences to a concordance equivalence between
concordance-invariant prestacks, which is a weak equivalence of prestacks. The source <k Hom(‖T‖×∆k, F )
and target <k Hom(‖T ×∆k‖, F ) are concordance-invariant by direct inspection. The map (6) is induced
by the adjunction < a ρ. The map (7) is induced by the map ‖T ×∆k‖p → ‖T ×∆k‖, which gets mapped
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to a weak equivalence by Map(−, F ) because F is a stack. The map (8) is induced by the weak equivalence
of simplicial spaces λT → ιT . The map (9) is induced by the adjunction ‖−‖p a −(∆•) between simplicial
spaces and stacks. The map (11) is the formula for computing the internal hom of simplicial spaces in terms
of mapping spaces. The map (10) is the map in the statement.

Lemma 9.12. If F is a stack and T is a triangulation of a manifold X, the canonical map

RHom(ιT, F (∆•))→ RHom(ιT, ρ<F (∆•))

induced by the counit map F (∆•)→ ρ<F (∆•) is a realization equivalence. Used in 9.10*, 13.4, 13.4.

Proof. We apply the sphere filling criterion 11.1 to the above morphism of simplicial spaces and use the
adjunction to move ιT to the left. The relevant diagram reads

ι(Sdi ∂∆n × T ) −−−→ F (∆•)y
...
...
.↗

y
ι(Sdi ∆n × T ) −−−→ ρ<F (∆•).

Starting with the above commutative square, we must increase i as necessary and construct the diagonal
arrow so that the upper triangle commutes and the two morphisms in the lower triangle are connected by a
homotopy relative boundary.

Using Lemma 11.2 we construct a subdivision L→ Sdi ∆n × T together with a morphism L→ F (∆•)
with the properties explained there. The adjoint of the latter morphism is ‖L‖ → F . Using Lemma 9.13
we construct a morphism ‖Sdi ∆n × T‖ → ‖L‖ that is a part of the concordance equivalence, as explained
there. Composing, we get a morphism ‖Sdi ∆n × T‖ → F . Taking its adjoint, we get Sdi ∆n×T → F (∆•),
and restricting along Sdi ∂∆n × T → Sdi ∆n × T we get another commutative square of the same form as
above, with a specified diagonal arrow that makes the upper triangle commute strictly and the lower triangle
up to a levelwise homotopy. This square is homotopic (in the sense of Lemma 11.1) to the original square,
using the concordance constructed in Lemma 9.13, which completes the proof.

Lemma 9.13. Suppose X is a manifold with boundary, triangulated by T . Then there is a concordance
equivalence between X and ‖T‖, where the map ‖T‖ → X in this concordance equivalence is supplied by
the triangulation T . Used in 9.11*, 9.11*, 9.12*, 9.12*.

Proof. Abusing the notation, we identify any simplex s in T with its image in X, which is a closed compact
subset of X. The open star Us of a simplex s in T consists of the union of the interiors of all simplices in X
that contain s. The closed star Ws is defined in the same way but without interiors. The link Ls is defined
as Ws − Us. Construct an open cover U of X by taking the open star of each vertex in T . The elements
of U are indexed by vertices of T . The intersection of a finite subfamily of U is empty if the corresponding
vertices do not form a simplex in T . Otherwise it is the open star of the corresponding simplex in T . In
particular, U is a good open cover of T : finite intersections of elements of U are either empty or cartesian.

Choose a partition of unity h subordinate to U . Thus for any index i the function hi:X → [0, 1] is a
smooth function with support in Ui. We construct a morphism g:X → ‖T‖ that informally (on the point-set
level) is given by the formula x 7→

∑
i hi(x)·i, where i is interpreted as a vertex in T (and also in ‖S‖) and the

sum is interpreted as an affine combination in the simplex determined by the vertices i for which hi(x) 6= 0;
the definition of a partition of unity guarantees that this combination is affine (the sum of coefficients is 1).

To make the above informal description of the map g:X → ‖T‖ precise, we first construct another open
cover V of X and then define g locally on V . The elements of V are indexed by the simplices of T . For such
a simplex s we take the vertices in the link of s; there are only finitely many such vertices by definition of a
triangulation. The union of the supports of hi for such vertices i is a closed set B such that B ∩ s = ∅. By
normality of X the closed subsets B and s can be separated by open subsets B′ ⊃ B and s′ ⊃ s. Now set
Vs := s′ ∩ Us. Thus V

′
s :=

∪
t⊂s Vt for all faces t of s is an open neighborhood of s.

A crucial property of the open sets Vs constructed above is that the only vertices i for which hi|Vs
is not

the zero function are precisely the vertices of s. Thus
∑

i∈s hi = 1 on Vs and we get a map (hi)i∈s:Vs →∆s.
Postcomposing it with the map ∆s → ‖T‖ that corresponds to the simplex s, we get a map Vs → ‖T‖.
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Consider two such maps Vs → ‖T‖ and Vt → ‖T‖. The intersection Vs ∩ Vt is empty if so is s ∩ t.
Otherwise s ∩ t is a simplex and Vs ∩ Vt is an open subset of X such that hi vanishes on it unless i ∈ s ∩ t.
Thus Vs → ‖T‖ and Vt → ‖T‖ factor through ∆s∩t → ∆s and ∆s∩t → ∆t when restricted to Vs ∩ Vt.
Therefore their postcompositions with ∆s → ‖T‖ and ∆t → ‖T‖ are the same because both coincide with
the map Vs∩t → ‖T‖ constructed for the simplex s ∩ t.

By construction, the map X → ‖T‖ sends any (compact) simplex of T to the corresponding simplex
of ‖T‖. Thus the composition ‖T‖ → X → ‖T‖ preserves the simplices of ‖T‖. Hence, we can construct
a smooth concordance ∆1 × ‖T‖ → ‖T‖ from this composition to the identity map on ‖T‖ using linear
interpolation on each simplex.

The composition X → ‖T‖ → X preserves the simplices of T . We would like to construct a concordance
∆1 × X → X from this composition to the identity map on X. We start with the same trick with linear
interpolation and construct a continuous concordance, which is not smooth on simplices of codimension 1
and higher. By the Whitney approximation theorem (see, for example, Theorem 2.2.6 in Hirsch [DiffTop]),
two maps X → X are smoothly concordant if and only if they are continuously concordant.

10 Simplicial spaces

The following result can be interpreted as saying that any map to Ex∞ T can be presented as a map
to T from some barycentric subdivision of the source. Individual simplices of the source might have to be
subdivided arbitrarily many times, so we cannot simply apply the functor Sdi for some i ≥ 0.

Proposition 10.1. For any simplicial sets K and T , and any map K → Ex∞ T there is weak equivalence
K ′ → K, a map K ′ → T , and a homotopy ∆1 × K ′ → Ex∞ T that connects the compositions K ′ →
K → Ex∞ T and K ′ → T → Ex∞ T . (As revealed in the proof, K ′ is obtained from K by barycentrically
subdividing its simplices.) Used in 10.2*, 10.2*.

Proof. We present ∅ → K as a transfinite composition of the diagram A0 → A1 → · · ·, where An−1 → An

for any n ≥ 1 is a cobase change of
∐
∂∆n →

∐
∆n, where the coproducts are taken over all nondegenerate

n-simplices of K. The map K ′ → K and the homotopy ∆1×K ′ → Ex∞ T will have an identical presentation
in terms of transfinite compositions, coproducts, and cobase changes, so we concentrate our attention on a
single nondegenerate simplex ∆n → K → Ex∞ T .

Any map ∆n → Ex∞ T factors as ∆n → Exi T → Ex∞ T , and the first map is adjoint to Sdi ∆n → T .
We take i to be as small as possible here. The attaching map Sdi ∂∆n → K ′ is constructed by induction on
the skeleton of ∂∆n using iterations of last vertex maps to reduce the value of i if necessary (here we use the
fact that i is as small as possible so that all simplices in the skeleton have the same or smaller value of i).
The last vertex map Sdi(∂∆n → ∆n)→ (∂∆n → ∆n) yields the weak equivalence K ′ → K.

The following result allows one to present any map to Ex∞ <W as a map to W from a barycentrically
subdivided source, to which we apply the functor λ to turn it into a simplicial space.

Proposition 10.2. For any simplicial set K, any simplicial spaceW , and any map K → Ex∞ <W there is a
weak equivalenceK ′ → K and a map λK ′ →W such that the compositionsK ′ → <λK ′ → <W → Ex∞<W
and K ′ → K → Ex∞ <W are connected by a homotopy ∆1 ×K ′ → Ex∞ <W .

Proof. Using Proposition 10.1, we construct K ′ → K, a map K ′ → <W , and a homotopy ∆1 × K ′ →
Ex∞ <W that connects the compositions K ′ → K → Ex∞ <W and K ′ → <W → Ex∞ <W . Using the
adjunction λ a <, we get a map λK ′ → W whose image under < is the original map K ′ → <W . The
relevant homotopy is supplied by Proposition 10.1.

Proposition 10.3. A morphism of simplicial spaces W → X is a realization equivalence if and only if for
any n ≥ 0, i ≥ 0, and a commutative square

λ Sdi ∂∆n −−−→ Xy
...
...
.↗

y
λ Sdi ∆n −−−→ Y
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one can increase i and find a diagonal arrow such that the upper triangle commutes strictly and the bottom
triangle commutes up to a homotopy λ Sdi(∆1 ×∆n)→ Y .

Proof. The morphism of simplicial spaces W → X is a realization equivalence if and only if Ex∞ <W →
Ex∞ <X is a weak equivalence of fibrant simplicial sets, which is equivalent to requiring that for any com-
mutative square

∂∆n −−−→ Ex∞ <Xy
...
...
.↗

y
∆n −−−→ Ex∞ <Y

one can find a diagonal arrow such that the upper triangle commutes strictly and the lower triangle commutes
up to a homotopy ∆1 ×∆n → Ex∞ <Y . The simplicial sets ∂∆n and ∆n are compact; therefore maps from
them factor through some finite stage Exi. (This is when we might need to increase i, since the newly
constructed maps might factor through a higher stage.) The adjunction λ a < completes the proof.

11 Weak equivalences of simplicial spaces

In this section we establish two criteria for detecting weak equivalences of simplicial spaces, which
generalize the classical results about simplicial sets and topological spaces. We start by proving a homotopy
coherent version of this result and then leverage it to obtain a statement about simplicial spaces.

The following proposition generalizes a classical criterion in simplicial homotopy theory for weak equiv-
alences, see Theorem 5.2 in Dugger and Isaksen [WESP]. We briefly recall the statement for simplicial sets
first: a morphism f :X → Y of fibrant simplicial sets is a weak equivalence if and only if for any commutative
square

∂∆n −−−→ Xy
...
...
.↗

y
∆n −−−→ Y

we can find a diagonal arrow ∆n → X such that the upper triangle commutes strictly and the two compo-
sitions in the lower triangle are connected by a simplicial homotopy ∆1 ×∆n → Y .

Sphere filling criterion 11.1. A morphism f :X → Y of Reedy fibrant simplicial spaces is a realization
equivalence if and only if for each commutative square

ι Sdi ∂∆n −−−→ Xy
...
...
.↗

y
ιSdi ∆n −−−→ Y

we can increase i so that there is a diagonal morphism ιSdi ∆n → X such that the upper triangle commutes
and the two maps ιSdi ∆n → Y coming from the lower triangle are connected by a homotopy ι Sdi(∆1 ×
∆n)→ Y whose restriction to ι Sdi(∆1 × ∂∆n) factors through the projection to ιSdi ∂∆n. Used in 9.12*, 9.12*.

Proof.

For a quasicategorical proof of the following lemma see Corollary 6.2 and Remark 6.3 in Mazel-Gee [MIC].
Recall that an object A is compact if Hom(A,−) preserves filtered colimits. A simplicial set is compact if
and only if it has finitely many nondegenerate simplices.

Lifting lemma 11.2. Given a Reedy fibrant simplicial spaceW , a cofibration K → L of compact simplicial
sets, a morphism of simplicial spaces ιK →W that presents some map K → <W , and a morphism L→ <W
together with a homotopy h:∆1 × K → <W from K → <W to K → L → <W , we can find i ≥ 0 and
a morphism ιSdi L → W such that ιSdiK → ι Sdi L → W equals ιSdiK → ιK → W , and a simplicial
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homotopy p from Sdi L → <W to Sdi L → L → <W whose whiskering with SdiK → Sdi L is h whiskered
with SdiK → K:

ι SdiK −−−→ ιKy y
ι Sdi L −−−→ W,

SdiK −−−→ Ky y ↘

Sdi L −−−→ L −−−→ <W.

In particular, for K = ∅ any morphism L → <W can be lifted to a morphism ιSdi L → W , meaning that
the latter presents a morphism homotopic to the composition Sdi L→ L→ <W . Used in 9.12*.

Proof. We start by modifying the input data so that h is trivial. The pushout product of the acyclic
cofibration 1:∆0 → ∆1 and the cofibrationK → L is the acyclic cofibration LtK∆1×K → ∆1×L. The data
of the map L→ <W and the homotopy h:∆1×K → <W assemble into a map LtK ∆1×K → <W , which
by the fibrancy of <W admits an extension to ∆1 × L. The restriction of the resulting map ∆1 × L→ <W
to 0×L is the desired new map L→ <W . Since h is an identity now, the whiskering of the homotopy p will
also be an identity, i.e., the homotopy p will be relative SdiK. The above diagrams can now be interpreted
as strictly commutative diagrams, except for p.

A morphism L→ <W = Ex∞ diagW factors through Exi diagW for some i ≥ 0 by compactness of L.
The resulting morphism L → Exi diagW is adjoint to Sdi L → diagW . The latter morphism in its turn
is adjoint to κSdi L → W , where κ a diag. This is almost the morphism we need, except that its domain
is κSdi L, not ι Sdi L. We remark that the restriction of this morphism to κSdiK equals the composition
κSdiK → ιSdK → ιK →W by construction.

We now construct two Reedy acyclic cofibrations (i.e., componentwise acyclic cofibrations) of simplicial
spaces, with domains κSdi L and ιSdi L. Both functors κ and ι can be defined using left Kan extensions
for functors n 7→ ∆n,n and n 7→ ∆n,0. Thus it suffices to find a zigzag of natural Reedy acyclic cofibrations
∆n,n → An ← ∆n,0. Take An to be the external bisimplicial product of ∆n and the simplicial join ∆0 ?∆n

of ∆0 and ∆n. The natural acyclic cofibrations of spaces ∆n,0 → An and ∆n,n → An cover the first and
second component of the join, respectively. Thus we have a zigzag of natural transformations κ → A ← ι
and also A→ ι, all of which are weak equivalences.

The map κSdi L → W and the map q:A(SdiK) → ιSdiK → ιK → W assemble together into
a map κSdi L tκ Sdi K A(SdiK) → W . The inclusion κSdi L tκ Sdi K A(SdiK) → A(Sdi L) is a Reedy
acyclic cofibration because it is a cobase change of the Reedy acyclic cofibration κSdiK → A(SdiK).
Since the simplicial space W is Reedy fibrant, we can extend the map q along this inclusion, obtaining a
map A(Sdi L) → W . The map A(Sdi L) → W can then be restricted along the Reedy acyclic cofibration
ι Sdi L→ A(Sdi L), giving us the desired morphism ι Sdi L→W , whose restriction to ι SdiK coincides with
the composition ιSdiK → ιK → W by construction. The induced map diagA(Sdi L) → <W implements
a homotopy (of nonstandard shape) from Sdi L = diag ιSdi L → <W to diag κSdi L → <W , which is
relative SdiK by construction. This homotopy can be composed with the constant homotopy (of the same
nonstandard shape diagA(Sdi L)→ Sdi L→ <W ) from diag κSdi L→ <W to Sdi L = diag ι Sdi L→ <W .
The resulting composition is a homotopy of the form A(Sdi L) tκ Sdi L A(Sd

i L) → <W relative SdiK (by
construction), with the desired source and target. The only remaining problem is that the constructed
homotopy uses a nonstandard cylinder object instead of ∆1×Sdi L. Since <W is fibrant, we use a trick with
extension and restriction along acyclic cofibrations once again to turn this nonstandard relative homotopy
into a standard homotopy ∆1 × Sdi L→ <W relative SdiK.
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12 Sources other than smooth manifolds

We now generalize the main theorem for stacks of spaces on the site of smooth manifolds to nontrian-
gulable topological manifolds. This is achieved by the following lemma.

Lemma 12.1. Any topological manifold is homotopy equivalent to a triangulable topological manifold. Used

in 12.2*.

Proof. We reduce to the case of connected (in particular, second countable) manifolds X. Choose a proper
map X → RN . By Topological General Position Lemma 1 in Dancis [GenPos] for sufficiently high N every
proper map X → RN can be properly homotoped to a proper locally flat embedding. By Theorem 2.1 in
Edwards [TRN] this embedding admits a topological regular neighborhood. The interior of this neighborhood
is an open subset of RN that is homotopy equivalent to the original manifold. As explained in the proof of
Lemma 12.3, any open subset of RN admits a smooth triangulation.

Corollary 12.2. On the site of topological manifolds, the concordance comparison map of a stack F is a
weak equivalence of prestacks.

Proof. For triangulable topological manifolds see the proof of Theorem 9.10; dropping smoothness allows
one to discard some parts of the proof. A nontriangulable topological manifold is homotopy equivalent to a
triangulable topological manifold by Lemma 12.1. The resulting natural square of concordance comparison
maps has weak equivalences for three out of four maps: the concordance comparison map for the triangulable
manifold is a weak equivalence by the above argument, whereas the two maps induced by the homotopy
equivalence are themselves homotopy equivalences (recall that mapping a homotopy equivalence into CF
produces a homotopy equivalence because CF is concordance-invariant). Hence, the concordance comparison
map for any topological map is a weak equivalence.

The following lemma is not necessary for the main theorem, however, it allows us to prove it without
referencing the rather subtle and delicate proof of the existence of smooth triangulations of smooth manifolds.

Lemma 12.3. Any smooth manifold is smooth homotopy equivalent to a smoothly triangulable smooth
manifold. Used in 9.9, 12.1*.

Proof. We can immediately reduce to the case of connected (in particular, second countable) manifolds. By
the Whitney theorem any smooth manifold admits a proper smooth embedding into some RN . The interior
of a tubular neighborhood of this embedding is an open submanifold of RN that is smoothly homotopy
equivalent to the original manfold. A smooth triangulation of an open subset U of RN can be constructed
by picking any triangulation of RN , taking its simplices that are contained in U , then barycentrically
subdividing the remaining simplices, and repeating this process indefinitely.
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13 Targets other than spaces

We now use the main theorem for stacks of spaces as a launchpad to obtain a generalization that
allows for much more general class of targets than spaces. Below the word “∞-category” is used in an
invariant fashion and can mean any of the existing equivalent models for ∞-categories such as Quillen’s
model categories, Joyal’s quasicategories, Segal categories, relative categories etc. All constructions used
below, such as mapping spaces and (co)limits are by definition derived. We stick to model categories for the
sake of being definite, but nothing in our presentation is specific to the case of model categories.

An object G of an ∞-category T is compact projective if its corepresentable functor

Map(G,−):T → sSet

preserves homotopy sifted colimits. An∞-category is a variety (of algebras) (alias algebraic) if it is homotopy
locally presentable and the corepresentable functors of compact projective objects detect equivalences: a mor-
phism f :A→ B in T is an equivalence if (and only if) the morphism Hom(G, f): Hom(G,A)→ Hom(G,B)
is an equivalence of spaces for all compact projective objects G. For details, see Lurie (§5.5.8 in [HTT] and
§7.1.4 in [HA]) and Rosický [HoVar]. Homotopy sifted colimits commute with finite homotopy products in
any algebraic category.

Algebraic categories are closed under the following constructions. (1) An overcategory of an algebraic
category is again algebraic. (2) If a right adjoint functor is conservative, preserves sifted colimits, and its
codomain is algebraic, then its domain is also algebraic. (Proposition 7.1.4.12(4) in Lurie [HA].) (3) Algebras
over a monad that preserves sifted colimits in an algebraic category are again algebraic. (4) Algebras over
an multisorted algebraic theory in an algebraic category are again algebraic. (5) Algebras over an operad in
a closed symmetric monoidal algebraic category are again algebraic. (6) Presheaves valued in an algebraic
category are again algebraic.

Examples of algebraic∞-categories include spaces (Example 5.5.8.24 in Lurie [HA]), connective spectra
(Corollary 7.1.4.13 in Lurie [HA]), module spectra over a connective ring spectrum (Corollary 7.1.4.15 in
Lurie [HA]), En-spaces, group-like En-spaces, En-semirings, En-rings, connective En-ring spectra, connective
En-algebra spectra over a connective En+1-ring spectrum (Corollary 7.1.4.17 in Lurie [HA]), categories and
En-monoidal categories (possibly enriched in a closed symmetric monoidal algebraic category) with a fixed
set of objects (and functors that are identity on objects).

Theorem 13.1. The concordification functor C preserves stacks valued in any algebraic∞-category T . Used

in I.4, I.5*.

Proof. Given an object G in T and a T -valued prestack F denote by Map(G,F ) the space-valued prestack
obtained by applying Map(G,−) componentwise. The functor Map(G,−) preserves homotopy limits, so it
preserves stacks because the latter are specified using a homotopy limit over ∆. The functor Map(G,−) also
preserves concordance-invariant homotopy (pre)sheaves and in fact it commutes with the concordification
functor C because the latter can be computed using a homotopy colimit over ∆op, which is homotopy sifted
and therefore is preserved by the corepresentable functor of a compact projective object. We can now apply
the main theorem for the case of spaces and deduce that CMap(G,F ) is a stack of spaces for any T -valued
stack F . The descent condition for CF requires that the restriction map CF (X) → holim CF (U•) is an
equivalence for all covers U of X. Equivalences in T are detected by the functors Map(G,−) for all compact
projective objects G. The latter functors commute with C and the homotopy limit over ∆op, so the resulting
maps are equivalences because CMap(G,F ) is a stack for any compact projective object G.

Corollary 13.2. For any stack F on the site of smooth manifolds valued in an algebraic ∞-category T its
concordification CF is representable by CF = (CF )(pt), i.e., the canonical natural transformation (CF )(X)→
Map(CX,CF ) is a weak equivalence, where Map denotes the canonical powering of T over spaces. Used in

14.2*.

Remark 13.3. The fact that T is an algebraic ∞-category is crucial for the main theorem. Two important
examples of nonalgebraic∞-categories are nonconnective spectra and unbounded chain complexes of abelian
groups. Indeed, it is easy to see that infinite additivity already fails for the case of unbounded chain
complexes. In this case homotopy colimits of simplicial diagrams can be computed by using the Dold–Kan
correspondence to pass to a connective chain complex of unbounded chain complexes, i.e., a double complex
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that is connective in one direction and unbounded in another. One then takes the direct sums along each
diagonal, which yields the desired homotopy colimit. If the chain complexes were connective, then each sum
would be finite and therefore could also be computed as the product, and finite products commute with
infinite products. In the unbounded case infinite direct sums do not commute with infinite products, and
it is easy to exploit this fact to construct an explicit counterexample of a stack F whose concordification is
not infinitely additive, e.g., set F (S) to be the unbounded chain complex with the zero differential that has
Ωk(S) in degree −k. Used in I.0*, I.4, A.0*.

Remark 13.4. In the case of stable ∞-categories one can still show that the concordance comparison map
CF (X) → Map(CX,CF ) is a weak equivalence for any manifold X that admits a finite triangulation T ,
e.g., a compact manifold. In this case the functor Hom(T,−) in Lemma 9.12 can be rewritten as a finite
homotopy limit. In a stable ∞-category finite homotopy limits commute with arbitrary small colimits, so
Lemma 9.12 holds in this setting, and the rest of the proof is the same. This is essentially Proposition 7.6 in
Bunke, Nikolaus, and Völkl [DiffSpec], which shows that the concordification functor preserves stacks with
respect to the Grothendieck topology of finite open covers.

14 Homotopy groups and higher fundamental groupoids of concordance spaces

In this section we apply the main theorem to establish a relation between the homotopy groups of CF
and “concordance groups” of F , obtained by taking pointed concordance classes of F over smooth spheres.
This gives us a powerful tool that allows to perform computations with CF by working with sections of F .

Definition 14.1. Given a manifold X with a basepoint ∗ → X, define the pointed concordance stack
C∗F (X) as the realization of the simplicial object given by the pullback of the diagram of simplicial objects
F (∆n ×X) → F (∆n) ← ∗, where the right leg is induced by ∗ → F (∆0) pulled back via ∆n → ∆0. We
also define the pointed concordance classes F [X]∗ := π0C∗F (X).

Proposition 14.2. For any linear presheaf F and any choice of a basepoint ∗ → F (i.e., a point in F (pt))
we have a natural equivalence C∗F (Sn)→ (CF )S

n
∗ (the mapping space on the right is pointed), in particular

there is an isomorphism F [Sn]∗ → πn(CF ) between pointed concordance classes of F over the smooth
n-sphere and elements in the nth homotopy group of CF . Used in 1.3*, 8.3*, 14.6.

Proof. The comparison map CF (Sn) → Map(Sn,CF ) is a weak equivalence by the main theorem 13.2, or
rather its linear part. We also have CF (pt) = CF and there are two canonical maps CF (Sn)→ CF (pt) and
Map(Sn,CF ) → Map(pt,CF ) = CF induced by the inclusions pt → Sn and pt → Sn. These maps can be
organized in a commutative diagram

CF (Sn) −−−→ Map(Sn,CF )y y
CF (pt) −−−→ Map(pt,CF ),

where all objects and maps are pointed, by using the given basepoint ∗. The horizontal maps are weak
equivalences. Hence, the induced map of homotopy fibers CF (Sn

∗ )→ Map(Sn∗ ,CF ) is also a weak equivalence.
It remains to identify CF (Sn

∗ ) with C∗F (Sn), for which it suffices to show that the morphism of simplicial
spaces F (∆n ×X)→ F (∆n) used in the definition of C∗F is a realization fibration in the sense of Rezk.

The following proposition is a generalization of the above construction.

Proposition 14.3. For any simplicial set S and a stack F (or a linear prestack if S is compact), the
canonical natural map <((RF )S)→ (CF )<S is a weak equivalence.

Recall that the n-coskeleton functor of a simplicial set X for n ≥ 0 computes the nth level of the
Postnikov tower X, which can be denoted as π<nX (the fundamental (n − 1)-groupoid of X), meaning
that homotopy groups in degrees less than n are preserved and the other homotopy groups are killed. The
n-coskeleton of X can also be computed as k ∈ ∆op 7→ Hom(skeln ∆

k, X), where skeln is the n-skeleton
functor, the left adjoint of coskn. The latter definition makes sense for simplicial objects, and we use it
below.
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Proposition 14.4. Given a cofibration K → L of simplicial sets, a stack F , and a morphism K → RF
that presents a point in (RF )K , and thus in (CF )<K , the homotopy pullback (CF )<L → (CF )<K ← pt can
be computed as the realization of the homotopy pullback of (RF )L → (RF )K ← pt.

Remark 14.5. Already for n = 0 one can see that the essence of the proposition lies in the fact that a
single concordance is sufficient to relate any pair of objects that lie in the same connected component of CF ,
even though a priori one might need chains of concordances of arbitrary length.

Remark 14.6. Substituting first ∅ → Sn−1 and then Sn−1 → (∆1 × Sn−1/∆1 × ∗) we obtain a variant
of 14.2, where instead of F [Sn−1

∗ ] we have F [∆n−1
∂∆n−1 ], i.e., concordance classes of sections of F over ∆n−1

whose restriction to ∂∆n−1 is pulled back via ∂∆n−1 →∆0.

Proof. We have a canonical map < cosknG → coskn<G (the left coskn is a simplicial space, whereas the
right coskn is a space), whose adjoint map cosknG→ const coskn <G.
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