The classification of two-dimensional extended conformal field theories

Dmitri Pavlov (Texas Tech University, Lubbock, Texas)

Quantum Field Theory and Topological Phases via Homotopy Theory and Operator Algebras CMSA, July 11, 2025

These slides: https://dmitripavlov.org/cmsa.pdf

arXiv:2011.01208, arXiv:2111.01095 (joint with Daniel Grady)

+ work in progress

Main theorem: conformal field theory

$\mathsf{Theorem}$

The following categories are equivalent:

- extended conformal field theories:
- Serre-twisted homotopy coherent reps of $\mathbb{R}^2 \times \mathsf{Conf}(2)$.

Notation:

- Conf(2): the universal covering of Conf(2).
- Conf(2): $z \mapsto \sum_{k\geq 1} a_k z^k$, $a_1 \neq 0$, convergent with R > 0, group operation: composition.
- Serre-twisted: restricting to $\mathbf{Z} \subset \mathsf{Conf}(2) \subset \mathbf{R}^2 \rtimes \mathsf{Conf}(2)$ yields powers of Serre automorphisms.
- Example: Serre automorphisms are trivial \rightsquigarrow homotopy coherent representations of $\mathbb{R}^2 \rtimes \mathsf{Conf}(2)$.

Variants: Twisted/relative, chiral, 2|1-Euclidean.

Features of the geometric bordism category

- Locality (Freed, Lawrence): k-bordisms with corners of all codimensions (up to d) with compositions in d directions ⇒ symmetric monoidal *d*-category of bordisms
- Isotopy (Costello, Hopkins, Lurie): chain complexes to encode **BV-BRST**
 - ⇒ must encode (higher) diffeomorphisms between bordisms
 - \implies symmetric monoidal (∞, d) -categories
- Geometric (nontopological) structures on bordisms (Segal, Stolz, Teichner): Riemannian/Lorentzian metrics, complex/conformal/symplectic/contact structures, principal G-bundles with connection and isos, higher gauge fields (Kalb-Ramond, Ramond-Ramond)
 - \implies an $(\infty, 1)$ -sheaf of geometric structures
- Smoothness (Stolz, Teichner): values of field theories depend smoothly (or holomorphically, super, ...) on bordisms \implies $(\infty, 1)$ -sheaf of (∞, d) -categories of bordisms

Ingredients of the classification

- Locality of extended functorial field theories (arXiv:2011.01208)
 (→ reduction to simpler geometric structures)
- **2** Relative geometric cobordism hypothesis (arXiv:2111.01095) (handles of index $\leq k 1 \rightsquigarrow$ handles of index $\leq k$)
- 3 1 and 2 \Rightarrow geometric cobordism hypothesis

$$\mathsf{R}\operatorname{Map}(\mathfrak{Bord}_d^{\mathcal{S}},\mathcal{V})\simeq\mathsf{R}\operatorname{Map}(\mathcal{S},\mathcal{V}_d^{\mathsf{fd},\times}),$$

(topological case: Lurie, 2009)

(P.) A computation of the right side for 2-dimensional CFTs (Quillen Theorem A, Thomason's theorem, Riemann mapping theorem).

Other applications of GCH

- (Grady-P.) Invertible geometric FFTs are classified by the geometric Madsen-Tillmann spectrum. (Previous work: Galatius-Madsen-Tillmann-Weiss, Bökstedt-Madsen, Schommer-Pries.)
- (Grady-P.) A conjecture of Stolz and Teichner: concordance classes of extended FFTs have a classifying space. (Proof: Locality + the smooth Oka principle (Berwick-Evans-Boavida de Brito-P.).
- (P.) Classification of 2|1-Euclidean field theories.
- (Grady) Classification of deformation classes of reflection positive invertible geometric FFTs (Conjecture 8.37 in Reflection positivity and invertible topological phases by Freed-Hopkins)

Other applications of GCH

- (Grady–P.) Invertible geometric FFTs are classified by the geometric Madsen-Tillmann spectrum. (Previous work: Galatius-Madsen-Tillmann-Weiss, Bökstedt-Madsen, Schommer-Pries.)
- (Grady-P.) A conjecture of Stolz and Teichner: concordance classes of extended FFTs have a classifying space. (Proof: Locality + the smooth Oka principle (Berwick-Evans-Boavida de Brito-P.).
- (P.) Classification of 2|1-Euclidean field theories.
- (Grady) Classification of deformation classes of reflection positive invertible geometric FFTs (Conjecture 8.37 in Reflection positivity and invertible topological phases by Freed-Hopkins)

Thank you!

Main theorem 2: 2|1-Euclidean field theory

$\mathsf{Theorem}$

The following smooth ∞ -categories are equivalent:

- extended 2|1-Euclidean field theories;
- Serre-twisted homotopy coherent representations of the Lie supergroup Euc(2|1) on a 2-dualizable object.

Notation:

- Euc(2|1): the universal covering of Euc(2|1) = $\mathbb{R}^{2|1} \times \text{Spin}(2)$.
- Serre-twisted: restricting to $\mathbf{Z} \subset \text{Euc}(2|1)$ yields Serre automorphisms.
- Serre automorphisms trivial \Longrightarrow representations of Euc(2|1).

What is functorial field theory?

Want to study integrals of the form

$$\int_{arphi} \exp(i\hbar^{-1}S(arphi)) \in \mathbf{C}.$$

- \blacksquare X: spacetime; e.g., \mathbb{R}^4
- \blacksquare $\mathcal{F}: E \to X$: field bundle; e.g., $\mathbf{R} \times X \to X$
- φ : field: section of $\mathcal{F}: E \to X$; e.g., $\varphi \in C^{\infty}(X)$ (scalar field)
- $S: \Gamma_{\mathcal{F}}(X) \to \mathbf{R}$: action functional.

What kind of manifold is the spacetime X?

- Closed manifold.
- More generally: X is compact with boundary $\partial X = M_0 \sqcup M_1$; write $X: M_0 \to M_1$, i.e., X is a bordism from M_0 to M_1 .

Quantum propagators and Segal gluing

$$\int_{\varphi} \exp(i\hbar^{-1}S(\varphi)) \in \mathbf{C}, \qquad \varphi \in \Gamma_{\mathcal{F}}(X), \qquad X: M_0 \to M_1.$$

- For fixed $\alpha_i = \varphi|_{M_i} \in \Gamma_{\mathcal{F}}(M_i)$, get $K(\alpha_1, \alpha_0) = \int_{\omega} \in \mathbf{C}$.
- K is the integral kernel of an operator F(X): $F(M_0) \to F(M_1)$ (propagator).
- Here $F(M_i) = \mathcal{O}(\Gamma_{\mathcal{F}}(M_i))$ (space of states).
- Fubini property (Segal gluing): if $X_1: M_0 \to M_1$, $X_2: M_1 \to M_2$, then $F(X_2 \sqcup_{M_1} X_1) = F(X_2) \circ F(X_1)$.

$$\int_{\varphi} \exp(i\hbar^{-1}S(\varphi)) = \int_{\alpha_1} \int_{\varphi_1} \int_{\varphi_2} \exp(i\hbar^{-1}(S(\varphi_1) + S(\varphi_2)))$$

How to compose bordisms

Axioms for quantum propagators in the Schrödinger picture

$$\mathcal{F}: E \to X$$
 (field bundle); $F(M) = \mathcal{O}(\Gamma_{\mathcal{F}}(M))$ (space of states)

$$F(M \sqcup N) = \mathcal{O}(\Gamma_{\mathcal{F}}(M \sqcup N)) \cong \mathcal{O}(\Gamma_{\mathcal{F}}(M) \oplus \Gamma_{\mathcal{F}}(N))$$
$$\cong \mathcal{O}(\Gamma_{\mathcal{F}}(M)) \otimes \mathcal{O}_{\mathcal{F}}(\Gamma_{\mathcal{F}}(N)) = F(M) \otimes F(N).$$

- Segal gluing (Fubini): $F(X_2 \sqcup_{M_1} X_1) = F(X_2) \circ F(X_1)$.
- Monoidality: $F(M \sqcup N) \cong F(M) \otimes F(N)$.
- Segal (following Feynman, Witten): axiomatize Fubini and monoidality as a symmetric monoidal functor (i.e., a functorial field theory)

$$F$$
: Bord \rightarrow Vect.

- Bord: objects: (d-1)-manifolds M; morphisms: bordisms $X: M_0 \to M_1$.
- Vect: objects: vector spaces; morphisms: linear maps.

Geometric structures

Definition

Given $d \ge 0$, the site FEmb_d has

- Objects: submersions $T \rightarrow U$ with d-dimensional fibers, where $U \cong \mathbf{R}^n$ is a cartesian manifold;
- Morphisms: commutative squares with $T \to T'$ a fiberwise open embedding over a smooth map $U \to U'$;
- Covering families: open covers on total spaces T.

Geometric structures

Definition

Given $d \ge 0$, the site FEmb_d has

- Objects: submersions with d-dimensional fibers;
- Morphisms: fiberwise open embeddings;
- Covering families: open covers on total spaces T.

Definition (Nijenhuis 1958)

Given $d \ge 0$, a d-dimensional geometric structure is a simplicial presheaf S: FEmb $_d^{op} \to sSet$.

Example

- $T \rightarrow U \mapsto$ the set of fiberwise Riemannian metrics on $T \rightarrow U$;
- \blacksquare $(T \to T', U \to U') \mapsto$ the restriction map from T' to T.

Examples of geometric structures

- topological structures (i.e., isotopy-invariant): orientations, spin stuctures, framings, etc. (TQFT as studied by Atiyah, Kontsevich, Reshetikhin, Turaev, Viro, Freed, Lawrence, Quinn, Hopkins, Lurie, ...);
- fiberwise Riemannian, Lorentzian, pseudo-Riemannian metrics; positive/negative sectional/Ricci curvature;
- fiberwise conformal, complex, symplectic, contact, Kähler structures;
- fiberwise foliations, possibly with transversal metrics;
- smooth map to a target manifold M (traditional σ -model);
- smooth map to an orbifold or ∞-sheaf on manifolds;
- fiberwise etale map or an open embedding into a target manifold N;
- fiberwise differential *n*-forms (possibly closed).

Examples of geometric structures: gauge transformations

Definition

- Send a d-manifold M to (the nerve of) the groupoid $B_{\nabla}G(M)$:
 - Objects: principal G-bundles on T with a fiberwise connection on $T \rightarrow U$ (gauge fields);
 - Morphisms: connection-preserving isomorphisms (gauge transformations).

Examples of geometric structures: (higher) gauge transformations

- Principal G-bundles with connection on M (gauge fields, e.g., the electromagnetic field);
- Bundle gerbe with connection on M (B-field, Kalb-Ramond field).
- Bundle 2-gerbe with connection on M (supergravity C-field).
- Bundle (d-1)-gerbes with connection on M (Deligne cohomology, Cheeger-Simons characters, ordinary differential cohomology, circle *d*-bundles).
- Geometric tangential structures: geometric Spin^c-structure, String (Waldorf), Fivebrane (Sati-Schreiber-Stasheff), Ninebrane (Sati). (Vanishing of anomaly.)
- differential K-theory (Ramond–Ramond field). Requires ∞ -groupoids.

The geometric cobordism hypothesis

Ingredients:

- A dimension $d \ge 0$.
- A smooth symmetric monoidal (∞, d) -category \mathcal{V} of values.
- A *d*-dimensional geometric structure $S: \mathsf{FEmb}_d^{\mathsf{op}} \to \mathsf{sSet}$.

Constructions:

- The smooth symmetric monoidal (∞, d) -category of bordisms $\mathfrak{Bord}_d^{\mathcal{S}}$ with geometric structure \mathcal{S} .
- A *d*-dimensional functorial field theory valued in $\mathcal V$ with geometric structure $\mathcal S$ is a smooth symmetric monoidal (∞, d) -functor $\mathfrak{Bord}_d^{\mathcal S} \to \mathcal V$.
- The simplicial set of d-dimensional functorial field theories valued in $\mathcal V$ with geometric structure $\mathcal S$ is the derived mapping simplicial set

$$\mathsf{FFT}_{d,\mathcal{V}}(\mathcal{S}) = \mathbf{R} \operatorname{Map}(\mathfrak{Bord}_d^{\mathcal{S}}, \mathcal{V}).$$

Can be refined to a derived internal hom.

The geometric cobordism hypothesis

Conjectures (for topological field theories):

- Freed, Lawrence (1992): FFT_{d,V} is an ∞ -sheaf.
- Baez-Dolan (1995), Hopkins-Lurie (2008):

$$\mathsf{FFT}_{d,\mathcal{V}}(\mathcal{S}) \simeq \mathsf{R}\operatorname{Map}(\mathcal{S},\mathcal{V}^{\times}).$$

 \mathcal{V}^{\times} : fully dualizable objects and invertible morphisms.

The geometric cobordism hypothesis

Conjectures (for topological field theories):

- Freed, Lawrence (1992): FFT_{d,V} is an ∞ -sheaf.
- Baez-Dolan (1995), Hopkins-Lurie (2008): $\mathsf{FFT}_{d,\mathcal{V}}(\mathcal{S}) \simeq \mathbf{R} \operatorname{Map}(\mathcal{S},\mathcal{V}^{\times}).$

Theorem (Grady-P., The geometric cobordism hypothesis)

Part I (Locality): \mathfrak{Bord}_d is a left adjoint functor:

$$\mathsf{R}\operatorname{Map}(\mathfrak{Bord}_d^{\mathcal{S}},\mathcal{V})\simeq \mathsf{R}\operatorname{Map}(\mathcal{S},\mathcal{V}_d^{\times}),$$

where
$$\mathcal{V}_d^{\times} = \mathsf{FFT}_{d,\mathcal{V}}$$
, i.e., $\mathcal{V}_d^{\times}(T \to U) = \mathsf{FFT}_{d,\mathcal{V}}(T \to U)$.

Part II (Framed GCH): The evaluation-at-points map

$$\mathcal{V}_d^{\times}(\mathbf{R}^d \times U \to U) = \mathsf{FFT}_{d,\mathcal{V}}(\mathbf{R}^d \times U \to U) \to \mathcal{V}^{\times}(U)$$

is a weak equivalence of simplicial sets functorial in U.

Computing with GCH

- How to compute \mathcal{V}_d^{\times} ?
- How to compute $\mathbf{R} \operatorname{Map}(\mathcal{S}, \mathcal{V}_d^{\times})$?

Computing with GCH

- How to compute \mathcal{V}_d^{\times} ?
 - Simplicial presheaves and sheaf cohomology
 - Integration; differential forms; de Rham theory
 - Need to be done only once per choice of V; precomputed results exist
- How to compute $\mathbf{R} \operatorname{Map}(\mathcal{S}, \mathcal{V}_d^{\times})$?
 - Homotopy colimits; Quillen Theorem A; Thomason's theorem
 - Simplicial presheaves and sheaf cohomology
 - Natural operations in differential geometry (Kolář–Michor–Slovák)
 - Homotopy coherent representation theory of (higher) Lie groups

Computing \mathcal{V}_d^{\times}

- Already know $\mathcal{V}_d^{\times}(\mathbf{R}^d \times U \to U) \simeq \mathcal{V}^{\times}(U)$, functorial in $U \in \mathsf{Cart}$.
- What are the structure maps for functoriality in FEmb_d?
- Step 1: Guess a map $W \to \mathcal{V}_d^{\times}$.
- Step 2: For every *U*, prove $\mathcal{W}(\mathbf{R}^d \times U \to U) \to \mathcal{V}_d^{\times}(\mathbf{R}^d \times U \to U) \to \mathcal{V}^{\times}(U)$ is a weak equivalence.

Example ($\mathcal{V} = \mathsf{B}^d \mathsf{U}(1)$; prequantum FFTs)

- Step 1a: $\mathcal{W}(\mathbf{R}^d \times U \to U) = U\Gamma(\Omega^d_U(\mathbf{R}^d \times U) \leftarrow \cdots \leftarrow$ $\Omega^1_U(\mathbf{R}^d \times U) \leftarrow \mathrm{C}^{\infty}(\mathbf{R}^d \times U, \mathrm{U}(1))$
- Step 1b: $\mathcal{W} \to \mathcal{V}_d^{\times}$: $\omega \mapsto (B \mapsto \exp(\frac{i}{\hbar} \int_B \omega))$.
- Step 2: Poincaré lemma: $\mathcal{W}(\mathbf{R}^d \times U \to U) \stackrel{\sim}{\to} \mathbf{B}^d \mathbf{C}^{\infty}(U, \mathbf{U}(1))$

How to compute $\mathbf{R} \operatorname{Map}(\mathcal{S}, \mathcal{W})$?

Two main options:

- Use the theory of natural operations, working on the site FEmb_d .
 - Examples: differential characteristic classes yield prequantum field theories.
- Use an adjunction to switch to a different category: Fun(Cart^{op}, $sSet^{O(d)}$).
 - Examples: classification of conformal or Euclidean field theories.

Categories of geometric structures

Proposition

The functors q^* and ι^* are right Quillen equivalences.

$$\begin{array}{c|c} \mathcal{S}h(\mathsf{FEmb}_d) & \stackrel{\rho^*}{\longleftarrow} \mathcal{S}h(\mathfrak{FEmb}_d) & \stackrel{\iota^*}{\longrightarrow} \mathcal{S}h(\mathsf{Cart})^{\mathrm{O}(d)} \\ q^* & \downarrow & \qquad \qquad \\ \mathcal{S}h(\mathsf{FEmbCart}_d) & \stackrel{\rho^*}{\longleftarrow} \mathcal{S}h(\mathfrak{FEmbCart}_d). \end{array}$$

- \blacksquare Sh(C): simplicial presheaves on C, Čech-local model structure
- \bullet \mathfrak{FEmb}_d : like FEmb_d, but enriched in spaces
- FEmbCart_d: full subcategory of FEmb_d on $D_U := (\mathbf{R}^d \times U \to U)$
- $\mathfrak{FEmbCart}_d$: equivalent to Cart $\times BO(d)$ by C^{∞} Kister–Mazur

Categories of geometric structures

Proposition

The functors q^* and ι^* are right Quillen equivalences.

$$\begin{array}{c|c} \mathcal{S}h(\mathsf{FEmb}_d) & \stackrel{\rho^*}{\longleftarrow} \mathcal{S}h(\mathfrak{FEmb}_d) & \stackrel{\iota^*}{\longrightarrow} \mathcal{S}h(\mathsf{Cart})^{\mathrm{O}(d)} \\ \hline q^* & \downarrow & \\ \mathcal{S}h(\mathsf{FEmbCart}_d) & \stackrel{\rho^*}{\longleftarrow} \mathcal{S}h(\mathfrak{FEmbCart}_d). \end{array}$$

The functor ρ_1 adds "rank d homotopies / isotopies" to a geometric structure.

d-dimensional holonomy is invariant under rank d homotopies.

d=1: Kobayashi, Barrett, Caetano-Picken

d>1: Bunke–Turner–Willerton, Picken, Mackaay–Picken

25/26

Categories of geometric structures

Proposition

The functors q^* and ι^* are right Quillen equivalences.

$$\begin{array}{c|c} \mathcal{S}h(\mathsf{FEmb}_d) & \stackrel{\rho^*}{\longleftarrow} \mathcal{S}h(\mathfrak{Femb}_d) & \stackrel{\iota^*}{\longrightarrow} \mathcal{S}h(\mathsf{Cart})^{\mathrm{O}(d)} \\ q^* & \downarrow & \\ \mathcal{S}h(\mathsf{FEmbCart}_d) & \stackrel{\rho^*}{\longleftarrow} \mathcal{S}h(\mathfrak{FembCart}_d). \end{array}$$

Recipe to compute $\mathbf{R} \operatorname{Map}(\mathcal{S}, \rho^* \mathcal{V}_d^{\times})$.

- Use q^* to move to FEmbCart_d / $\mathfrak{FEmbCart}_d$. (Suppressed from the notation.)
- $\blacksquare \mathsf{R}\operatorname{Map}(\mathcal{S}, \rho^*\mathcal{V}_d^{\times}) \simeq \mathsf{R}\operatorname{Map}(\rho_{\mathsf{I}}\mathcal{S}, \mathcal{V}_d^{\times}).$
- Compute $\rho_1 S$.
- $\mathbf{R} \operatorname{Map}(\rho_! \mathcal{S}, \mathcal{V}_d^{\times}) \simeq \mathbf{R} \operatorname{Map}(\iota^* \rho_! \mathcal{S}, \iota^* \mathcal{V}_d^{\times})$. (C^{\infty} Kister–Mazur)

Notation:

- FEmbCart_d: Objects $D_U = (\mathbf{R}^d \times U \to U)$, morphisms: fiberwise open embeddings.
- $\mathfrak{FEmbCart}_d$: Objects \mathfrak{D}_U , space of morphisms.
- ρ : FEmbCart_d $\rightarrow \mathfrak{FEmbCart}_d$: inclusion.
- $\rho_!$: $Sh(\mathsf{FEmbCart}_d) \to Sh(\mathfrak{FEmbCart}_d)$: left Kan extension.

Computation:

- $\bullet \rho_! \mathcal{S} = \rho_! \operatorname{hocolim}_{\mathsf{D}_U \to \mathcal{S}} Y(\mathsf{D}_U) = \operatorname{hocolim}_{\mathsf{D}_U \to \mathcal{S}} Y(\mathfrak{D}_U).$
- Evaluate on \mathfrak{D}_W :

$$(\rho_!\mathcal{S})(\mathfrak{D}_W) = \operatornamewithlimits{hocolim}_{\mathsf{D}_U \to \mathcal{S}} \mathfrak{FembCart}_d(\mathfrak{D}_W, \mathfrak{D}_U).$$

■ $\mathfrak{FEmbCart}_d(\mathfrak{D}_W,\mathfrak{D}_U)$ is 1-truncated. Ob: φ : $\mathsf{D}_W \to \mathsf{D}_U$. Mor γ : $\varphi \to \varphi'$: isotopy classes of isotopies from φ to φ' (form a **Z**-torsor).

- $\bullet \rho_! \mathcal{S} = \rho_! \operatorname{hocolim}_{\mathsf{D}_U \to \mathcal{S}} Y(\mathsf{D}_U) = \operatorname{hocolim}_{\mathsf{D}_U \to \mathcal{S}} Y(\mathfrak{D}_U).$
- **E**valuate on \mathfrak{D}_W :

$$(\rho_! \mathcal{S})(\mathfrak{D}_W) = \operatornamewithlimits{hocolim}_{\mathsf{D}_U \to \mathcal{S}} \mathfrak{FembCart}_d(\mathfrak{D}_W, \mathfrak{D}_U).$$

- $\mathfrak{FEmbEart}_d(\mathfrak{D}_W,\mathfrak{D}_U)$ is 1-truncated. Ob: φ : $\mathsf{D}_W \to \mathsf{D}_U$. Mor γ : $\varphi \to \varphi'$: isotopy classes of isotopies from φ to φ' (form a **Z**-torsor).
- Thomason's theorem: hocolim computed as the Grothendieck construction F. Ob: $D_W \stackrel{\varphi}{\to} D_U \stackrel{g}{\to} \mathcal{S}$. Mor $(\varphi, g) \to (\varphi', g')$: $\beta: D_U \to D_{U'}: g = g'\beta, \gamma: \beta\varphi \to \varphi'$.

$$D_{W} \xrightarrow{\varphi} D_{U} \xrightarrow{g} \mathcal{S}$$

$$\downarrow^{\gamma} \downarrow^{\beta} \qquad g'$$

- $\mathfrak{FEmbCart}_d(\mathfrak{D}_W,\mathfrak{D}_U)$ is 1-truncated. Ob: φ : $\mathsf{D}_W \to \mathsf{D}_U$. Mor γ : $\varphi \to \varphi'$: isotopy classes of isotopies from φ to φ' (form a **Z**-torsor).
- Thomason's theorem: hocolim computed as the Grothendieck construction F. Ob: $D_W \xrightarrow{\varphi} D_U \xrightarrow{g} \mathcal{S}$. Mor $(\varphi, g) \to (\varphi', g')$: $\beta : D_U \to D_{U'} : g = g'\beta, \ \gamma : \beta \varphi \to \varphi'$.

■ BC $^{\infty}(W, \mathbb{R}^2 \rtimes Conf(2))$. Ob: germ of D_W around 0. Mor: displacement + automorphism of a germ.

How to compute $ho_! \mathcal{S}$?

■ Thomason's theorem: hocolim computed as the Grothendieck construction F. Ob: $D_W \xrightarrow{\varphi} D_U \xrightarrow{g} S$. Mor $(\varphi, g) \to (\varphi', g')$: $\beta: D_U \to D_{U'}: g = g'\beta, \gamma: \beta\varphi \to \varphi'$.

- BC[∞](W, $\mathbb{R}^2 \rtimes Conf(2)$). Ob: germ of D_W around 0. Mor: displacement + automorphism of a germ.
- Projection functor $\pi: F \to \mathrm{BC}^\infty(W, \mathbf{R}^2 \rtimes \mathsf{Conf}(2))$.
 - \bullet $(\varphi,g) \mapsto \text{germ of } D_W \text{ around } 0.$
 - $\blacksquare (\beta, \gamma) \mapsto B: W \to \mathbb{R}^2 \rtimes \widetilde{\mathsf{Conf}}(2)$

■ Grothendieck construction *F*:

- BC $^{\infty}(W, \mathbb{R}^2 \rtimes \mathsf{Conf}(2))$. Ob: germ of D_W around 0. Mor: displacement + automorphism of a germ.
- Projection functor $\pi: F \to \mathrm{BC}^\infty(W, \mathbf{R}^2 \rtimes \widetilde{\mathsf{Conf}}(2))$.
 - \bullet $(\varphi,g)\mapsto \operatorname{germ} \operatorname{of} \operatorname{D}_W \operatorname{around} 0.$
 - $\blacksquare (\beta, \gamma) \mapsto B: W \to \mathbb{R}^2 \rtimes \widetilde{\mathsf{Conf}}(2)$
 - $(\varphi')^{-1}\gamma$ is an isotopy class of isotopies $(\varphi')^{-1}\beta\varphi\to \mathrm{id}_{\mathsf{D}_W}$.
 - $W \to \mathbf{R}^2$: the displacement of the origin.
 - $W \to \mathsf{Conf}(2)$: the germ of embedding + winding number.

■ Grothendieck construction *F*:

- BC $^{\infty}(W, \mathbb{R}^2 \rtimes \mathsf{Conf}(2))$. Ob: germ of D_W around 0. Mor: displacement + automorphism of a germ.
- Projection functor $\pi: F \to \mathrm{BC}^\infty(W, \mathbb{R}^2 \rtimes \widetilde{\mathsf{Conf}}(2))$.
 - $(\varphi, g) \mapsto \text{germ of } D_W \text{ around } 0.$
 - $(\beta, \gamma) \mapsto B: W \to \mathbb{R}^2 \rtimes \mathsf{Conf}(2)$
 - $(\varphi')^{-1}\gamma$ is an isotopy class of isotopies $(\varphi')^{-1}\beta\varphi \to \mathrm{id}_{\mathsf{D}_W}$.
 - $W \to \mathbb{R}^2$: the displacement of the origin.
 - $W \rightarrow Conf(2)$: the germ of embedding + winding number.
- Quillen's Theorem A: $*/\pi$ is a directed poset \Longrightarrow weakly contractible nerve

- BC $^{\infty}(W, \mathbb{R}^2 \rtimes \mathsf{Conf}(2))$. Ob: germ of D_W around 0. Mor: displacement + automorphism of a germ.
- Projection functor $\pi: F \to \mathrm{BC}^\infty(W, \mathbf{R}^2 \rtimes \widetilde{\mathsf{Conf}}(2))$.
 - $(\varphi, g) \mapsto \text{germ of } D_W \text{ around } 0.$
 - $(\beta, \gamma) \mapsto B: W \to \mathbb{R}^2 \rtimes \widetilde{\mathsf{Conf}}(2)$
 - $(\varphi')^{-1}\gamma$ is an isotopy class of isotopies $(\varphi')^{-1}\beta\varphi \to \mathrm{id}_{\mathsf{D}_W}$.
 - $W \to \mathbb{R}^2$: the displacement of the origin.
 - $W \rightarrow Conf(2)$: the germ of embedding + winding number.
- Quillen's Theorem A: $*/\pi$ is a directed poset \Longrightarrow weakly contractible nerve
- Theorem: $(\rho_! S)(\mathfrak{D}_W) \simeq \mathrm{BC}^\infty(W, \mathbf{R}^2 \rtimes \widetilde{\mathsf{Conf}}(2))$.

- BC $^{\infty}(W, \mathbb{R}^2 \rtimes \widetilde{\mathsf{Conf}}(2))$. Ob: germ of D_W around 0. Mor: displacement + automorphism of a germ.
- Projection functor $\pi: F \to \mathrm{BC}^\infty(W, \mathbf{R}^2 \rtimes \widetilde{\mathsf{Conf}}(2))$.
 - $(\varphi, g) \mapsto \text{germ of } D_W \text{ around } 0.$
 - $(\beta, \gamma) \mapsto B: W \to \mathbb{R}^2 \rtimes \widetilde{\mathsf{Conf}}(2)$
 - $(\varphi')^{-1}\gamma$ is an isotopy class of isotopies $(\varphi')^{-1}\beta\varphi \to \mathrm{id}_{\mathsf{D}_W}$.
 - $W \to \mathbf{R}^2$: the displacement of the origin.
 - $W \rightarrow Conf(2)$: the germ of embedding + winding number.
- Quillen's Theorem A: $*/\pi$ is a directed poset \Longrightarrow weakly contractible nerve
- Theorem: $(\rho_! S)(\mathfrak{D}_W) \simeq \mathrm{BC}^{\infty}(W, \mathbf{R}^2 \rtimes \widetilde{\mathsf{Conf}}(2))$.
- Theorem: $\mathbf{R} \operatorname{Map}(\mathcal{S}, \mathcal{V}_d^{\times}) \simeq \mathbf{R} \operatorname{Map}(\mathbf{B}(\mathbf{R}^2 \rtimes \widetilde{\mathsf{Conf}}(2)), \iota^* \mathcal{V}_d^{\times}).$

Applications (current)

- Consequence of the GCH: smooth invertible FFTs are classified by the smooth Madsen-Tillmann spectrum. (Previous work: Galatius-Madsen-Tillmann-Weiss, Bökstedt-Madsen, Schommer-Pries.)
- The Stolz-Teichner conjecture: concordance classes of extended FFTs have a classifying space. (Proof: Locality + the smooth Oka principle (Berwick-Evans-Boavida de Brito-P.).
- Construction of power operations on the level of FFTs (extending Barthel–Berwick-Evans–Stapleton).
- (Grady) The Freed-Hopkins conjecture (Conjecture 8.37 in Reflection positivity and invertible topological phases)

Applications (ongoing)

- Construction of prequantum FFTs from geometric/topological data. Differential characteristic classes as FFTs. (cf. Berthomieu 2008; Bunke-Schick 2010; Bunke 2010).
- Atiyah–Singer index invariants (index, η -invariant, determinant line, index gerbe) as a fully extended FFT (cf. Bunke 2002; Hopkins-Singer 2002; Bunke-Schick 2007).
- Quantization of functorial field theories. Examples: 2d Yang-Mills.

Example: the prequantum Chern-Simons theory (1)

Input data:

- G: a Lie group;
- $\mathbf{S} = \mathsf{B}_{\nabla} G$ (fiberwise principal G-bundles with connection);
- $V = B^3U(1)$ (a single k-morphism for k < 3; 3-morphisms are U(1) as a Lie group).

Output data: a fully extended 3-dimensional *G*-gauged FFT:

$$\mathfrak{Bord}_3^{\mathsf{B}_\nabla \mathsf{G}} \to \mathsf{B}^3\mathrm{U}(1).$$

- Closed 3-manifold $M \mapsto$ the Chern–Simons action of M:
- Closed 2-manifold $B \mapsto$ the prequantum line bundle of B;
- Closed 1-manifold $C \mapsto$ the Wess–Zumino–Witten gerbe (B-field) of C (Carey–Johnson–Murray–Stevenson–Wang);
- Point → the Chern-Simons 2-gerbe (Waldorf).

Example: the prequantum Chern-Simons theory (2)

- Step 1 Compute $\mathcal{V}_3^{\times} = (B^3 U(1))_3^{\times}$.
- Step 1a W is the fiberwise Deligne complex of $T \to U$:

$$W(T \to U) = \Omega^3 \leftarrow \Omega^2 \leftarrow \Omega^1 \leftarrow \mathrm{C}^\infty(T, \mathrm{U}(1)).$$

- Step 1b $W \to \mathcal{V}_3^{\times}$: a fiberwise 3-form ω on $T \to U$ \mapsto framed FFT: 3-bordism $B \mapsto \exp(\int_{\mathcal{B}} \omega)$.
- Step 1c The composition

$$W(T \to U) \to \mathcal{V}_3^{\times}(T \to U) \to \mathcal{V}^{\times}(U) = \mathsf{B}^3\mathrm{C}_{\mathsf{fconst}}^{\infty}(T, \mathrm{U}(1))$$

is a weak equivalence by the Poincaré lemma.

Example: the prequantum Chern–Simons theory (2)

Step 1 Compute $\mathcal{V}_3^{\times} = (\mathsf{B}^3\mathrm{U}(1))_3^{\times}$.

Step 1a W is the fiberwise Deligne complex of $T \rightarrow U$:

$$W(T \to U) = \Omega^3 \leftarrow \Omega^2 \leftarrow \Omega^1 \leftarrow C^{\infty}(T, U(1)).$$

Step 1b $W \to \mathcal{V}_3^{\times}$: a fiberwise 3-form ω on $T \to U$ \mapsto framed FFT: 3-bordism $B \mapsto \exp(\int_B \omega)$.

Step 1c The composition

$$\mathcal{W}(\mathcal{T} \to \mathcal{U}) \to \mathcal{V}_3^\times(\mathcal{T} \to \mathcal{U}) \to \mathcal{V}^\times(\mathcal{U}) = \mathsf{B}^3\mathrm{C}_\mathsf{fconst}^\infty(\mathcal{T},\mathrm{U}(1))$$

is a weak equivalence by the Poincaré lemma.

Step 2 Construct a point in

$$\mathbf{R}\operatorname{Map}(\mathsf{B}_{\nabla}G,W)$$

$$= R\operatorname{Map}(\Omega^1(-,\mathfrak{g})/\!/\mathrm{C}^\infty(-,\mathit{G}),\mathsf{B}^3\mathrm{C}^\infty_{\mathsf{fconst}}(-,\mathrm{U}(1))).$$

(Brylinski-McLaughlin 1996, Fiorenza-Sati-Schreiber 2013)

Step 2' Even better: can compute the whole space $\mathbf{R} \operatorname{Map}(\mathsf{B}_{\nabla} G, W)$.

Example: the prequantum Chern–Simons theory (2)

Step 1 Result:
$$\mathcal{V}_3^{\times} = (\mathsf{B}^3\mathrm{U}(1))_3^{\times} = \mathsf{B}^3\mathrm{C}_{\mathsf{fconst}}^{\infty}(-,\mathrm{U}(1)).$$

Step 2 Construct a point in

$$\begin{split} & \textbf{R}\operatorname{Map}(\mathsf{B}_\nabla \textit{G}, \textit{W}) \\ & = \textbf{R}\operatorname{Map}(\Omega^1(-,\mathfrak{g})/\!/\mathrm{C}^\infty(-,\textit{G}), \mathsf{B}^3\mathrm{C}^\infty_{\mathsf{fconst}}(-,\mathrm{U}(1))). \end{split}$$

(Brylinski-McLaughlin 1996, Fiorenza-Sati-Schreiber 2013)

Step 2' Even better: can compute the whole space $\mathbf{R}\operatorname{Map}(\mathsf{B}_\nabla G,W)$.

Quantization of functorial field theories

X: the prequantum geometric structure

Y: the quantum geometric structure (e.g., a point)

$$\begin{array}{ccc} \mathsf{FFT}_{d,\mathcal{V}}(X) & \xrightarrow{\qquad \cong} & \mathbf{R} \operatorname{Map}(X,\mathcal{V}_d^{\times}) \\ & & \downarrow Q \\ \mathsf{FFT}_{d,\mathcal{V}}(Y) & \xrightarrow{\cong} & \mathbf{R} \operatorname{Map}(Y,\mathcal{V}_d^{\times}) \end{array}$$

d=1: recover the Spin^c geometric quantization when X is a smooth manifold, $Y={\sf Riem}_{1|1},~\mathcal{V}={\sf Fredholm}$ complexes.