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Main theorem: conformal field theory

Theorem

The following categories are equivalent:

extended conformal field theories;

Serre-twisted homotopy coherent reps of R2 ⋊ C̃onf(2).

Notation:

C̃onf(2): the universal covering of Conf(2).

Conf(2): z 7→
∑

k≥1 akz
k , a1 ̸= 0, convergent with R > 0,

group operation: composition.

Serre-twisted: restricting to Z ⊂ C̃onf(2) ⊂ R2 ⋊ C̃onf(2)
yields powers of Serre automorphisms.

Example: Serre automorphisms are trivial
⇝ homotopy coherent representations of R2 ⋊ Conf(2).

Variants: Twisted/relative, chiral, 2|1-Euclidean.
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Features of the geometric bordism category

Locality (Freed, Lawrence): k-bordisms with corners of all
codimensions (up to d) with compositions in d directions
=⇒ symmetric monoidal d-category of bordisms
Isotopy (Costello, Hopkins, Lurie): chain complexes to encode
BV-BRST
=⇒ must encode (higher) diffeomorphisms between bordisms
=⇒ symmetric monoidal (∞, d)-categories
Geometric (nontopological) structures on bordisms (Segal,
Stolz, Teichner): Riemannian/Lorentzian metrics,
complex/conformal/symplectic/contact structures,
principal G -bundles with connection and isos,
higher gauge fields (Kalb–Ramond, Ramond–Ramond)
=⇒ an (∞, 1)-sheaf of geometric structures
Smoothness (Stolz, Teichner): values of field theories depend
smoothly (or holomorphically, super, . . . ) on bordisms
=⇒ (∞, 1)-sheaf of (∞, d)-categories of bordisms
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Ingredients of the classification

1 Locality of extended functorial field theories
(arXiv:2011.01208)
(⇝ reduction to simpler geometric structures)

2 Relative geometric cobordism hypothesis (arXiv:2111.01095)
(handles of index ≤ k − 1 ⇝ handles of index ≤ k)

3 1 and 2 ⇒ geometric cobordism hypothesis

RMap(BordSd ,V) ≃ RMap(S,V fd ,×d ),

(topological case: Lurie, 2009)

4 (P.) A computation of the right side for 2-dimensional CFTs
(Quillen Theorem A, Thomason’s theorem, Riemann mapping
theorem).
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Other applications of GCH

(Grady–P.) Invertible geometric FFTs are classified by the
geometric Madsen–Tillmann spectrum. (Previous work:
Galatius–Madsen–Tillmann–Weiss, Bökstedt–Madsen,
Schommer-Pries.)

(Grady–P.) A conjecture of Stolz and Teichner: concordance
classes of extended FFTs have a classifying space. (Proof:
Locality + the smooth Oka principle (Berwick-Evans–Boavida
de Brito–P.).

(P.) Classification of 2|1-Euclidean field theories.

(Grady) Classification of deformation classes of reflection
positive invertible geometric FFTs (Conjecture 8.37 in
Reflection positivity and invertible topological phases by
Freed–Hopkins)
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Other applications of GCH

(Grady–P.) Invertible geometric FFTs are classified by the
geometric Madsen–Tillmann spectrum. (Previous work:
Galatius–Madsen–Tillmann–Weiss, Bökstedt–Madsen,
Schommer-Pries.)

(Grady–P.) A conjecture of Stolz and Teichner: concordance
classes of extended FFTs have a classifying space. (Proof:
Locality + the smooth Oka principle (Berwick-Evans–Boavida
de Brito–P.).

(P.) Classification of 2|1-Euclidean field theories.

(Grady) Classification of deformation classes of reflection
positive invertible geometric FFTs (Conjecture 8.37 in
Reflection positivity and invertible topological phases by
Freed–Hopkins)

Thank you!
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Main theorem 2: 2|1-Euclidean field theory

Theorem

The following smooth ∞-categories are equivalent:

extended 2|1-Euclidean field theories;

Serre-twisted homotopy coherent representations of the Lie
supergroup Ẽuc(2|1) on a 2-dualizable object.

Notation:

Ẽuc(2|1): the universal covering of Euc(2|1) = R2|1 ⋊ Spin(2).

Serre-twisted: restricting to Z ⊂ Ẽuc(2|1) yields Serre
automorphisms.

Serre automorphisms trivial =⇒ representations of Euc(2|1).
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What is functorial field theory?

Want to study integrals of the form∫
φ
exp(iℏ−1S(φ)) ∈ C.

X : spacetime; e.g., R4

F :E → X : field bundle; e.g., R× X → X

φ: field: section of F :E → X ; e.g., φ ∈ C∞(X ) (scalar field)

S : ΓF (X )→ R: action functional.

What kind of manifold is the spacetime X?

Closed manifold.

More generally: X is compact with boundary ∂X = M0 ⊔M1;
write X :M0 → M1, i.e., X is a bordism from M0 to M1.
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Quantum propagators and Segal gluing

∫
φ
exp(iℏ−1S(φ)) ∈ C, φ ∈ ΓF (X ), X :M0 → M1.

For fixed αi = φ|Mi
∈ ΓF (Mi ), get K (α1, α0) =

∫
φ ∈ C.

K is the integral kernel of an operator F (X ):F (M0)→ F (M1)
(propagator).

Here F (Mi ) = O(ΓF (Mi )) (space of states).

Fubini property (Segal gluing): if X1:M0 → M1,
X2:M1 → M2, then F (X2 ⊔M1 X1) = F (X2) ◦ F (X1).∫

φ
exp(iℏ−1S(φ)) =

∫
α1

∫
φ1

∫
φ2

exp(iℏ−1(S(φ1) + S(φ2)))
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How to compose bordisms
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Axioms for quantum propagators in the Schrödinger picture

F :E → X (field bundle); F (M) = O(ΓF (M)) (space of states)

F (M ⊔ N) = O(ΓF (M ⊔ N)) ∼= O(ΓF (M)⊕ ΓF (N))
∼= O(ΓF (M))⊗OF (ΓF (N)) = F (M)⊗ F (N).

Segal gluing (Fubini): F (X2 ⊔M1 X1) = F (X2) ◦ F (X1).

Monoidality: F (M ⊔ N) ∼= F (M)⊗ F (N).

Segal (following Feynman, Witten): axiomatize Fubini and
monoidality as a symmetric monoidal functor (i.e., a functorial
field theory)

F : Bord→ Vect.

Bord: objects: (d − 1)-manifolds M; morphisms: bordisms
X :M0 → M1.

Vect: objects: vector spaces; morphisms: linear maps.
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Geometric structures

Definition

Given d ≥ 0, the site FEmbd has

Objects: submersions T → U with d-dimensional fibers,
where U ∼= Rn is a cartesian manifold;

Morphisms: commutative squares with T → T ′ a fiberwise
open embedding over a smooth map U → U ′;

Covering families: open covers on total spaces T .

Definition (Nijenhuis 1958)

Given d ≥ 0, a d-dimensional geometric structure is a simplicial
presheaf S: FEmbopd → sSet.

Example

T → U 7→ the set of fiberwise Riemannian metrics on T → U;

(T → T ′,U → U ′) 7→ the restriction map from T ′ to T .
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Examples of geometric structures

topological structures (i.e., isotopy-invariant): orientations,
spin stuctures, framings, etc. (TQFT as studied by Atiyah,
Kontsevich, Reshetikhin, Turaev, Viro, Freed, Lawrence,
Quinn, Hopkins, Lurie, . . . );

fiberwise Riemannian, Lorentzian, pseudo-Riemannian metrics;
positive/negative sectional/Ricci curvature;

fiberwise conformal, complex, symplectic, contact, Kähler
structures;

fiberwise foliations, possibly with transversal metrics;

smooth map to a target manifold M (traditional σ-model);

smooth map to an orbifold or ∞-sheaf on manifolds;

fiberwise etale map or an open embedding into a target
manifold N;

fiberwise differential n-forms (possibly closed).
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Examples of geometric structures: gauge transformations

Definition

Send a d-manifold M to (the nerve of) the groupoid
B∇G (M):

Objects: principal G -bundles on T with a fiberwise connection
on T → U (gauge fields);
Morphisms: connection-preserving isomorphisms (gauge
transformations).
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Examples of geometric structures: (higher) gauge
transformations

Principal G -bundles with connection on M (gauge fields, e.g.,
the electromagnetic field);

Bundle gerbe with connection on M (B-field, Kalb–Ramond
field).

Bundle 2-gerbe with connection on M (supergravity C-field).

Bundle (d − 1)-gerbes with connection on M (Deligne
cohomology, Cheeger–Simons characters, ordinary differential
cohomology, circle d-bundles).

Geometric tangential structures: geometric Spinc -structure,
String (Waldorf), Fivebrane (Sati–Schreiber–Stasheff),
Ninebrane (Sati). (Vanishing of anomaly.)

differential K-theory (Ramond–Ramond field). Requires
∞-groupoids.
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The geometric cobordism hypothesis

Ingredients:

A dimension d ≥ 0.
A smooth symmetric monoidal (∞, d)-category V of values.
A d-dimensional geometric structure S: FEmbopd → sSet.

Constructions:

The smooth symmetric monoidal (∞, d)-category of bordisms
BordSd with geometric structure S.
A d-dimensional functorial field theory valued in V with
geometric structure S is a smooth symmetric monoidal
(∞, d)-functor BordSd → V.
The simplicial set of d-dimensional functorial field theories
valued in V with geometric structure S is the derived mapping
simplicial set

FFTd ,V(S) = RMap(BordSd ,V).

Can be refined to a derived internal hom.
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The geometric cobordism hypothesis

Conjectures (for topological field theories):

Freed, Lawrence (1992): FFTd ,V is an ∞-sheaf.

Baez–Dolan (1995), Hopkins–Lurie (2008):

FFTd ,V(S) ≃ RMap(S,V×).

V×: fully dualizable objects and invertible morphisms.
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The geometric cobordism hypothesis

Conjectures (for topological field theories):

Freed, Lawrence (1992): FFTd ,V is an ∞-sheaf.
Baez–Dolan (1995), Hopkins–Lurie (2008):
FFTd ,V(S) ≃ RMap(S,V×).

Theorem (Grady–P., The geometric cobordism hypothesis)

Part I (Locality): Bordd is a left adjoint functor:

RMap(BordSd ,V) ≃ RMap(S,V×d ),

where V×d = FFTd ,V , i.e., V×d (T → U) = FFTd ,V(T → U).

Part II (Framed GCH): The evaluation-at-points map

V×d (Rd × U → U) = FFTd ,V(R
d × U → U)→ V×(U)

is a weak equivalence of simplicial sets functorial in U.
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Computing with GCH

How to compute V×d ?

How to compute RMap(S,V×d )?
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Computing with GCH

How to compute V×d ?

Simplicial presheaves and sheaf cohomology
Integration; differential forms; de Rham theory
Need to be done only once per choice of V; precomputed
results exist

How to compute RMap(S,V×d )?

Homotopy colimits; Quillen Theorem A; Thomason’s theorem
Simplicial presheaves and sheaf cohomology
Natural operations in differential geometry
(Kolá̌r–Michor–Slovák)
Homotopy coherent representation theory of (higher) Lie
groups
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Computing V×d

Already know V×d (Rd × U → U) ≃ V×(U), functorial in
U ∈ Cart.

What are the structure maps for functoriality in FEmbd?

Step 1: Guess a map W → V×d .

Step 2: For every U, prove
W(Rd × U → U)→ V×d (Rd × U → U)→ V×(U) is a weak
equivalence.

Example (V = BdU(1); prequantum FFTs)

Step 1a: W(Rd × U → U) = UΓ(Ωd
U(R

d × U)← · · · ←
Ω1
U(R

d × U)← C∞(Rd × U,U(1))).

Step 1b: W → V×d : ω 7→ (B 7→ exp( iℏ
∫
B ω)).

Step 2: Poincaré lemma:
W(Rd × U → U)

∼→ BdC∞(U,U(1))
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How to compute RMap(S,W)?

Two main options:

Use the theory of natural operations, working on the site
FEmbd .
Examples: differential characteristic classes yield prequantum
field theories.

Use an adjunction to switch to a different category:
Fun(Cartop, sSetO(d)).
Examples: classification of conformal or Euclidean field
theories.
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Categories of geometric structures

Proposition

The functors q∗ and ι∗ are right Quillen equivalences.

Sh(FEmbd)

q∗

��

Sh(FEmbd)
ρ∗

oo

q∗

��

ι∗ // Sh(Cart)O(d)

Sh(FEmbCartd) Sh(FEmbCartd).
ρ∗
oo

ι∗

66

Sh(C ): simplicial presheaves on C , Čech-local model structure

FEmbd : like FEmbd , but enriched in spaces

FEmbCartd : full subcategory of FEmbd on
DU := (Rd × U → U)

FEmbCartd : equivalent to Cart×BO(d) by C∞ Kister–Mazur
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Categories of geometric structures

Proposition

The functors q∗ and ι∗ are right Quillen equivalences.

Sh(FEmbd)
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Sh(FEmbd)
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oo

q∗

��

ι∗ // Sh(Cart)O(d)

Sh(FEmbCartd) Sh(FEmbCartd).
ρ∗
oo

ι∗

66

The functor ρ! adds “rank d homotopies / isotopies” to a
geometric structure.
d-dimensional holonomy is invariant under rank d homotopies.
d = 1: Kobayashi, Barrett, Caetano–Picken
d > 1: Bunke–Turner–Willerton, Picken, Mackaay–Picken
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Categories of geometric structures

Proposition

The functors q∗ and ι∗ are right Quillen equivalences.

Sh(FEmbd)

q∗

��

Sh(FEmbd)
ρ∗

oo

q∗

��

ι∗ // Sh(Cart)O(d)

Sh(FEmbCartd) Sh(FEmbCartd).
ρ∗
oo

ι∗

66

Recipe to compute RMap(S, ρ∗V×d ).

Use q∗ to move to FEmbCartd / FEmbCartd . (Suppressed
from the notation.)

RMap(S, ρ∗V×d ) ≃ RMap(ρ!S,V×d ).

Compute ρ!S.
RMap(ρ!S,V×d ) ≃ RMap(ι∗ρ!S, ι∗V×d ). (C∞ Kister–Mazur)
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How to compute ρ!S?

Notation:

FEmbCartd : Objects DU = (Rd × U → U), morphisms:
fiberwise open embeddings.

FEmbCartd : Objects DU , space of morphisms.

ρ: FEmbCartd → FEmbCartd : inclusion.

ρ!:Sh(FEmbCartd)→ Sh(FEmbCartd): left Kan extension.

Computation:

ρ!S = ρ! hocolimDU→S Y (DU) = hocolimDU→S Y (DU).

Evaluate on DW :

(ρ!S)(DW ) = hocolim
DU→S

FEmbCartd(DW ,DU).

FEmbCartd(DW ,DU) is 1-truncated. Ob: φ: DW → DU .
Mor γ:φ→ φ′: isotopy classes of isotopies from φ to φ′

(form a Z-torsor).
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How to compute ρ!S?

ρ!S = ρ! hocolimDU→S Y (DU) = hocolimDU→S Y (DU).

Evaluate on DW :

(ρ!S)(DW ) = hocolim
DU→S

FEmbCartd(DW ,DU).

FEmbCartd(DW ,DU) is 1-truncated. Ob: φ: DW → DU .
Mor γ:φ→ φ′: isotopy classes of isotopies from φ to φ′

(form a Z-torsor).

Thomason’s theorem: hocolim computed as the Grothendieck
construction F . Ob: DW

φ→ DU
g→ S. Mor (φ, g)→ (φ′, g ′):

β: DU → DU′ : g = g ′β, γ:βφ→ φ′.

DW
φ
//

φ′

γ

""

DU
g
//

β
��

S

DU′

g ′

>>
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How to compute ρ!S?

FEmbCartd(DW ,DU) is 1-truncated. Ob: φ: DW → DU .
Mor γ:φ→ φ′: isotopy classes of isotopies from φ to φ′

(form a Z-torsor).

Thomason’s theorem: hocolim computed as the Grothendieck
construction F . Ob: DW

φ→ DU
g→ S. Mor (φ, g)→ (φ′, g ′):

β: DU → DU′ : g = g ′β, γ:βφ→ φ′.

DW
φ
//

φ′

γ

""

DU
g
//

β
��

S

DU′

g ′

>>

BC∞(W ,R2 ⋊ C̃onf(2)). Ob: germ of DW around 0. Mor:
displacement + automorphism of a germ.
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How to compute ρ!S?

Thomason’s theorem: hocolim computed as the Grothendieck
construction F . Ob: DW

φ→ DU
g→ S. Mor (φ, g)→ (φ′, g ′):

β: DU → DU′ : g = g ′β, γ:βφ→ φ′.

DW
φ
//

φ′

γ

""

DU
g
//

β
��

S

DU′

g ′

>>

BC∞(W ,R2 ⋊ C̃onf(2)). Ob: germ of DW around 0. Mor:
displacement + automorphism of a germ.

Projection functor π:F → BC∞(W ,R2 ⋊ C̃onf(2)).

(φ, g) 7→ germ of DW around 0.

(β, γ) 7→ B:W → R2 ⋊ C̃onf(2)
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How to compute ρ!S?

Grothendieck construction F :

DW
φ
//

φ′

γ

""

DU
g
//

β
��

S

DU′

g ′

>>

BC∞(W ,R2 ⋊ C̃onf(2)). Ob: germ of DW around 0. Mor:
displacement + automorphism of a germ.

Projection functor π:F → BC∞(W ,R2 ⋊ C̃onf(2)).

(φ, g) 7→ germ of DW around 0.

(β, γ) 7→ B:W → R2 ⋊ C̃onf(2)
(φ′)−1γ is an isotopy class of isotopies (φ′)−1βφ→ idDW

.
W → R2: the displacement of the origin.

W → C̃onf(2): the germ of embedding + winding number.
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How to compute ρ!S?

Grothendieck construction F :

DW
φ
//

φ′

γ

""

DU
g
//

β
��

S

DU′

g ′

>>

BC∞(W ,R2 ⋊ C̃onf(2)). Ob: germ of DW around 0. Mor:
displacement + automorphism of a germ.

Projection functor π:F → BC∞(W ,R2 ⋊ C̃onf(2)).
(φ, g) 7→ germ of DW around 0.

(β, γ) 7→ B:W → R2 ⋊ C̃onf(2)
(φ′)−1γ is an isotopy class of isotopies (φ′)−1βφ→ idDW

.
W → R2: the displacement of the origin.

W → C̃onf(2): the germ of embedding + winding number.

Quillen’s Theorem A: ∗/π is a directed poset =⇒ weakly
contractible nerve
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How to compute ρ!S?

BC∞(W ,R2 ⋊ C̃onf(2)). Ob: germ of DW around 0. Mor:
displacement + automorphism of a germ.

Projection functor π:F → BC∞(W ,R2 ⋊ C̃onf(2)).

(φ, g) 7→ germ of DW around 0.

(β, γ) 7→ B:W → R2 ⋊ C̃onf(2)
(φ′)−1γ is an isotopy class of isotopies (φ′)−1βφ→ idDW

.
W → R2: the displacement of the origin.

W → C̃onf(2): the germ of embedding + winding number.

Quillen’s Theorem A: ∗/π is a directed poset =⇒ weakly
contractible nerve

Theorem: (ρ!S)(DW ) ≃ BC∞(W ,R2 ⋊ C̃onf(2)).
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How to compute ρ!S?

BC∞(W ,R2 ⋊ C̃onf(2)). Ob: germ of DW around 0. Mor:
displacement + automorphism of a germ.

Projection functor π:F → BC∞(W ,R2 ⋊ C̃onf(2)).

(φ, g) 7→ germ of DW around 0.

(β, γ) 7→ B:W → R2 ⋊ C̃onf(2)
(φ′)−1γ is an isotopy class of isotopies (φ′)−1βφ→ idDW

.
W → R2: the displacement of the origin.

W → C̃onf(2): the germ of embedding + winding number.

Quillen’s Theorem A: ∗/π is a directed poset =⇒ weakly
contractible nerve

Theorem: (ρ!S)(DW ) ≃ BC∞(W ,R2 ⋊ C̃onf(2)).

Theorem: RMap(S,V×d ) ≃ RMap(B(R2 ⋊ C̃onf(2)), ι∗V×d ).
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Applications (current)

Consequence of the GCH: smooth invertible FFTs are
classified by the smooth Madsen–Tillmann spectrum.
(Previous work: Galatius–Madsen–Tillmann–Weiss,
Bökstedt–Madsen, Schommer-Pries.)

The Stolz–Teichner conjecture: concordance classes of
extended FFTs have a classifying space. (Proof: Locality +
the smooth Oka principle (Berwick-Evans–Boavida de
Brito–P.).

Construction of power operations on the level of FFTs
(extending Barthel–Berwick-Evans–Stapleton).

(Grady) The Freed–Hopkins conjecture (Conjecture 8.37 in
Reflection positivity and invertible topological phases)
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Applications (ongoing)

Construction of prequantum FFTs from geometric/topological
data. Differential characteristic classes as FFTs.
(cf. Berthomieu 2008; Bunke–Schick 2010; Bunke 2010).

Atiyah–Singer index invariants (index, η-invariant,
determinant line, index gerbe) as a fully extended FFT
(cf. Bunke 2002; Hopkins–Singer 2002; Bunke–Schick 2007).

Quantization of functorial field theories. Examples: 2d
Yang–Mills.
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Example: the prequantum Chern–Simons theory (1)

Input data:

G : a Lie group;

S = B∇G (fiberwise principal G -bundles with connection);

V = B3U(1) (a single k-morphism for k < 3; 3-morphisms are
U(1) as a Lie group).

Output data: a fully extended 3-dimensional G -gauged FFT:

BordB∇G
3 → B3U(1).

Closed 3-manifold M 7→ the Chern–Simons action of M;

Closed 2-manifold B 7→ the prequantum line bundle of B;

Closed 1-manifold C 7→ the Wess–Zumino–Witten gerbe
(B-field) of C (Carey–Johnson–Murray–Stevenson–Wang);

Point 7→ the Chern–Simons 2-gerbe (Waldorf).
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Example: the prequantum Chern–Simons theory (2)

Step 1 Compute V×3 = (B3U(1))×3 .

Step 1a W is the fiberwise Deligne complex of T → U:

W (T → U) = Ω3 ← Ω2 ← Ω1 ← C∞(T ,U(1)).

Step 1b W → V×3 : a fiberwise 3-form ω on T → U
7→ framed FFT: 3-bordism B 7→ exp(

∫
B ω).

Step 1c The composition

W (T → U)→ V×3 (T → U)→ V×(U) = B3C∞
fconst(T ,U(1))

is a weak equivalence by the Poincaré lemma.

Step 2 Construct a point in

RMap(B∇G ,W )

= RMap(Ω1(−, g)//C∞(−,G ),B3C∞
fconst(−,U(1))).

(Brylinski–McLaughlin 1996, Fiorenza–Sati–Schreiber 2013)

Step 2′ Even better: can compute the whole space RMap(B∇G ,W ).
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Example: the prequantum Chern–Simons theory (2)

Step 1 Result: V×3 = (B3U(1))×3 = B3C∞
fconst(−,U(1)).

Step 2 Construct a point in

RMap(B∇G ,W )

= RMap(Ω1(−, g)//C∞(−,G ),B3C∞
fconst(−,U(1))).

(Brylinski–McLaughlin 1996, Fiorenza–Sati–Schreiber 2013)

Step 2′ Even better: can compute the whole space RMap(B∇G ,W ).

40/40 24/25



Quantization of functorial field theories

X : the prequantum geometric structure
Y : the quantum geometric structure (e.g., a point)

FFTd ,V(X )
GCH
≃

//

∫
��

RMap(X ,V×d )

Q
��

FFTd ,V(Y )
GCH

≃ // RMap(Y ,V×d )

d = 1: recover the Spinc geometric quantization when X is a
smooth manifold, Y = Riem1|1, V = Fredholm complexes.
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