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. A 0. Introduction . 

Two rings are said to be Morita equivalent if their categories of left modules are 
i equivalent [26, 2, 6]. This provides a useful equivalence relation on rings which is 
3 considerably coarser than that of isomorphism. In this paper we study the corre- 

: sponding notion of Morita equivalence for C*-algebras and W*-algebras, where as 

their categories of left modules we take their categories of non-degenerate *-repre- 

i sentations on Hilbert spaces (normal ones in the case of W*-algebras). 

In the algebraic case, Morita’s basic theorem concerning Morita equivalence 
’ : [26, 2, 6] gives a description of how two rings which are Morita equivalent are con- 

: : structed from each other, namely that each must be the full endomorphism ring of 

! an appropriate type of module over the other. The main theorem of the present 

| paper (Theorem 7.9) is an analogous description of how two C*-algebras or W *-algebras 
i which are Morita equivalent are constructed from each other. Specifically, if M and N 

are W* algebras, then we show that M and N are Morita equivalent if and only if each 

is the full algebra of “bounded” operators on a non-commutative analogue over the 
other of the “C™-modules” which Kaplansky [21] defined over commutative 
C*-algebras. 

: An important step in studying algebraic Morita equivalence is the study of func- 

i tors between categories of modules which preserve certain categorical limits of the 

d type which any equivalence must preserve. The basic theorem concerning such func- 

{ tors is the Eilenberg—Watts theorem [11, 38, 2] asserting that any such functor is 
equivalent to a functor consisting of taking tensor products with a bimodule. Simi- 

J larly, a substantial portion of the present paper is devoted to studying functors be- 

1 tween categories of modules over C*-algebras and W*-algebras and obtaining an 
b analogue of the Eilenberg—Watts theorem (Theorem 5.5). This analogue states that 

| any such functor which is continuous in a certain sense is equivalent to a functor 

consisting of forming a certain type of topological tensor product with one of the 

: non-commutative analogues mentioned above of Kaplansky’s “C*-modules”. This 

: topological tensor product is essentially just the inducing process which was studied
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in [30] for C*-algebras, where it was shown that the formation of Mackey’s induced | 1. Modules over operator algebras 
representations [23] is just a special case of this process, and that Mackey’s imprimi- Let B be a C*-algebra (possibly without identit clement). By a (lot) Hermitian 

Ee te car hr oss without ony lm) By (e)Hermtar 
work, and the results on functors obtained here will be useful in further study of in- | ation 8 [8] with ne Toosponding action op we will noually use pnodule nota: 
duced representations. tion w en working with Hermitian modules. and Ware Hermitian B-modules, 

Since Morita equivalence is an equivalence relation on C*-algebras or W* algebras then wel denote 0 Homg(¥, Ww) he Banach space (with the operator norm) of 
which is considerably coarser than that of isomorphism, it will be a useful tool in | oo " ) botecen ho momorP . om oy eso NG as ihe intertwining a ; i i rators betw e representations on Van . For convenience we wi studying various aspects of these algebras, such as their classification, although such Pp GN p ion va ent Je wil 
a study is not included here. The purpose of this paper is to lay the basic groundwork os Formiti Bomduls e ) on apace . am Son a ee Con fin 
for the theory. Much work remains to be done in obtaining detailed understanding Homo (V. ¥) i a Sa ee een hon £1 jective ford Joh in 
of Morita equivalence for special classes of algebras. B\V, “me , 1 llec 

This paper is organized in the following way. Section 1 contains basic fects con i omitian ipa sogether th the oy Hoe oo intertwining operators 
cerning modules over C" -algebras and W™ -algebras. In particular, modules whic are | tor > oe cater 10 [251) Tots cata , Ly Sonor in ormation sou 

generators for the corresponding categories are studied, as these provide 2 tool which | ( ig ) pa T el reader . s category w princip a. - - ; sores o : . ects studied in this paper. is important in later sections. In Section 2, catégories of modules over C algebras J 2 a 

and W*-algebras are studied. In particular, the question of how much information | How - N be 2 algebra [7,32]. (ve oe the er w gers” for the algebras 

about an algebra can be recovered from its category of modules is considered, and Wha a i y, W. | e e resene e poi von cumant 5 , or 
this question is seen to be closely related to Takesaki’s duality theorem " the repre: | By : io v : ot ars ee zee frie ho : race on on specific oe ort spaces.) 
sentation theory of C*-algebras [33, 3], as well as a number of other results in the : - mor- 
literature. General methods for constructing functors between categories of modules | phism [7] of ao the ech of all bounded, operators on which caries fhe iden 
over C*-algebras are described in Section 3. These methods generalize the inducing | ae Teal ° le wo ; entation) By on ¢ oe ae “! i, ah in | 2] efini- 
process in [30]. Properties of these functors are studied in Section 4. In Section 5, | Hither . o en [ep © eons.) | ve the moaue we will mean the 
similar results for modules over W “algebras are considered, and the existence part As wih pe ot hd at Tesp ne 8 ° . 
of our analogue of the Eilenberg—Watts theorem is proved. Section 6 is devoted to iS Nr ge o - w Jo pe t Co presentation N o zero: imen- 
the uniqueness part of our analogue of the Eilenberg—Watts theorem. This involves | ey " I " i" a oe i Ngati me os 0 souee, 
the self-dual modules introduced by Paschke [27] asa Ee Tot © the non- | re py i de oy ro “5 y X ca ot or oe Ne are y 

commutative case of the “AW -modules” defined by Kaplansky [21] over commu- - » wv (V, | 

tative 4 W"-algebras. Morita equivalence is studied in Section 7, and: the main theorem | odule homomorphisms from F'to J This notation i compatible with at giver, 
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true however as there are many W *-algebras whose category of normal modules is | : Homy(V, W) is a group (under addition) and since the functor represented by U is 
not isomorphic to the category of Hermitian modules over any C"-algebra. For ex- clearly additive, it suffices to show that no non-zero element of Hom(V, W) is carried 
ample, a category of Hermitian modules will always contain simple modules, that is, to the zero map by this functor, that is, that given f € Homy (V, W) with f #0 
irreducible representations, whereas this need not be true for a category of normal there exists g € Homy (U, V) with f° g # 0. But, given such anf let V' be the “ortho- 
modules. For these reasons we will make many of our later definitions only for cate- gonal complement of the kernel of £ Then V' is a non-zero submodule of V and fis 
gories of normal modules. These definitions will then have immediate specializations | injective on V'. Since we are assuming condition (4) to hold, V' is isomorphic to a 
to categories of Hermitian modules. i direct sum of copies of non-zero submodules of U. Then f composed with the pro- 

Let {V;} be a family of normal N-modules. Then the direct sum of this family, | jection of U onto any of these submodules must be non-zero as desired. 
denoted by © V;, is defined to be the Hilbert space direct sum of the V; together It is clear that (3)-and (4) are equivalent. Finally, to show that (2) implies (4) we 
with the obvious coordinate-wise action of NV. (To show that this action is well-de- need the following lemma, which we state for C*-algebras, since it will be useful in 
fined it is necessary to use the fact that *-representations are norm-decreasing — see | that form later. 

the comments after Theorem 2.11 of [29].) It is easily verified that © V; is a normal | 
N-module. A bit of care must be taken in using direct sums of normal modules since 1.2. Lemma on polar decomposition. Let C be a C*-algebra, let V and W be 
these direct sums do not satisfy ‘the usual universal property for algebraic direct sums | Hermitian C-modules, and let f € Hom(V, W). Then f=p ) fl, where | f= (f* 1)? 
[25] if there is an infinite number of summands, but rather satisfy this universal | (so | f1€ Homp(V, V)) and p is a partial isometry in Home (V, W) from the ortho- 
property only for families of homomorphisms whose family of operator norms is | gonal complement of the kernel of | f| to the closure of the range of If. 
square-summable. The definition of direct sums of Hermitian modules follows from | 

that for normal modules. Categories of normal modules have the pleasant property Proof. Let X be the Hermitian C-module ¥ ® W, and define f€ Homp(X, X) by 
that every submodule ofa normal module is a direct summand, the complementary | fv, w)= (0, f(u)). Then it is easily verified that the usual polar decomposition for 
submodule being, of course, just its orthogonal complement. i operators ([32, Theorem 1.12] or {7, Appendix II1]) when applied to f yield this 

We now investigate the subject of generators in categories of modules. These will | lemma. OJ 

be an important tool later in our study of functors. In general category theory, an | 

object U is a generator [17, p.68] if the functor represented by U, namely We return to the proof of Proposition 1.1. Let V be a non-zero normal N-module. 
V = Hom(U, V), is an embedding into the category of sets, that is, is injective on Since we are assuming (2) to hold, we can find a non-zero f € Homy (U,V). Then 
spaces of morphisms. The next proposition gives other characterizations of generators ! from Lemma 1.2 applied to f there is & non-zero partial isometry pin Hom U,V). 
in categories of normal modules, and in fact for much of this paper it will be quite | Thus ¥ contains a non-zero submodule isomorphic to a submodule of U. If this sub- 
sufficient to take properties (3) or (4) below as the definition of a generator. module of Vis not all of V, then its orthogonal complement is a non-zero submodule 

» . ] to which we can apply (2) and the above argument. The result now follows by an : 
1.1. Proposition. Let N be a W "-aigebra and let U € Normod-N. Then the following | application of Zorn’s lemma. 0 
conditions are equivalent: : 

(1) U is a generator for Normod-N. : I The four equivalent conditions of Proposition 1.1 are all stated in category-theo- 
(2) For any non-zero normal N-module V there is a non-zero element of i retic terms, and so apply immediately to the category of Hermitian modules over a 

Homy (U, V). Co | C*-algebra. We now give a criterion for a module to be a generator in a category of 
(3) Every normal N-module is isomorphic to a submodule of a (possibly infinite) i normal modules which is not category theoretic, and which is false for C*-algebras. 

direct sum of copies of U. | This criterion, which will be important later, follows readily from well-known facts 
(4) Every normal N-module is a (possibly infinite) direct sum of copies of sub- | concerning von Neumann algebras, but these facts, unlike those used in the proof of 

modules of U. : Proposition 1.1 above, are not entirely elementary. 

Proof. We indicate why (1) implies (2). Let V be a non-zero normal N-module, so | 1.3. Proposition. Let N be a W*-algebra and let U be a normal N-module. Then U is 
that Hom, (V, V) contains non-zero elements. Since U is assumed to be a generator, | a generator for Normod-N if and only if the representation of N on U is faithful 

+ so that the functor represented by U is an embedding, it is easily seen to follow that ! (that is, injective). - 
Homy/(U, V) must contain non-zero elements as desired. ~~. i» : 

We show next that (4) implies (1). ket V and W be normal N-modules. Since | . a o
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Proof. Suppose that U is a generator, and let Vy be the kernel of the corresponding ‘ 1.6. Proposition. Let B be a C*-algebra, and let U be any generator for Hermod-B. 

normal homomorphism of NV into the algebra of bounded operators on U. Then NV; | Then the weak operator closure of the image of B as operators on U is isomorphic 

will be in the kernel of any representation on a submodule of a direct sum of copies to the enveloping W*-algebra n(B) of B. 

of U, and so in the kernel of any representation of N on any member of Normod-/. i iE 

But any W *-algebra has a faithful normal module {32, Theorem 1.16.7], and so ‘ Proof. This is an immediate consequence of the above results and {8, 5.3.13]. © 

Ny = {0}. Thus the representation of N on U is faithful. . 

Conversely, suppose that the representation of NV on U is faithful, and let A number of well-known results concerning spatial isomorphisms of von Neumann 

V € Normod-N. Then on examining [7, Theorem 3, p.53] we see that Vis obtained | algebras can be given pleasant reformulation in terms of generators. For example, 

by first taking an “ampliation”, that is, a direct sum of copies of U, then an “induc- the following is a reformulation of 7, ch. III §1, Theorem 3}: 

tion”, that is, a submodule of this direct sum, and then taking an isomorphism of | : : 

this submodule with ¥. Thus condition (3) of Proposition 1.1 holds. And so this 1.7. Proposition. Let N be a W *-algebra and let U and Uy be generators for Normod-/V. 

half of our proposition can be viewed as simply a reformulation of the indicated If each of U and Uy have both a separating and a cyclic vector, then U and Uy are iso- 

theorem in [7]. O | morphic." 

We now justify the comment made above that for C*-algebras the property of a | Among standard results in [7, ch. III] which can be reformulated in a similar way 

representation being faithful is not categorical, by giving an example of two are Theorem 6 of § 1, Proposition 10 of § 6 and Corollary 7 of §8. 

C*-algebras which have isomorphic categories of Hermitian modules for which the | : 

isomorphism does not preserve faithfulness. | 

‘ 2. Categories of modules over operator algebras : 

1.4. Example. Let 4 = cy, the C*-algebra of sequences of complex numbers which : : : 

converge to zero, and let B be the C*-algebra of sequences {r, } of complex numbers The main theme of this section is to discover how much information about a 

having the property that lim r,, = r,. Both algebras can be viewed as subalgebras of C* algebra or W*-algebra can be recovered from knowing just its category of 

the W*-algebra I_ of bounded sequences. In fact, it is easily seen that the dual of Hermitian or normal modules. We do this not only because of the intrinsic interest - 

each algebra is /;, so that the double dual enveloping W*-algebra of each algebra is of this question, but also because it leads to techniques which will be important in 

just I. Thus the two algebras have isomorphic categories of Hermitian modules, each later sections. 

isomorphic to Normod-/_. But let ¥ be the subspace of /, consisting of sequences | We recall from [2, p.56] that the center of a category is defined to be the collec- 

having zero as first term. Then V is faithful as a B-module but not as an A-module. tion of natural transformations from the identity functor on the category to itself. 

Actually, generators in the category of normal N-modules or Hermitian B-modules | The following proposition is an analogue of [2, Proposition 2.1, p. 56]. 

have already played an important role in representation theory, although they have : 

not been called generators. For any C*-algebra B its “universal” representation ([8, | 2.1. Proposition. Let N be a W*-algebra. Then the center of Normod-N is an algebra 

2.7.6] or [32, 1.16.5]) is easily seen. to be a generator for Hermod-B, while for any | which is isomorphic with the center of N. 

W*-algebra N its universal normal representation will be a generator for Normod-N. : : 

(In particular, generators always exist.) But other generators may be useful. For ex- | Proof. Any element c of the center of NV is easily seen to define a natural transforma- 

ample, if B is a type I C*-algebra [8, 5.4], then the multiplicity free representation ! tion #€ of the identity functor to itself by tS (v)=cvforveVe Normod-N. It is 

quasi-equivalent [8, 5.3.2] to the universal representation of B will be a generator. also easily seen that the natural transformations form an algebra. 

The enveloping W*-algebra of a C*-algebra is usually defined using the universal Conversely, suppose that ¢ is a natural transformation from the identity functor 

representation, but the next two results show that any generator would do. | to itself. Let U be a generator for Normod-V. Then by definition ty; € Hom (U, U), 

| and-also must commute with all the elements of Homy(U, U), that is, is in the center 

1.5. Proposition. Any two generators for Hermod-B (or Normod-NV) are quasi-equiv- of Hom (U, U). Since we are assuming that Vis a W*-algebra and that:it is faithfully 

alent. Any module quasi-equivalent to a generator is a generator. Thus the generators | represented on U (Proposition 1.3), it follows from the von Neumann double com- 

form an equivalence class under the relation of quasi-equivalence. : mutant theorem [7, p.41] that £7; corresponds to an element ¢ in the center of V. It 

| is then clear that ¢ acts like ¢ on direct sums of copies of U and on submodules thereof, 

Proof. This is an immediate consequence of [8, 5.3.1(i)] together with Proposition 1.1 | and so on any element of Normod-N. O : 

above. [J 

:
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2.2. Corollary. Let B be a C*-algebra. Then the center of Hermod-B is isomorphic to | We can never actually recover a C*-algebra or W*-algebra just from its category of 

the center of n(B). L modules — in fact that is what makes Morita equivalence interesting. However, if 

: there is yet additional structure present, then it may be possible to recover the algebra. 

2.3. Corollary. Let N be a W*-algebra. Then N is a factor if and only if the center of : We now consider one example of this. For any W*-algebra N let H v (or just # when 
Normod-N is one-dimensional. : : there is no chance of confusion) denote the forgetful functor from Normod-V to the 

| category of Hilbert spaces and bounded linear maps which assigns to every normal 
For any W™*-algebra NV the category Normod-V has an additional piece of struc- N-module its underlying Hilbert space: The next theorem shows that we can recover 

ture which will be of importance, namely the involution which assigns to each | NN from the data consisting of Normod-V together with this forgetful functor. This 

f€Homy(V, W) its adjoint f* € Hom (W, V). The following proposition is not fact and its proof are just a slight generalization of a result (see Corollary 2.7 below) 
surprising in view of the self-duality of Hilbert spaces. discovered by John E. Roberts in the course of his work on mathematical physics, 

i where similar considerations are at play. (For a hint of this see the footnote on [9, 

2.4. Proposition. Let N be a W*-algebra. Then the contravariant functor from | p.217] and [10, Theorem 3.6].) I would like to thank him for showing me this result 

Normod-N to itself which is the identity on objects and carries each morphism f to | and for several very enlightening conversations concerning the general subject. 

its adjoint f* establishes a (conjugate linear) isomorphism of Normod-N with its ! 

dual category. | 2.6. Theorem. Let N be a W*-algebra, and let H be the forgetful functor from 
. Normod-N to the category of Hilbert spaces. Then the collection C of natural trans- 

The proof of this proposition is trivial. The definition of a dual category can be formations from H to itself can be given in a natural way the structure of a W*-algebra, 

found on [25, p.33]. and this W*-algebra is naturally isomorphic to N. 
There is yet additional structure on Normod-V which will be of importance. We | 

have already mentioned the fact that each space Homp(V, W) is equipped with the | Proof. Let £ € C. Then ¢ assigns to any ¥ € Normod-N a bounded linear operator ty 

operator norm, with respect to which it is a Banach space. In addition, Homp(V, ¥) ! on H(V). If scalar multiples, sums, products and adjoints of elements of C are defined 

is not only a C*-algebra for the operator norm and involution, but is in fact a von | in terms of the corresponding operations on the associated operators, it is easily seen 
Neumann algebra, and so can be equipped with the ultra-weak operator topology. that C becomes a *-algebra. A norm can be defined on C by 

(Indeed, Hom, (V, W) can also be equipped with an ultra-weak operator topology, Iel=sup (It, 1: VE Normod-N} 

as we will see in the next section.) In terms of this structure we can tell whether a } Vv ) 

W*-algebra is of type I, Il or III in terms of its category of normal modules. | It is easily verified that this norm is finite, is a C*-algebra norm, and that Cis com- 
i plete for this norm, so that C becomes a C*-algebra. An analogue of the ultra-weak 

2.5. Proposition. Let N be a W*-algebra. Then N is of pure type 1 (respectively type | operator topology can be defined by means of the linear functionals Pvuw defined 

11, or type I) if and only if for every non-zero V € Normod-N the von Neumann | for V € Normod-N, v,w € H(V) by 
algebra Homp(V, V) is of pure type I (respectively type 11, or type III). Py = ty, w), - 

Proof. From the definition of the type of a W* algebra [32, 2.2.9] it is easily seen | and it is easily verified that C becomes a W *-algebra for this topology. 

that any sub-W *-algebra of N will have the same type as N. But the image Ny, of N | For any n € NV we define a natural transformation #? from H to itself by 
acting on ¥ will be a W*-subalgebra of NV (as is easily seen from [32, 1.10.1, 1.16.2), : ("v= : 

and so of the same type as NV. But Homp(¥, V) is just the commutant of Ny, and | 4 

so is also of the same type [32,2.9.6]. 0 . | for v€ H(V), V € Normod-N. It is easily verified that the correspondence n ~ #7 is 
: an isometric *-homomorphism of NV into C. We indicate now why this homomorphism 

On the other hand, we shall see later (Corollary 8.13) that all type I, factors for | is surjective. Let £ €C, and let U be a generator for Normod-N. Then A is faithfully 

different values of n have equivalent categories of modules, so that they cannot be represented on U (Proposition 1.3) and Hom (U, U) is just the commutant of N 

distinguished by their categories. We shall also see that every type II factor has as- | acting on U. Now by the definition of a natural transformation #;; must commute 

sociated with it at least one type II; factor having an equivalent category of normal with every element of Hom (U, U). It follows from the von Neumann double com- 

modules, and conversely, so that one cannot tell whether a factor is of type II or mutant theorem [7, p.41] that there is an n € N such that n and ty coincide as 

. II; in terms of its category of normal modules. | operators on U, It follows by arguments similar to those at the end of the proof of
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| The above considerations are also ve “bi i 
- Lo ! ry closely related to the “big group algebra Proposition 2.1 that ty and n must coincide as operators ° n H( V) for every £ of Ernest [12, 13, 14], and to the enveloping dgebs of a covariant speters intro. V’€Normod-N, that is, that # = #". Finally, it is easily verified that the analogue o duced by Ernest in [15]. In all these papers the “options” employed can be reinter- the ultra-weak operator topology on C defined above corresponds to the weak preted to be natural transformations of a forgetful functor to itself. topology of N. OI : | As John E. Roberts also pointed out to me, the Tannaka duality theorem can be . : ) . CL. | reinterpreted in a similar way, where the “Darstellungen der Dualhalbgruppe” of We notice from the above that the morphisms in Normod-V form a generalization | [36], or the “representations” of [5, Definition 2, p.196] or the “operations” on 

of the commutant of N, while the natural transformations of the forgetful functor [20, p. 75] can all be viewed as natural transformations of the forgetful functor. - are like the double commutant of NV. | Undoubtedly the “operator fields” of [37] can be interpreted in a similar way, as 
| can the maps J of [14, Remark 3.14]. Extension of these duality theorems to covari- 2.7. Corollary (John E. Roberts). Let B be a ¢ algebra and let H be the f orgetft ul | ance algebras can be found in [16, Section 6]. Such generalizations of Tannaka’s functor from Hermod-B to the category of Hilbert spaces. Then the collection C of | theorem seem to be more in the spirit of Tannaka’s original theorem than those natural transformations fr on H to itself can be given in a natural way Ihe Structure which involve Hopf algebras [22, 14, 34]. I also suspect that the above ideas are re- of a W-algebra, and this W algebra is naturally isomorphic to the W*-enveloping | lated to the work of Saavedra Rivano [31], but the situation here is not at all clear algebra n(B) of B. to me. 

| Since non-isomorphic C*-algebras can have isomorphic enveloping W *-algebras As T. Cartier pointed out to me, the above results are closely related tothe (Example 1.4), one would not hope, in view of Corollary 2.7, to be able to recover Yoneda Lemma [25, p.61], but the Yoneda Lemma is not applicable since the forget- a C-algebra from the data consisting of its category of Hermitian modules together ful functor is not representable. } . with the forgetful functor. However, one can imagine that if additional structure is The above corollary is closely related to results of Takesaki [33] and Bichteler | | added (probably of a topological nature), then one could recover the C*-algebra it- [3], and in fact categories provide a more natural setting for their results. Specifically, self. But it is not clear to me how to do this. Here we will content ourselves with 
if Bis a C-algebra and if K is a Hilbert space, then the set Rep (B, K) of rep resenta- reformulating in terms of categories the further results of Takesaki and Bichteler, in tions of B on subspaces of K can be viewed as a category if the corresponding inter- which they consider a topology on Rep (8, K). (It is not clear to me how to put a 
twining operators are adjoined. It is, of course, a full subcategory of Hermod-B. The | similarly useful topology on Hermod-B.) ’ 
forgetful functor on Rep(B, K) has as its values on objects just subspaces of K. Then bo Let B be a C*-algebra, and let K be an infinite-dimensional Hilbert space of dimen- 
the “admissible operator fields” of [33] and [3] are easily seen to correspond just | sion large enough so that every cyclic representation of B can be realized on a sub- to natural transformations of this forgetful functor to itself. For example, it is {3, | space of K. Asin [33] and [3] we put on the objects of the category Rep(B, K) a 
condition (iv), p.94] which corresponds to the requirement that a natural transforma- | topology, which in [18] is called the strong topology, but which we will call the 
tion must commute with morphisms. This is seen by using the following slight gener- | strong Fell topology. Specifically, any clement of Rep (3, K) whose underlying 
alization of [7, Proposition 3, p. 4]; Hilbert space is J < K can be put in correspondence with the homomorphism from 

B to the algebra of bounded operators on J which defines the corresponding repre- 
2.8. Proposition. Let B be a C" algebra, and let We Hermod- B. Then any | sentation of B. But every operator on J can be viewed as an operator on XK by de- 
f &€ Homp(V, W)is a linear combination of two partial isometries in Homp(V, W). | fining it to be zero on the orthogonal complement of J. Thus the objects of Rep(B, K) 

. Lo . : are in bijective correspondence with the *-homomorphisms of B into the algebra Proof. According to Lemma 1.2 above, f=p £1, where p is a partial isometry mn | L(K) of bounded operators on K which define (possibly degenerate) *-representations Homp(V, W) and I f1 is a positive element of Homp(V, "- But by [7, Proposition 3, of B on K. In this way the objects of Rep(B, K) correspond to certain functions p-4], If lis a linear combination of two unitary operators in Homg(V, V). O | from B to L(K), and so if we equip L(K) with the strong operator topology, we can 
oo Co equip Rep (B, K) with the corresponding topology of pointwise convergence of func- Making the correspondence indicated above between admissible operator fields tions. It is this topology which we call the stron g Fell topology. (As the lemma on 

and natural transformations of the forgetful functor, we see that [33, Theorem 2] | [3, p-90] shows, we could just as well have used the weak, ultra-weak or ultra-strong is just Corollary 2.7 above but with Hermod-B replaced by Rep (8, K). The proof | operator topologies on L(K).) 
is almost the same except that XK may not be large enough to be the space of a gener: | We would now like to define what we mean by saying that a natural transforma- ator for Hermod-B, and so one must work instead with a generating family of disjoint i tion of the forgetful functor from Rep(B, K) to the ca tegory of Hilbert spaces is 
elements of Rep(B, K). But this causes no difficulties. |
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continuous. For this purpose let Sub(K) denote the category whose objects consist 3.1. Definition. Let B.be a C™-algebra. By a (right) pre-B-rigged space we mean a of the subspace of K and whose morphisms consist of the bounded operators be- : vector space, X, over the complex numbers on which B acts by means of linear trans- tween these subspaces. The forgetful functor H is a functor from Rep(B, K) to | formations in such a way that X is a right B-module (in the algebraic sense), and on Sub(K), and a natural transformation from H to itself will be a map from the objects P which there is defined a B-valued pre-inner-product, that is, a B-valued sesquilinear of Rep(B, K) to morphisms in Sub(K). Thus we need a topology on the set of mor- form (, )p conjugate linear in the first variable, such that phisms of Sub(K). Now any morphism in Sub(X) can be viewed as a bounded opera- y D(x, Xp >0forallx €X, 
tor on K by defining it to be zero on the orthogonal complement of its domain. We : (2) (x, »g)* =(y, x)g forall x,y EX, 
obtain in this way a mapping from the set of morphisms of Sub(K) onto L(K), and | and having the further property that 
we equip the morphisms of Sub(K) with the pre-image under this mapping of the (3) <x, yb)g =(x, y)gb forallx,y €X, b €B. 

+ strong operator topology on L(K). Note that the resulting topology on the morphisms | 
will not be Hausdorff. (As in the theorem on [3, p. 97] we could just as well use the It is easily seen that if we factor a pre-B-rigged space by the subspace of the ele- weak, ultra-weak or ultra-strong operator topologies on L(K).) ments x for which (x, x) = 0, the quotient becomes in a natural way a pre-B-rigged 

space having the additional property that its inner product is definite, that is, 2.9. Definition. Let H be the forgetful functor from Rep(B, K) to Sub(K). A natural (x, x 35 > 0 for all non-zero x in X. On a pre-B-rigged space with definite inner transformation from H to itself will be said to be continuous if it is continuous as a | . product we can define a norm | Il by setting 
function from the set of objects of Rep(B, K) equipped with the strong Fell topology | lx = lle, xy. [12 
to the set of morphisms of Sub(K) equipped with the topology defined above. | G2) x A= x, xp 

( for x € X. (See [30, Proposition 2.10] for the verification that this is indeed a norm.) The following is our reformulation of the main theorem of [33] and [3]: | From now on we will always view a pre-B-rigged space with definite inner product 
i as being equipped with this norm. Then the completion of X with respect to this 2.10. Theorem. Let B be a C algebra, and let K be a Hilbert space of infinite dimen- norm is easily seen to become again a pre-B-rigged space. (This matter is discussed sion large enough so that every cyclic representation of B can be realized on some ! around [27, 2.5].) 

subspace of K. Let H be the forgetful functor from Rep(B, K) to Sub(K), and let C 
be the collection of natural transformations from H to itself which are continuous in 3.3. Definition. Let B be a C*-algebra. By a B-rigged space we will mean a pre-B-rigged the sense of the above definition. Then C forms a C*-algebra which is in a natural i space, X, satisfying the following additional conditions: way isomorphic to B. | (1) If (x, x)5 = 0, thenx = 0, forall x €X, : 

; (2) X is complete for the norm defined in (3.2). 
This theorem can be proved by making trivial modifications of the proof given in 

£3], so we will not include a proof here. | Viewing a B-rigged space as a generalization of an ordinary Hilbert space, we can 
define what we mean by bounded operators on a B-rigged space, as was done in 

| [30, Definition 2.3] and following [27, 2.5]. That these two definitions are equiv- 3. Functors between categories of Hermitian modules alent is shown in {27, Theorem 2.8]. For completeness we include here a definition : : | of bounded operators which lumps together the definitions from {30} and [27]. Let A and B be C*-algebras. In this section we will study some general methods ; 
for constructing functors from Hermod-B to Hermod-A. | 3.4. Definition. Let X be a B-rigged space. By a bounded operator on X we mean a One general method for constructing functors from Hermod-B to Hermod-A was | linear operator, T, from X to itself which satisfies either of the equivalent conditions introduced in [30], in terms of what were called there Hermitian B-rigged A-modules (1) for some constant ky we have 
these being a generalization to the non-commutative case of the “C*-modules” which i | 
ee oo 1] introduced for commutative C*-algebras). For our present purposes (Tx, Tx) Skp(x, x ’p forallx ex; 
it will be useful to change slightly the definition of these objects (by no longer re- | (1) Tis continuous with respect to the norm on X: 
quiring the range of the B-valued inner product to span a dense submanifold of B, { and the condition 
and by requiring completeness).For this reason we will include the definitions here. | (2) there is a linear operator, 7, on X, satisfying conditions (1) and (1) above, Contrary to the case in [30], there seems to be no advantage here in considering | such that 
pre-C-algebras, so we make our definitions only for C*-algebras. | (Tx, yy = (x, Ty )y forallx,y EX. |
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It is easily seen that any bounded operator on a B-rigged space X will automati- | These inducing functors have some fairly nice properties. For example, they pre- 

cally commute with the action of B on X (because it has an adjoint). serve weak containment of representations, as can be seen by arguments similar to 

We will denote by L(X) (or Lg(X) if there is a chance of confusion) the set of all those in the proof of [30, Proposition 6.26], and they can be seen to preserve direct 

bounded operators on X. Then it is easily verified that with the operator norm L(X) integrals when sense can be made of this. 

is a C*-algebra ([30, Proposition 2.12] or comments after [27, 2.5]). We would now like to generalize the above construction to obtain a wider class of 

. | functors. As before, let A and B be C*-algebras, and now let n(B) be the W*-envel- 

3.5. Definition. Let 4 and B be C*-algebras. By a Hermitian B-rigged A-module we , oping algebra of B. Let D-be any C *.subalgebra of n(B), and let X be a Hermitian 

mean a B-rigged space, X, which is a left A-module by means of a x-homomorphism | D-rigged A-module. Then we can use X to define a functor from Hermod-B to 

of 4 into L(X), and which is non-degenerate as an A-module in the sense that AX ! Hermod-A as follows. For any V € Hermod-B, we can view ¥ as a normal n(B)-module 

is dense in X with respect to the norm on X. ] and we can then restrict the action to D, obtaining a (possibly degenerate) D-module 
We can then apply the construction described above using X to obtain an A-module 

This definition differs from [30, Definition 4.19] only in that we do not require which will be non-degenerate for the reason mentioned at the end of the next to 

here that the range of the B-valued inner product on X span a dense submanifold of last paragraph preceding 3.6. In this way we obtain a functor from Hermod-B to 

B. . Hermod-A. This process is slightly round-about, and we will see shortly that it can 

In [30, Section 5] it was shown how to use a Hermitian B-rigged A-module, X, | be given a neater formulation. But first we will consider some examples. 

to construct a functor from Hermod-B to Hermod-4. We recall the definition here. 

If V € Hermod-B, then we can form the algebraic tensor product X @p ¥, and equip it | 3.7. Example. Let 4 = B = C([0, 1]), the algebra of continuous functions on the 

with an ordinary pre-inner-product which is defined on elementary tensors by unit interval, The dual B' of B consists of the Borel measures on [0, 1], and so it is 

(x 0, x 80 )= (x, X50 vy. | rap ily of bounded Borel functions on [0, 1] can be viewed as a sub- 
| | | = . Let D be the subalgebra of bounded functions on [0, 1] which 

Completing the quotient of X* 8 V by the subspace of vectors of length zero, we have value zero except at a countable set of points, and let X =D. Let 4 and D act 

obtain an ordinary Hilbert space, on which 4 acts (by a(x © v)=ax ® v) togive a | on X by pointwise multiplication, and define a D-valued inner product on X by 

s-representation of A. We will denote the corresponding Hermitian 4-module by letting (x,  )p, be the pointwise product of y with the complex conjugate of x. Note 

AY (or AV if there is a chance of confusion concerning which Hermitian B-rigged that for x,y €D the element (x, y);, viewed as a linear functional on B', is zero on 

A-module is being used). The only difference between the situation here and that any purely continuous measure. Then it is easily seen that the functor determined 

in [30] is that, because we no longer require the range of the B-valued inner product | by X as described above will assign to every Hermitian B-module its atomic part, that 

on B to span a dense subset of B, we can no longer conclude that AY will not be the is, the sum of the irreducible modules which it contains. A similar construction can 

zero-dimensional A-module. In fact, it is easily seen that whenever the kernel of the | be carried out for any C*-algebra. This functor preserves neither weak containment 

representation of B on V contains the range of the B-valued inner product, then in- | nor direct integrals. 

deed AV will be the zero-dimensional A-module. However, as long as we consider 

the zero-dimensional A-module to be a non-degenerate A-module, we can still assert 3.8. Example. Let 4 = B = C([0, 1]) as above, and let x = C(]0, 1]) with the evident 

that 4 V will be a non-degenerate A-module for all ¥ € Hermod-B. Actually, it is pointwise action of A. Let D be the subalgebra of B” = n(B) which is the range of 

easily seen that if the above construction is applied even to a degenerate B-module, | the map p of C([0, 1]) into B” which assigns to each f € C([0, 1]) the linear function 

it will nevertheless produce a non-degenerate 4-module, because of the fact that p(f) on B' defined by | 

we are assuming that X is non-degenerate. This remark will be useful shortly. 

The above construction defines a functor if for ¥,W € Hermod-B and | p(f)(m)= | fdm,, 

f€ Homg(V, W) we define 4f € Hom, (AV, AW) on elementary tensors by 

Af(x ®v) =x ® fv). | where m,, is the continuous part of the measure m. Let D, viewed as C([0, 1]), act 
i on X in the evident pointwise way, and define a D-valued inner product on X by 

3.6. Definition. For any Hermitian B-module V the Hermitian A-module Ay will be | (Feo =p(F2) f x 

called the Hermitian A-module obtained by inducing V up to A via X. We will call 8p =p(Jg) for fg eX. 

the corresponding functor the inducing functor determined by X.
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Then it is easily seen that the functor determined by X assigns to every Hermitian | Then the corresponding functor will send all continuous modules to the zero module, 
B-module its continuous part, that is, the complement of its atomic part. A similar while it will permute the irreducible modules (and so the atomic modules) according 
construction can be carried out for any C*-algebra. | oa mn partiouar, such 2 fanctor nly measurable field of irreducible repre- 

—n= i let D be the | 

drs of ounted Bore uncon on 0,1), vowed 5s sobre of 15) 5 | 313. Example. Let 4 = 8 = C([0, 1]). Notice that the D's of Examples 3.9 and 3.12 
do cribed in Example 3.7. Let X be as in Example 3.7 with pointwise action of 4 are orthogonal subalgebras of n(B), so that the direct sum of these two algebras can 
iD Let YbeD with D-valued inner product defined in the usual way. It is easily be viewed in a natural way as a subalgebra of n(B). Let X be the direct sum of the 

coon that the functor determined by Y is naturally equivalent to the identity functor X’sfrom Examples 3.9 and 3.12. Then the corresponding functor carries each purely 
. imilar situation occurs in the paragraph before [30, Theorem 6.23]). continuous Hermitian module to an equivalent module, while it permutes the atomic 

on [ermod® ! v molar o Se Horestian Dorigeed ule in the obvious way. Then i representations according to the permutation g of Example 3.12. In particular, this 
the functor determined by Z doubles the atomic part of any Hermitian B-module | functor is an equivalence of Hermod-B with itself which need not preserve weak con- 
while keeping the continuous part fixed (up to equivalence). This functor preserves anment or rect integrals and can carry a measurable field of modules to a non- 

i t direct integrals. ) weak containment but not direct integ | We will now reformulate the above general construction in a way which is more 
= = legant but which is somewhat more difficult to work with in specific examples such = the B of Example 1.4 and let D =n(B) =1_. Let X be eleg p p 

- pr. ey eB hy fy acting by pointwise multiplication on X, and | as those given above. Specifically, let 4 and B be C *.algebras, D a subalgebra of 
th the obvious D valued inner product on X. Then it is easily seen that the functor n(B) and X a Hermitian D-rigged A-module. Then we can form the algebraic tensor wi - : , : i” determined by X is naturally equivalent to the identity functor. But this is also true | product X' ep, n(B) and define on it an n(B)-valued sesquilinear form by 

if we let X = D. Thus non-isomorphic Hermitian rigged modules, in our present gener- | (xen x'® "Vue) =x" x nn i) =n*(x, x' pn’ . e 

ls EP eter. oles ee oon re wimsonos | This is just a special case of the construction used in [30, Theorem 5.9] orin [27, see . . E] 
. ’, i, pa hich are used (see - Section 4], except that n(B) may be degenerate as a D-module. Nevertheless the » pe a6 further conditions on the Hermitian rigged modules which at sesquilinear form can be shown to be non-negative, either by imitating the proof ection ©). indicated for [30, Theorem 5.9] (and splitting the degenerate D-modules which 

3.11. Example. Let S and T be compact Hausdorff spaces. Let B= C (), A=C @. | occur into their non-degenerate part plus null part) or by using [27, Proposition 6.1]. 

and let b be the algebra of bounded Borel functions on > Bon] mutans “ 3.14. Proposition. Let A and B be C*-algebras, let D be a C “subalgebra of n(B) and of mB) - 5 ” he use Define an action of Aon X by | let X be a Hermitian D-rigged A-module. Let Y be the Hermitian n(B)-rigged mapping g rom ) A-module obtained by equipping X ®p, n(B) with the pre-inner-product defined above, r-E)=hg6) FE) by factoring by the elements of length zero, and completing. Then the functor Fy 
i, : . nitially defined on Hermod-n(B) but restricted to Normod-n(B) (which equals X becomes a Hermitian D-rigged A-module, and the nitia 

fork €4, re Ls ES Then X bl B-modules according to the mapping gq and Hermod-B) is naturally equivalent to the functor from Hermod-B to Hermod-A con- corresponding functor maps irreducible B-modu ; y ; i ibl structured from X by the method described just before Example 3.7 other modules according to their direct integral decompositions into irreducibles. . | y 7 pie 5.7. 
In particular, this functor will preserve direct integrals, but it will not preserve wea Proof. Let ¥€ Hermod-B, and view ¥ as a normal #(B)module which can be re. 

containment unless ¢ is continuous. stricted to D. Then the natural map ¢}, from Y &,(5) V to X ep V defined on ele- 
3.12. Example. Let 4 = B = C([0,1]), and let D and X be defined as in Exa mple 3.7, mentary tensors by | except for the action of 4. Let g be a (possibly non-measurable) permutation of | t((x 81) BV) =x 8 1 

i X by settin 
the points of [0, 1], and let 4 act on X by & is easily verified to provide the required natural unitary equivalence. OJ (nf) (s)=hg(s) fs). |



- 

68 M.A. Rieffel, Morita equivalence | M.A. Rieffel, Morita equivalence 69 

In view of this result we may from now on restrict our attention to Hermitian | 2 _ . a , 

n(B)-rigged A-modules and the functors which they define from Hermod-B to VEN) I= =F) F(HI=IIF OIF F=0r1% 0 

Hermod-4, though the earlier construction is still useful for considering specific We now consider a somewhat less obvious property of the functors defined by 
examples. Hermitian rigged modules. If ¥ € Hermod-B, then Homg(V, V) is not only a Banach 

We remark that even by so restricting the rigged modules we consider to those | space, but in fact a von Neumann algebra, carrying in particular the ultra-weak 

defined over n(B) (in other words, by requiring the algebra D of the earlier con- | operator topology. More generally, given ¥V,W € Hermod-B, the space Hompg(V, W), 
struction to be n(BY itself); it is still possible for two non-isomorphic Hermitian : while not an algebra, still carries a natural analogue of the ultra-weak operator 
n(B)-rigged A-modules to define equivalent functors, as is shown by Example 3.10. | topology, which, following the usage in [32] for W*-algebras, we will call simply 

| the weak topology. We will also have brief use for the analogue of the ultra-strong 
| operator topology on Homg(V, W). 

4. Properties of functors 

| 4.4. Definition. Let V, W € Hermod-B. By the weak topology on Homg(V, W) we 
With the eventual aim of characterizing the functors which are defined by | will mean the topology defined by the linear functionals of the form 

Hermitian n(B)-rigged A-modules, we now study the properties which these functors fir Sw, wo, 

possess. Throughout this paper we will always assume that the functors considered | i "i 

are linear with respect to the linear structures on the Hom spaces. where {v;} and {w;} are sequences of elements from ¥ and W respectively such that 
As was mentioned earlier, Hermod-B carries a natural involution, that is, a con- > 012 < oo 3] wil? <oo 

jugate linear contravariant functor of period two which is the identity on objects, | i ’ i : 

namely the functor which takes each morphism to its adjoint. | By the ultra-strong operator topology on Homp(V, W) we will mean the topology 
! defined by the seminorms of the form 

4.1. Definition. Let C and D be categories whose spaces of morphisms carry the | Fro > 1) 121 no 

structure of complex vector spaces, and let C and D each have an involution, denoted | / i ’ 

by *. Then a linear functor F from C to D will be said to be a *-functor if | where {v;} is a sequence of elements from V such that 3 | v; 12 <eo, 

F(f=F(f)" oo | From [28, Theorem 1.4] it follows immediately that Hompg(V, W) isa dual 
for every morphism fin C. | Banach space, with the weak-# topology corresponding to the weak topology just 

: defined, in analogy with the well-known situation for von Neumann algebras. 

4.2. Proposition. Let A and B be C*-algebras, let X be a Hermitian n(B)-rigged | We have the following analogue of well-known facts for von Neumann algebras, 
A-module, and let Fy be the corresponding functor from Hermod-B to Hermod-A | principally [7, Lemma 2, p. 35): 

(equipped with their natural involutions). Then Fy is a «functor. 

The proof consists of a straightforward computation. 4.5. Proposition. Let V,W € Hermod-B. Then the ultra-strong operator topology on 
: i Hompg(V, W) is stronger than the weak topology. The ultra-strongly continuous 

- We now show that s-functors between categories of Hermitian modules are norm | linear functionals on Hompg(V, W) are exactly the linear functionals used in Defini- 
decreasing, in analogy with the well-known fact for s-homomorphisms between tion 4.4 to define the weak topology. A net { fr} of elements of Hom z(V, W) con- 

C*-algebras. verges ultra-strongly to 0 if and only if the net { f f; } converges to 0 in the weak 
topology of Homg(V, V). 

4.3. Proposition. Let A and B be C algebras, and let F be a *-functor from The proof is obtained by making minor modifications to the proofs of the cor- 
Hermod-B to Hermod-A. Then | F(f) I< If II for every morphism f in Hermod-B. responding facts for von Neumann algebras. 

Proof. Let f € Homg (VW) for V,W € Hermod-B. Now Homg(V, V') and | In view of Definition 4.4 it now makes sense to ask whether a mapping between 
Hom 4(F(V), F(V)) are both von Neumann algebras, and F restricted to Hompg(V, V) spaces of homomorphisms is normal, that is, continuous for the weak topology, and 
is a x-homomorphism, and so is norm decreasing {7, p. 8]. But" f€ Homg(V, V), in particular we can ask this of the mappings between spaces of homomorphisms 
so that | defined by a functor. :
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4.6. Definition. Let 4 and B be C*-algebras, and let F be a #-functor from Hermod-B | 4.9. Proposition. Let A and B be C*-algebras, and let F be a normal s-functor from 
to Hermod-A (or between full subcategories thereof). Then we will say that F'is Hermod-B to Hermod-A4. Then F preserves (possibly infinite) Hilbert space direct 
normal if for any V,W € Hermod-B (or its full subcategory) the mapping from | sums. That is, if {V;}is a family of elements of Hermod-B and if V =@® V,, then 
Homg(V, W) to Hom, (F(V), F(W)) defined by F is normal, that is, continuous for | F(V)=@ FV). 
the weak topologies. 

pole | Proof. For each k let pj, denote the canonical mapping of © V; onto Vi. Then py 
The main full subcategory which will interest us (in the next section) is the cate- is the canonical inclusion of V into OV, Py Py is the identity map on Vg. Py Py 

gory of normal modules over a W *-algebra. | is the projection onto Pr (Vp); and p, p= 0if k #j. Then F(p;) F(py)" will be 
Actually, the next result shows that in order for a -functor to be normal it suf- the identity on F(V), Fp)" F(p;) will be a projection in F(® V;), and 

fices for it to be normal on the von Neumann algebras of form Hompg(V, V). | F(pg) Fp)" = if k #7. It follows that the F(p,)* define a natural injection of 

© F(V;) into F(® Vi). We must use the normality of F to show that this injection 
4.7. Proposition. Let F be a «functor from Hermod-B to Hermod-A. If for every | is also surjective. 

V € Hermod-B the homomorphism from Homg(V, V) to Hom, (F(V), F(V)) de- | Now for any finite subset /V of the index set for the ¥}, the operator 
fined by F is normal, then F is normal. | py = 2 pi py: KEN} 

Proof. Let ¥,W € Hermod-B. We must show that the map from Hompg(V, W) to B is the projection of © V; onto the subspace corresponding to @® {Vi k EN}. Then 
Hom 4(F(V), F(W)) defined by F is normal. We show first that it is continuous for it is easily seen that the net {py } converges weakly to the identity operator on 
the ultra-strong operator topologies. Let {fy } be a net of elements of Homg(V, W) DV. Since we are assuming that F is normal, it follows that {F (ew)? converges 
which converges ultra-strongly to 0. Then by the last part of Proposition 4.5 the weakly to the identity operator on F(©V;). From this it follows easily that the in- 
net { fy Ix }in Homg(V, V) converges weakly to 0. Since F is assumed normal on | jection of 6 F(V;) into F(& V;) is surjective. 0 

* . i 
Homg(V, V), it follows that the net { F(f, f,)}in Hom 4(F(4), F(A)) converges I 

weakly to 0. But F is a #-functor, and so F(f; f) = F(/, 0) F(f,)- Then again by the We remark that since in Hermod-B every short exact sequence splits, it follows 
last part of Proposition 4.5 it follows that the net {F(f;)}in Hom, (F(V), F(W)) ! that any functor preserves cokernels. Thus normal functors, in that they also pre- 
converges ultra-strongly to 0. Thus F is ultra-strongly continuous. But by using the serve direct sums, are a natural analogue of the right-continuous functors defined on 
first two parts of Proposition 4.5 it is easily seen that any linear map between spaces [2, p. 58]. Indeed,.one of the main results of this paper will be an analogue for 
of homomorphisms which is ultra-strongly continuous is also weakly continuous. [J normal functors of the Eilenberg—Watts theorem for right-continuous functors 

([11,38] or [2, p.58)). 

4.8. Theorem. Let A and B be C*-algebras, let X be a Hermitian n(B)-rigged A-module, We now give an example of a x-functor which is not normal, 
and let Fy be the corresponding functor from Hermod-B to Hermod-A. Then Fy is 

normal. x i 4.10. Example. We begin by considering a method for constructing functors from 
: the category, Hilbert, of Hilbert spaces (Hermitian C-modules) to itself. This con- 

Proof. According to Proposition 4.7 it suffices to show ha fig Hh p © Herinod | srction, wich oe Ll on ves uegested to me A George M. oan 
; F , efine ert, le = Hom(K, K), and let p be any state (normal or not) on 

the homomorphism from Hom (Y: De Pomal x x mp(V, V) Then L(K). We use p to construct a functor F,, fi Hil t it itself. Given V & Hilbert is normal. Now let x ® v, x" ® v' € Fx (V) be given, and let f omg(V, V). | sy > p onetruc ah it Su ilbert to itself. Given ilbert, 
, , , efine a pre-inner-product on Hom(K, y (Fe(f) (x ov),x' ev") =(f ©), (x, x") pv), =p") 

. : : »8/=D g > and so it is clear that the composition of the homomorphism defined by Fy with | 

the linear functional defined by two elementary tensors is weakly continuous. This | and let F, »(V) be the corresponding Hilbert space obtained by factoring by the vectors 
will then also be true for any two finite tensors. But the oh tensors are Jone N of fongth zero and oR re Wy dotnet on nr ! RA ig " en 
Fy(V), and a routine argument using [7, Theorem 1, p. 38] shows from this tha e map from Hom(X, V) to Hom(X, efined by = ho f for f € Hom(X, V). 
bia defined by Fy is normal as desired. OJ : Then it is easily verified that 4 is continuous for the pre-inner-products defined 

above, and so defines a continuous operator F »(1) from F, »(M) to F »(W). It is easily 
We now examine an important property of normal s-functors. | seen that Fy, defined in this way, is a =-functor.
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Now let K be an infinite-dimensional Hilbert space, and let L (XK) denote the | Since it is normal as a functor from Hermod-V (Theorem 4.8), it follows immediately 
algebra of compact operators on K, so that L (K) is a two-sided ideal in L(K). Let p that its restriction to Normod-¥ is also a normal functor. OJ 
be a state of L(K) which is zero onL (C) (so that p is not a normal state). Then F, » | 

is not normal, for it is easily seen that if # € Hom(¥V, W) and if / is compact, then Note that we will use the symbol Fy to denote both the functor from Hermod-N 
F(h) = 0. But the identity operator on any Hilbert space is the weak limit of com- | and its restriction to Normod-V, but this should not cause any confusion. 

pact operators. We would like to prove conversely that every normal #-functor from Normod-N 
: to Normod-M is of the form Fy for some normal N-rigged M-module X. To do this 
| we must somehow produce such an X from any normal «functor. As motivation 

5. Normal modules and the Eilenberg—Watts theorem for how to do this, we now consider how, given a normal N-rigged M-module X, we 
can recover X from Fy. Now for any ¥ € Normod-N and any x € X we can define 

We have seen that if B is any C*-algebra, then Hermod-B is isomorphic to | a bounded linear operator ty, from Vito Fy(V) = My by 

Normod-n(B). Thus any functor from Hermod-B to Hermod-4 can equally well be | Xn 

viewed as a functor from Normod-n(B) to Normod-#(4). We are thus led naturally ty) =xev. 

to make a general study of functors between categories of normal modules over | In general ty will not respect any actions of M or N. However, if W € Normod-V 

W*-algebras. | and if f € Homy,(V, W), then it is easily seen that 
Let M and NV be W*.algebras. Since Normod-N is a full subcategory of Hermod-V, x _F x 

we know what is meant by a normal #-functor from Normod-V to Normod-M In | wf) = Xx (Ne pV) 

view of the results of Section 3 we would expect to construct such functors in terms | for any v € V. This says that, for fixed x, the family of maps ty as V ranges over 

of some kind of M-N-bimodules with N-valued inner product. We will show now that : Normod-/V forms a natural transformation from the forgetful functor Hy, from 

this is in fact the case, the main difference from the previous section being that we | Normod-V to Hilbert (the category of Hilbert spaces), to the forgetful functor A Mr 

must here ensure that the range of the functor consists of elements of Normod-M | from Normod-M composed with F x» that is, a natural transformation from Hy, to 

and not just Hermod-M. In what follows we will, as before, refer to the ultra-weak | Hp © Fy. Thus we can hope to recover X as the collection of all natural transforma- 
operator topology on W*-algebras as just the weak topology. tions from Hy to Hy, © Fy. We will see later (Section 6) that this can often enough 

be done, but not always, since we have already seen that non-isomorphic Xs can 

5.1. Definition. Let M and N be W*-algebras. By a normal N-rigged M-module we define equivalent functors (Example 3.15 with 4 taken to be L(K)). 
mean a Hermitian N-rigged M-module, X, which has the added property that for | In view of the above considerations it is appropriate to develop some tools for 

every x,y € X the linear map m = (x, my Jy from M to N is normal, that is, weakly handling natural transformations. Note that the category Hilbert can be considered 
continuous. : | to be Normod-C, and that the definition of a normal N-module says that the functor 

| Hy; is a normal functor. Similarly Hy, © Fy will be a normal #-functor. Thus it is 

5.2. Theorem. Let M and N be W™-algebras, and let X be a normal N-rigged M-module. appropriate to study natural transformations between pairs of normal #-functors 
For any V € Normod-N let Fy (V?) be the Hermitian M-module obtained by inducing from Normod-V to Normod-M, where in our first applications we will take M to be 
V up to M via X. Then Fy(V) is in fact in Normod-M. In this way we obtain a normal C. But the following results will also be useful when we study the uniqueness of X 
sfunctor Fy from Normod-N to Normod-M. | in the next section. 

Proof. Consider two elementary tensors x ® v and x’ @ v' in F(V'). Then the func- | 5.3. Proposition. Let M and N be W *-algebras, and let F and G be normal functors 
tional from Normod-N to Normod-M. Let s and t be two natural transformations from F 

me (mix ov), xo vy = (x mx " vv) | to G. If sy; = ty; for some generator U for Normod-V, then s = £. 

is weakly continuous because of the normality of X and V. But the elementary Proof. Let VV € Normod-V, and assume first that there is an isometric isomorphism 

tensors span a dense subspace of Fy (V), and from this it is easily seen that Fy(V) | fof V onto a submodule of U, so that f* fis the identity operator on ¥. Then 

is normal. = = = 

Thus the inducing functor from Hermod-V to Hermod-M defined by X as in | G(N)sy=sy FN) =ty A(f)=G(f)t, . 

Section 3 carries the full subcategory Normod-V into the full subcategory Normod-M. Multiplying on the left by G(f i) and using the fact that G(f ") G(f) is the identity 
operator on G(V), we find that si, = 74.
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: * . . . Suppose now that V is an arbitrary element of Normod-N. Then V is the direct | thermore fg g =f. Then a straightforward calculation using these results shows 

sum of copies of submodules of U (Proposition 1.1), on which we have just seen that | at 
s and ¢ agree. From the fact that normal s-functors preserve direct sums (Proposition t,= G(g") TF(g), 
4.9) it follows easily that s and ¢ agree on V. [J | so that £, does not depend on the choice of f 

. . Suppose now that ¥,W € Normod-V and that there are isometric isomorphisms In preparation for the next result we note that if ¥ € Normod-#, then Homy(¥, V), | fand ph and W sessectively oh oun at or ome i somo i Tm 

which we will denote by c(V) (or ¢,(V) if there is a chance of confusion), is the " g ga Pp u y Cot : y nv (V,s 
commutant of the action of N on V, and is a von Neumann algebra. As a result, V | Wwe have g omy/(U, U) = ¢(N), so tha 
(or more precisely Hy(V)) can also be viewed as a normal ¢(V)-module. Then if F | TF(ghf*) = G(ghf*) T. 
is a normal #-functor from Normod-V to Normod-M, F will define a normal homo- ! The traightf 4 calculati n that 
morphism from ¢(V) = Homy(V, V) into Hom (F(V), F(V)), and via this homo- | n a straightiorward calculation shows tha 
morphism F(V') also can be viewed as a normal ¢(V)-module. ty Fi) =Gh)t,, 

5.4. Proposition. Let M and N be W “algebras, and let F and G be normal functors | which is the characteristic property of natural transformations, 
from NN to Normod-M. Let Ube a generator for Normod-N, and let | If Vis an arbitrary element of Normod-V, the definition of ty and the verification 
¢(N) = Homy/(U, U), so that A U) and G(U) can be viewed as normal o(N)-modules that it is a natural transformation now follow in a routine way by decomposing V = NAY, ’ i ; : . . . f . into the direct sum of modules which are isomorphic to submodules of U, and by 
(as well as normal Mmodules). Then the assignment 10 any natural pransformation N | using the fact that normal #-functors commute with direct sums (Proposition 4.9). 
from Fto Gof the linear transformation ty from F(U) to G(U) establishes ” vection Finally, if T is invertible, then its inverse can be extended by the above process between the natural transformations from F to G and the linear transformations from oa a] transformation. say 7, from G 10 F, and (rf) = vo 1 ol 9 oe 

piv Gt) which commute both with the genors orM and wih the os os , | identity of F(U). Thus r © ¢ agrees on U with the identity natural transformation 
oN) defined by F'and G respectively. Under this bijection natural equivalences cor | from F to itself. It follows from Proposition 5.3 that 7 © ¢ is the identity natural pond to invertible tr rmations. : . 
respond to invertible transfo transformation. In a similar way it is seen that 7 © r is the identity natural transforma- 
Proof. If ¢ is a natural transformation from F to G, then #;; must be a morphism in tion from G to itself. Thus # is a natural equivalence as desired. LJ 
Normod-¥, and so is a linear transformation which commutes with the action of M. 

’ i . ; Suppose now that F is a normal «-functor from Normod-N to Normod-M, and t fi f tural transformation, #;; must also commute with the PP , 
But bY . hes on 0 Jo ith the actions ve both M and c(V) as required | that we wish to find an X such that F is naturally equivalent to F ¢- In the discussion 

. cea op receding Proposition 5.3 it was suggested that we take as X the collection of all Furthermore, the mapping > t;; is injective by Proposition 5.3. We must show that Dl ANSE from A, haplt oF. But in view of Propodtion 5.4 this i 
this mapping is surjective. " : . : 3 : 

Let T be a linear transformation from F(U) to G(U) which commutes with the ! Japa on j Benerator and then teldng Ee Ho 
actions of both M and ¢(V). We wish to extend T to a natural transformation from a ee i nd He ave values in bart ba, foe Proposttio N on , Cut p 
F to G. Let V € Normod-V, and assume first that there is an isometric isomorphism | M N alues Ir » th : . s 

fof V onto a submodule of U, so that f* fis the identity operator on V. Define ¢}, ind So plays litte role) For Simplicity Hoy We omit we an and 

M> = c(M\Y> . 
by | one of the main theorems of this paper, namely, the analogue of the Eilenberg—Watts t,=G(f*) TF(f) | theorem ([11, 38] or [2, p. 58]). 
Since T commutes with the action of M, it is clear that ty, € Hom, (F(V), G(V)). . 

We must show that the definition of #}, does not depend on the choice of f. Let g be oS. Theorem. oer id ond Ne I algebras, md he g ho ‘ norma +: wctor / on 
another isometric isomorphism of V into U. Then fg~ € Homp(U, U) = ¢(NV). Since : E A HL isan - - 

T is assumed to commute with the actions of c(V) defined by F and G, it follows hm id ra 0 F x mn fact, if ps id generator for Normod-N, and if 
that | omp/(U, U), then an ta 0 be 

TF(fg")=G(fg") T. | X= Hom, (U, FU).
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Proof. Let U be a generator for Normod-/V and let X be defined as indicated. We must | 6. Uniqueness and self-dual modules 
first show in what way X is a normal N-rigged M-module. Now since the action of N 

on U commutes with that of ¢(N), X becomes a right N-module if an action is defined | We have seen that non-isomorphic rigged modules can define equivalent functors 
by (xn) (u) =x(n(u)) forx €X, n €N, u € U. Since U is a generator for Normod-V, (Example 3.10). In this section we shall see that if we impose an additional condi- 
N is faithfully represented on U (Proposition 1.3), and it follows from von Neumann’s | tion on the rigged modules considered, then the correspondence between normal 
double commutant theorem [7, p.41] that NV can be identified with Hom, (U, U). | #-functors and rigged modules becomes essentially bijective. We will motivate this 
Now if x,y € X, thenx"y € Hom, (U, U), and so, from the above, x™ y can be additional condition from a different direction. Let 4 and B be C -algebras, and let 
viewed as an element of NV. Accordingly we define an N-valued inner product on X | X be a Hermitian n(B)-rigged A-module as in Section 3. Then X defines a functor by from Hermod-B to Hermod-4, and so from Normod-(B) to Normod-n(4). But ac- 

. | cording to Theorem 5.5 this functor should be defined by a normal n(B)-rigged 
xyly=x"y n(4)-module. It is natural to ask whether the action of 4 on X can be extended to 

for x,y € X. It is easily verified that in this way X becomes an N-rigged space. (This | - an action of n(4), in which case X would become the desired normal n(B)-rigged 
is a special case of [30, Example 4.26].) | n(A)module. We will see shortly that it is not always possible to so extend the ac- 

Now F(U) is an M-module, and so we can define an action of M on X by tion of A. But, in view of the universal property of n(4), one sufficient condition 
for extending the action of 4 is that the algebra L(X) of all bounded operators on (mx) W) = m(x(u)) | X be a W*-algebra. The following example shows that in general L(X) is not a 

form eM, x € X, u € U.1t is easily verified that with this action X becomes a W*-algebra even when X is defined over a W*-algebra. 
Hermitian N-rigged M-module. Furthermore, for any x,y € X the map 

" | 6.1. Example. Let V =I", the W™-algebra of bounded sequences. Let cq be the 
me (x, myly =x" my ; ideal of I consisting of sequences converging to zero, viewed as an N-rigged space 

from M to NV is clearly continuous for the weak topologies on M and N. Thus X is in | in the usual way. Let X = cj ® I, viewed as an N-rigged space in the obvious way. 
fact a normal N-rigged M-module. : | Then it is easily seen that L(X) consists of the 2 X 2 matrices whose diagonal ele- 

We can now use X to define a normal #-functor Fy from Normod-N to Normod-M ments come from I= but whose off-diagonal elements come from Cg, and this algebra 
as in Theorem 5.2. We would like to show that Fis naturally equivalent to Fy. isnot a W -algebra. Furthermore, if 4 is the algebra of 2 X 2 matrices all of whose . 
Since F and F 'y are both normal s-functors, it suffices, in view of Proposition 5.4, i entries come from Cg» acting on X in the obvious way, then it is easily seen that this 
to show that there is an invertible transformation from Fy (U) to F(U) which com- | action of 4 on X does not extend to an action of n(4). 
mutes with the actions of both M and ¢(V). Accordingly, define a bilinear map from It is thus natural to look for conditions on an N-rigged space which will ensure 
X X Uinto F(U) by (x, u) = x(t). This map is clearly N-balanced, and so defines a that its algebra of bounded operators is a W*-algebra. Now such conditions have al- 
linear map T from X ey U into F(U) satisfying T(x ® u) = x(u). A simple calculation | ready been found by Paschke [27], namely, that the N-rigged space should be self- 
then shows that T is isometric, and so extends to an isometry of Fy (U) into F(U). dual in a sense analogous to that for ordinary Hilbert spaces. We will see that such 
Two more simple calculations show that T commutes with the actions of both M self-dual spaces are also the ones which give uniqueness in our analogue of the 
and ¢(V). Thus what remains to be shown is that T is surjective. : Eilenberg—Watts theorem. For the convenience of the reader we recall Paschke’s 

Now it is clear that the representation of ¢(V) on U is faithful, and so according | results here, stated in our terminology. 

to Proposition 1.3, U is also a generator for Normod-c(V). Let W denote the range of ! oo . Co 
T in F(U), and view F(U) as a ¢(V)-module. Since T is a ¢(V) homomorphism, W is a | 6.2. Definition. Let Bbea ¢ -algebra, and let X be a B-rigged space. Then X is said 
c(N)-submodule of F(U), and so its orthogonal complement W* is also. Suppose that | to be self-dual if every continuous (for the usual norm on X ) B-module homomor- 
Wis not zero. Then it follows from Proposition 1.1 that there is a non-zero element phism R from X into B (with B acting on itself on the right) is of the form 
z in Hom, (5 (U, W+). We can view z as an element of X whose range is hu WL. Choose R(x) =, x as 
u € U such that z(u) # 0. Then T(z ® u) = z(u) € WL, which contradicts the fact that ; 
W is the range of 7. Thus 7 must be surjective. I | forsomey € X. 

6.3. Proposition ([27, Proposition 3.10]). Let N be a W algebra and let X be a 
| self-dual N-rigged space. Then L(X) is a W*-algebra. In fact, if N, denotes the pre-
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dual of N, then the functionals 6.7. Lemma (Gram—Schmidt process). Let M be a W*-algebra, and let Y be an M-rigged 
Tr p((y, Tx) : space which has polar decompositions in the sense of Proposition 6.4. Let {x, ..., x} 

’ N : be a finite family of elements of X. Then there is an orthonormal family { Vp oer Vik 
forpEN,, x,y €X, T € L(X), span a norm-dense submanifold of the predual of of elements of Y and a family {ml: 1 <i,j €k} of elements of M such that 

LE). x= 23 {y,ml: 1<j<Kk} foreachi. 
In addition, Paschke showed that any N-rigged space can be enlarged to form a | 

self-dual N-rigged space [27, Theorem 3.2], the enlargement being in a vague sense | Proof. Let the polar decomposition of x, be ym, and let 
an analogue of the weak operator closure of an operator algebra. The developments 
in this section will as a by-product lead to a different (and perhaps simpler) proof 2y=Xy = yp Xp 
of this result (Proposition 6.10). Then a routine calculation shows that (24, yr = 0. Let the polar decomposition We remark that in order for L(X) to be a W*-algebra, it is not necessary for X to of zy be yy my. Let p = (y,, ¥,)y so that p is the range projection of m,. Then 
be defined over a W*-algebra or for X to be self-dual, as can be seen by considering _ 
either the algebra of compact operators on a Hilbert space as a rigged space over it- y r 2) ={y ry 2M pry 
self, or cy as a rigged space over itself, or, more generally, any C*-algebra B which is | Since the left-hand side is zero, it follows that 
an ideal in n(B). 3 _ _ 

Paschke also indicated the importance of “polar decompositions” for the study 0=(rpy 2 P= pYaPhy =p 2M 
of self-dual rigged spaces. We shall not need the next result (except in the form of by the comment before Definition 6.6. Thus y, and y, are orthogonal. The rest of 
Lemma 1.2 — but see the comments after Proposition 6.12), but we state it here to | the proof continues in the same way to imitate the proof of the usual Gram—Schmidt 
provide a backdrop for our use of “polar decompositions” in the following results. process. [J 

6.4. Proposition ([27, Proposition 3.11]). Let N be a W*-aigebra and let X be a self: | We now complete the proof of Theorem 6.5. Let R be a continuous N-module 
dual N-rigged space. Then each element x of X can be written uniquely in the form homomorphism of X into N. We wish to find an element y of X such that 
ylx|, where |x 1=((x, x)y 2 and y is an element of X such that {V, Vy is the R(x) ={yg, x)y for all x €X. We will do this by first finding yz, which will be an 
range projection of |x|, that is, the smallest projection e in N such that e| x | = tx 1. element of Hom(W, V). We begin by defining YR on elements of W of the form 

| Zx{(v;), where {x;} and {v;} are finite families of elements of X and V. Specifically, 
We will now exhibit a class of self-dual spaces which will be of great importance in ! if we knew that yp existed, then we would have 
this section. 

. N | Pp Qax,0)) = 23 (yp x) (0) =23 Rx), . 
6.5. Theorem. Let C be a C algebra and let V and W be Hermitian C-modules. Let 
N=Hom¢(V, V)and X = Hom(V, W), and let N act on the right on X by composi- | Accordingly, we define YR by 
tion of operators. On X define an N-valued inner product by (x, Yiy = x*y for i 
x,y €X. Then X is a self-dual N-rigged space. | Yr ( xv) = bh R(x;) ; . 

Proof. It is easily seen that X is an N-rigged space. Furthermore, Lemma 1.1 shows | We must show that yy is well defined. For this it clearly suffices to show that if 
that X has polar decompositions in the sense of Proposition 6.4. We remark that if | Zx;(v;) = 0, then 2 R(x;) vy; = 0. Now, since X has the polar decomposition property 

Y is an element of a B-rigged space such that (y, y ) is a projection, then y=y(y, yp, by Lemma 1.1, we can apply Lemma 6.7 to find an orthonormal family {y;} of 
as is seen immediately from calculating the B-inner-product of y — y (y,yp with elements of X and a family {n] } of elements of NV such that x; = = ¥; n} for each i. 
itself. To continue the proof we shall need to take orthogonal expansions: { Letz=3y; R( DR Then a straightforward calculation, using the fact that 

. | yj { Yj Yi N= yj for each j and that R is an N-module homomorphism, shows that 
6.6. Definition. Let M be a W algebra, let Y be an M-rigged space, and let {y;} be ‘ _ : 
a family of elements of Y. We will say that { ¥;}1is an orthonormal family of elements R(x) ={z, x;y 

of Yif 

(2) <¥;, y; 2 1s a projection in M for each i. 

i
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for each i. Then, since Zx;(v;) = 0, we have | equivalence classes of normal x-functors from Normod-N to Normod-M and isomor- iP 
phism classes of self-dual normal N-rigged M-modules. 

(6.8) 2IR(xe) v= 2042, x,y v= 2" (2x,(0)) = 0, 
Proof. The elements of Y form a vector space under pointwise operations. Further- 

as desired. more, Y forms an M-N-bimodule with actions defined by 
We now show that YR» defined so far only on the linear submanifold XV of W, f = mt + = 

is bounded there. Note that y Rr is clearly linear. Now from the calculations above it | (m ly (v) = m( (©) ( n)y, @)=t p(n). 

is clearly seen that any element of XV is of the form Z y;(v;), where {»;}is an ortho- | (For simplicity of notation we omit the forgetful functors Hy, and Hy here, and 
normal family of elements of X, and {v;} is some family of elements of V. As above, | whenever convenient later.) Let U be a generator for Normod-V, and let ¢(V) = 
setz = 2; (R( A) I so that as in the derivation of (6.8) above we have | = Homp/(U, U), so that Hom, (U, F(U)) is a normal N-rigged M-module as shown 

in the proof of Theorem 5.5. Now, by Proposition 5.4, there is a bijection between 
yi y; (x) = 2 R(y)v; = 2 y;(v) . Y and Hom, (U, £(U)), and this bijection is easily seen to preserve the actions of 

. M and N on these two spaces. Using this bijection we can transfer the N-valued inner 
Then product on Hom, (U, F(U)) to Y, so that Y becomes a normal N-rigged M-module. 

| We show that this inner product on Y does not depend on the choice of generator. 
I ys (2 yz 2 yw). Suppose that Uj is another generator for Normod-V, and assume at first that there R iri [2 . . : . | is an isomorphism f of U onto a submodule of Uy. Because U and Uj are generators, 

But straightforward calculations show that the maps =f" nfis an isomorphism of N acting on Uj, onto N acting on U. But for 
| 5,t €7, itis easily seen from the properties of natural transformations that 

* (| — * . Iz¥12=1z*z 1 =12R(7,)(», yon ROY) I=IROI<IRINzI=IRIIZ™N, | shy =p, ty, fl 

so that 1z* I< URI, and ys IS URI. | so that 5, 7, and sy, ty, represent the same element of N. If Uj does not contain a 
We can now extend YR ‘by continuity to the closure of XV, and define Yr to be copy of U, then we can compare both U and Up with the generator U @ Uj, to obtain 

zero on the orthogonal complement of XV. Then for any x € X and v € V we have he general case: Pinal, Sinee Homan oA) hy i” self-dual module by Theorem 
| .5, it follows that Y is a self-dual normal N-rigged M-module. —_— * -_— 

li 

R(X) () =y R Ce) =<y rR XN ©, | Suppose now that X is a self-dual normal N-rigged M-module, and that F xis 
so that R(x) = (yg, x Jy as desired. equivalent to F, so that Y can be viewed as the space of natural transformations 

Finally, we must show that yp commutes with the action of C. Now XV and its | from Hy, to Hy, © Fy. We show that the mapping of X into Y defined by assigning 
complement are both invariant under C, and so, since VR is zero on the complement, | tox €X the natural transformation t* defined by t*(v) = Xo v (as in the discussion 
it suffices to show that yg commutes with the action of C on the submanifold X V. after Theorem 5.2) isan isomorphism of X with Y. Now this mapping is easily seen 
But this is shown by a simple calculation. It follows that yp itself commutes with to be an injective isometric M-N-bimodule homomorphism. The only issue is whether 
the action of C. [J it is surjective. 

Let t € Y. We wish to find z € X such that t = #%. Let U be a generator for 
We would now like to show that any two self-dual normal N-rigged M-modules | Normod-, and let c(V) = Homy (0, U). Then for any x € X, (t*);; and ¢ y are both 

which define equivalent functors from Normod-V to Normod-M are isomorphic ! in Hom, (U, Fxy(U)), so that ti (ty € Hom, (U, U), and so can be viewed as an 
(contrary to what happens if we drop the condition of self-duality). element of NV by the double commutant theorem. We thus have a map R from X into 

: N defined by 
6.9. Theorem. Let M and N be W*-algebras, and let F be a normal =-functor from sy 

Normod- to Normod-M. Then the space Y of natural transformations from Hy to | R(x)=t Uv ( dy : 

Hy © F has a natural structure as a self-dual normal N-rigged M-module. Furthermore, | It is easily verified that R is an N-module homomorphism (with NV acting on itself on 
if X is a self-dual normal N-rigged M-module and Fy is equivalent to F, then X is the right), and that R is bounded (by Il #7;1). Since X is assumed to be self-dual, it 
naturally isomorphic to Y. In particular, any two self-dual normal N-rigged M-modules | follows that there is an element z of X such that R(x) = (z, x yy forall x € X, that is, 
which define equivalent functors are isomorphic. Thus there is a bijection between | £, (t %), = (zx).
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But for any x € X and 4,4’ € U, we then have | Proof. For VV € Normod-/V define a natural transformation ¢ from Fz to Fy by 

(ty), xeu'y=(u, t,t), @))=(u, (z,x)yu)=(zou x au’). | tyzov)=zev 

It follows that ¢; = (#*);. From Proposition 5.3 it then follows that ¢ = #2. ors °z ve Itis easily verified that fy is an isometry. We must use the density 
We have thus shown that the correspondence from isomorphism classes of self- | i. bo § on that v is surjective. If it is not, then there is aw € Fy (V), w #0, 

dual normal N-rigged M-modules to equivalence classes of normal s-functors is injec- | i. bn ° ce to the range of ty. Since w #0, there must exist y €X, vE V 
tive. But this correspondence is also seen to be surjective by Theorem 5.5 if we note i) : at 4 N vu, w) #0. Then the functional hon X defined by (x) = (x & v, w) 
that the X constructed there is self-dual by Theorem 6.5. [J | ER be v ro on X. Buh 0 easily seen to be in the pre-dual of X, and so Z 

weak-x dense in X, [J 

We now indicate how the above results can be used to give a new proof of Paschke’s - | ) . ) 
theorem [27, 3.2] that any N-rigged space can be embedded in a self-dual N-rigged : . Tom he consicerations leading to Proposition 6.10 we also get a representation 

space. In fact, we show this for any normal N-rigged M-module (Paschke’s case being | or self-dual normal N-rigged M-modules: 
that in which M = C). Let Z be a normal N-rigged M-module. Then we can form the : LL 

functor F and apply Theorem 5.5 to form X = Hom, (U, Fz(U)), so that F zs | eorposition. Let X be he self dual normal N-rigged M-module. Let Ube a 
equivalent to Fy. This suggests that there is an embedding of Z into X, and this is Vomodule W which 1s ee rom is Ther there is a normal 
in fact the case, namely, the mapping z ~ x, where x, (1) = z ® u for all u € U. This or noaduie with the two actions commuting 
mapping is easily seen to be an M-N-bimodule homomorphism of Z into X which | (namely ’ xO) such that X is isomorphic to Homey, (U, W), with N-valued inner 
preserves the N-valued inner products. Now Paschke showed that any self-dual product defined by 
N-rigged space Y is a dual Banach space, with the functionals y = p(y", » Jy) | (x,y = x*y. 
spanning a norm-dense submanifold of the pre-dual of Y as y' ranges over Y and p : . Co ) 

ranges over the pre-dual M, of M [27, Proposition 3.8]. For X = Hom, wn, Fz()) os representation immediately yields such results as Paschke’s proposition on 

this is particularly apparent (and follows from [28, Theorem 1.4]). Furthermore, it | polar decompositions [27, 3.11] (by applying Lemma 1.2). 
is easily seen that the image of Z in X is dense for the weak-% topology. Finally, as 

in Paschke’s theorem, there is a natural conjugate isomorphism of the N-dual 7. Morita equi . oo 
Homy (Z, N) of Z onto X given by assigning to any 4 € Homy(Z, N) the element + Morita equivalence and its characterization 
xy, in X defined by settin . ) i 

h . y 8 | In this section we will study normal «-functors which establish an equivalence 
xp, zou)=h(z)u. between the categories Normod-V and Normod-M. Such functors will, of course, be 

We have thus sketched the proof of all but the last statement of the following result, thi] (that pective on morphisms), and so we begin by considering when the 
part of which generalizes [27, Theorem 3.21: or defined by a normal N-rigged M-module is faithful. 

6.10. Proposition. Any normal N-rigged Mmodule Z can be embedded as a weak-x | Jie Proposition. Let M and N be W algebras and let X be a normal N-rigged 

dense subspace of a self-dual normal N-rigged M-module X which is conjugate iso- | ps - pe N, 0 ' ¢ the weak closur e os og span of the range of the inner product 
morphic to the N-dual of Z. As X we can take Hom (U, Fz (U)), where U is any ! In particular Fre N ; Noa je : ten F x faithful i and only if Ng = N, 
generator of Normod-U. Also, X is unique up to isomorphism. The functors F; and | » ormod-N then Fy(V) = {0}if and only if Ny V = {0}. 

Fy will be naturally equivalent. . . i xX Proof. It is easily seen that if Ny V'= {0}, then F(V) = {0}. Furthermore, if Ny#N, 
The last statement of the above proposition follows from: | then, since Vy, is weakly closed, it is generated by a central idempotent [32, 1.10.5] 

and so has a complementary weakly closed two-sided ideal. If V is any normal 

6.11. Proposition. Let X be a self-dual normal N-rigged M-module and let Z be a | module over this ear ideal, we can view V as a normal N-module, and 

sub-M-N-bimodule of X, so that X can be viewed as a normal N-rigged M-module. Suobos x(V) -! ; oe he x is not faithful if Ny # N. 
Assume further that Z is dense in X for the weak- topology on X (defined above). that FAS Somerse A at f ’ € Normod-WV, that f€ Homp, (V, W) and f # 0, but 
Then the functors Fy and F, are equivalent. | xX - We will show that it follows that , ati
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7.2. Lemma. Let M and N be W*-algebras and let F be a normal s-functor from | Ube a generator for Normod-N, let ¢(V) = Homy (U, U), and let X = Hom, (U, F(U)), 
Normod-V to Normod-M. Let V,W € Normod-N and let f € Homy (V, W). Let the so that F is equivalent to F. x as in Theorem 5.5. Since F is faithful, the weak closure 
polar decomposition of f be f = pif |. Then the polar decomposition of F(f) is of the range of the inner product on X must be all of N by Proposition 7.1. 
F(f)y=Fp) ff. Now since F establishes an equivalence, it follows that F(U) will be a generator 

for Normod-M. It follows from Proposition 1.3 that M is faithfully represented on 
Proof. It is easily seen that F(1f 1) > 0 and that its square is equal to | F(f)I2, so F(U). Furthermore, since F is faithful and full, it establishes an isomorphism of 
that | F(f)I=F(If1). Now F(pp™) and F(p* p) are both projections, and so F(p) is ; ¢(N) = Homp(U, U) with Hom, (F(U), F(U)), so that c(V) can be viewed as the 
a partial isometry, or must be § pers y ° the partial isometry in the polar | 0) acting of Ht or on ie and Min tum can be viewed as the commutan of 
decomposition of F(f), since F(p) | F(f)|= F(f). Now p™p is the support projec- acting on - rom this 1act we can equip A with an additional piece of struc- 
tion of | 1. It follows that p* p is the weak limit of projections which are dominated ture, namely, an M-valued inner product for the left action of M on Xx Specifically, 
by positive scalar multiples of £1. Since F is normal, it follows that F(p*p) is the for x,y € X we see that xy™ € Hom, (F(U), F(U)), and so can be viewed as an 
weak limit of certain projections dominated by positive scalar multiples of | F(f)l. element of M. We set 
puting these facts together pri that F((p) must be exactly the partial isometry | (x, phy =x na 
in the polar decomposition o . : 

| Then it is easily seen that X becomes a left M-rigged space [30, Definition 2.8]. 
Retuining to the proof of Proposition 7.1, we let f= p | f | be the polar decompo- | Furthermore, the M- and N-valued inner products are readily seen to satisfy the rela- 

sition of the f for which Fy(f) = 0. It follows from the above lemma that Fy(p) is | tion 
the partial isometry in the polar decomposition of 0, so that F' x(®) =0. Let V, be (x, Php? =x(, Dy 
the range of p” p. Since p” p acts as the identity on V, and Fy(p" p) = 0, it follows 
that Fy(¥;) = {0}. In particular, x ® v = 0 as an element of Fy(¥;) for all x EX, | for all x,y,z € X. Also for fixed x,y € X the map 
vE VV), and so : nxn, py), =xny* 

0=(x®u xe v)=Ux" xv v") | from NV to M is clearly normal, so that X becomes a normal left M-rigged right 
forallx,x' €X, v,v € V;. It follows that Ny ¥; = {0}. Since V; # {0} (because N-module for the obvious definition. Finally, we show that the weakly closed two- 
p #0), it follows that No # N. O - sided ideal spanned by the range of the M-valued inner product is all of M. If this 

| were not the case, then the complementary two-sided ideal would be generated by 
Functors which establish an equivalence of categories will also be full (that is, | : pongo. eh 2 which mould have the prop that p(x, y " mn 

surjective on morphisms between objects in their range). x,y<cX let W=p - wince M can be viewed as the commutant of ¢(V), 
& W will be c(V)-invariant. Then, since c¢(IV) is faithfully represented on U so that U 

7.3. Proposition. Let M and N be W *-algebras, and let F be a «functor from is a generator for Normod-c(V) by Proposition 1.3, it follows from Proposition 1.1 
Normod-N to Normod-M. If F is faithful and full, then F is automatically normal. that oo a 03 then there ht nonzer 0 element x N omen U, "), which on be 

viewed as an element of X. Then (x, x); =xx" can be viewed as an element o 
Proof. If ¥ € Normod-/V, then the map defined by F from Hom (V, V) to | Hom, (W, W). But p acts as the identity on W, so that we would have 

Hom, (F(V), F(V)) will be a x-isomorphism of von Neumann algebras since F is | pix, x)y, = pxx* £0, 
faithful and full. But any %-isomorphism of von Neumann algebras is automatically | . . tion. Thus p(F(UY) = {0}. But FY vor for N nr 
normal [7, Corollary 1, 54].) It follows from Proposition 4.7 that F is normal. OJ contrary to assumption. Thus p = . Bu is a generator for Normod- 

i b and so M is faithfully represented on F(U) by Proposition 1.3. Thus p = 0 as desired. 
7.4. Definition. Let M and N be W"-algebras. We shall say that M and N are Morita | This leads us to make the following definition, in analogy with [30, Definition 
equivalent if there is an equivalence of Normod-NV with Normod-M implemented by 6.10] and [2, Definition 3.2]: 
functors (which will automatically be normal). | 

* ( 7.5. Definition. Let M and N be W *-algebras. By an M-N-equivalence bimodule we 
We shall now see how W *-algebras which are Morita equivalent are constructed | mean an M-N-bimodule x which is equipped with M- and N-valued inner products 

from each other. Let M and N be W*-algebras, and let F be a s-functor from | with respect to which X is a normal N-rigged M-module and a normal left M-rigged 
Normod-V to Normod-M, which establishes an equivalence of these categories. Let right N-module such that
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(<x, ypz=x(p,2)y forall x,y,z €X; y : = condition (2) holds. Then, by Proposition 6.12, X is of the form Hom, (U, W) for 
(2) the range of ¢ , ),, spans a weakly dense subset of M, and the range of { , Jy U a generator of Normod-N and W = Fy(U). By Proposition 7.6, M coincides with 

spans a weakly dense subset of », : E Lp (X). Note that every element of Hom, (W, W) defines in an obvious way an 
We shall say that the equivalence bimodule X is self-dual if it is self-dual both as ES element of L p(X), so that we obtain a homomorphism of Hom, py (W, W) into 

an N-rigged space and as an M-rigged space. | Ly (X). Now for x,y,z € X we have 

7.6. Proposition. Let M and N be W*-algebras and let X be an M-N-equivalence | x yiyz=xp,2ly=xy°z, 
bimodule. Then, if we view X as an N-rigged space with corresponding algebra Lp (X) | from which it follows that 
of bounded operators, the homomorphism defining the action of M on X is an iso- * 
morphism of M onto Ly (X). In particular, L NX) is a Walgebra. Similarly, viewing | yh =xy", 
X as a left M-rigged space, the antihomomorphism defining the action of Non Xis [ which is also an element of Hom, (W, W). Since these elements are by assumption 
an anti-isomorphism of N onto LyX), so that Ly (X) is a W™-algebra. | weakly dense in J, it follows that M can be viewed as a weakly closed two-sided 

: ideal of Hom, (W, W). But X is self-dual as a left-rigged space over Hom (W, W) 
Proof. Let M(, be the (unclosed) two-sided ideal in M spanned by the range of the by the left-sided version of Theorem 6.5. It follows easily that X is self-dual over M, 
M-valued inner product. By assumption, My is weakly dense in M. Suppose there is | so that condition (3), and hence condition (1), is satisfied. A similar argument ap- 
an element m of M such that mX = 0. Then plies if we start with condition (3). CI 

m x,y dy = (mx, y 0, =0 | Let X be an M-N-equivalence bimodule. Then exactly as in [30, Definition 6.17] 
for all x, y € X. Since Mis weakly dense, it follows that m = 0, so that the homo- | we can form X, the space X but with conjugate operations of M, V and the complex 
morphism of M into Ly (X) is injective. Now by the Kaplansky density theorem numbers (that is, n¥ = (xn™*)™, (%, Pn =x, yy.etc.). We remark that if X is self- 
[7, p. 43] there is a net {my} of elements of M of norm one which converges weakly | dual, and so of the form Hom, (U, W) as in Proposition 6.11, then there is a natural 
to the identity element of M. Let T € Ly (X). Then | identification of X with Hom, (W, U). At any rate, it is easily verified that: 

T<x,y wz =Tx (yz Iv ={Txy EE 7.8. Proposition. If X is an M-N-equivalence bimodule, then X isan N-M-equivalence 
Thus My, is in fact an ideal in Ly (X). In particular, Tmy €M, for each k. Since i bimodule. 
I Tm I < I TH, and since any closed ball in M is compact for the weak topology | 
(this being the weak-* topology from the pre-dual), the net { Tm; } will have a subnet We now come to the main theorem of this paper, which is the analogue of Morita’s 
{Tm} weakly convergent to an element my of M. Then for x,y € X we have | theorem for the algebraic case [26, 2, 6]. 

1: 1s * — * _ 

myx, y y= tim Tm;x, y Jy = lim (myx, Tyly=Ty w= {Txy wo | 7.9. Theorem. Let M and N be W*-algebras. Suppose that there exists an M-N-equiv- 
where the limits are in the weak topology on N. Thus myx = Tx for x €X, so that alence bimodule X. Then M and N are Morita equivalent, with an equivalence be- 
the homomorphism of M into L,/(X) is surjective, and so bijective. A similar argu- i tween Normod-N and Normod-M being implemented by the functors Fy and Fy. 
ment applies to the antihomomorphism of N into Ly(X). O | Conversely, if M and N are Morita equivalent, then there exists an M-N-equivalence 

! bimodule X which can be chosen to be self-dual, and which is such that F x and Fy 
The above result should be compared with [2, Theorem 3.4, part 5). are naturally equivalent to the functors establishing the Morita equivalence. We ob- 

tain in this way a bijection between equivalence classes of equivalences from 
7.7. Proposition. Let X be an M-N-equivalence bimodule. Then the following condi- | Normod-V fo Normod-M and isomorphism classes of self-dual M-N-equivalence 
tions are equivalent: i bimodules. 

(1) X is self-dual. 
(2) X is self-dual as an N-rigged space. | Proof. The second part of the proof follows from the discussion following Definition 
(3) X is self-dual as a left M-rigged space. 7.4 which motivated our definition of an M-N-equivalence bimodule in Definition 7.5. 

The only detail which is not clear from that discussion is that F % is naturally 
* Proof. By definition, condition (1) implies conditions (2) and (3). Suppose now that equivalent to the functor from Normod-M to Normod-N establishing the Morita 

| equivalence. But this will follow from the first part of the theorem and the easily 
| verified fact that the “inverses” of two naturally equivalent equivalence are equivalent. 

|
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The proof of the first part of the theorem is very similar to the proof of {30, 8.1. Proposition. Let M and N be W™-algebras which are Morita equivalent. Then the 
Theorem 6.23]. We must show that Fy © Fg and Fg © Fy are each naturally equiv- centers of M and N are isomorphic. 
alent to the appropriate identity functor. Now [30, Proposition 6.21] is immediately 

applicable. (The fact that we are no longer assuming that the range of the N-valued | Proof. This follows immediately from Proposition 2.1. O 
inner product is norm dense makes no difference.) Thus the functor Fg © Fy is 

naturally equivalent to the functor Fy, where Y is the pre-Hermitian NV-rigged | 8.2. Corollary. Two commutative W*-algebras are Morita equivalent if and only if 
N-module X ®;, X. But in analogy with [30, Lemma 6.22] the map¥ oy = (x, y)y they are isomorphic. 
is a pre-equivalence [30, Definition 5.6] of Y with the norm closed span NV of the | 

range of the N-valued inner product on X, where NV is viewed as a Hermitian N-rigged The next result is an analogue of part of [2, Theorem 3.5(5)]. 
N-module by virtue of the fact that it is a two-sided ideal in NV. Then the functor Fy | 

is easily seen to be equivalent to the functor F Ny (as in [30, Lemma 5.7]). But NV, . 8.3. Corollary. Let M and N be W*-algebras which are Morita equivalent. Then there 
is weak-* dense in V by assumption, and so F, N, 18 equivalent to Fy; by Proposition | is an isomorphism between their lattice of weakly closed two-sided ideals. 
6.11. But we have seen that Fy is equivalent to the identity functor. Thus F5 © F Y 

is naturally equivalent to the identity functor. A similar argument works for Fy © Fi. | Proof. The weakly closed two-sided ideals of M correspond to the projections in the 
The uniqueness up to isomorphism of the self-dual M-N-equivalence bimodule | center of M, and similarly for N. 0 

corresponding to an equivalence class of equivalences follows from the corresponding 
part of Theorem 6.9. O | We now describe how this isomorphism is implemented by a self-dual M-N-equiv- 

alence bimodule, in analogy with [2, Theorem 3.5(5)}. 
7.10. Corollary. Let N be a W*-algebra and let X be a self-dual N-rigged space the 
range of whose inner product spans a weakly dense ideal in N. Then N and L(X) 8.4. Proposition. Let M and N be W*-algebras, and let X be a self-dual M-N-equiva- 
are Morita equivalent. Conversely, if M and N are W*-algebras which are Morita lence bimodule. Then there is an isomorphism of the lattice of weakly closed two- 

equivalent, then there is a self-dual N-rigged space X the range of whose inner product | sided ideals of N (and M) and the lattice of weak-x closed M-N-submodules of X. If 
spans a weakly dense ideal in N such that M is isomorphic to L(X). J is such an ideal of N, generated by the central idempotent e, then this isomorphism 

| is given in one direction by assigning the subspace Xj = Xe to J. In the other direc- 
Proof. On X, viewed as a left L(X)-module, define an L(X )-valued inner product by tion this isomorphism is given by assigning to a weak-x closed M-N-submodule Y the 

(x, SW z=x(, 2 | weakly closed two-sided ideal Iy generated by (Y, Y)y. 

for x,y,z € X. Then, as in [30, Proposition 6.2, 6.3] it is easily verified that X be- Proof. We must show that X Iv = Yand/y = J. To show the first equality, let e be 
comes an L{X)-N-equivalence bimodule. The converse follows immediately from | the central projection generating I. Then it is easily seen that y = ye fory €7, so 
Theorem 7.9 and Proposition 7.6. O that Y < Xe. The opposite inclusion is shown by making precise the symbolic calcu- 

lation 
7.11. Corollary. Let K be a Hilbert space, and let L(K) denote the von Neumann i 

algebra of all bounded operators on K. Then L(K) is Morita equivalent to the one-- | Xe=X(Y, Yon =X, You Y cr. 
dimensional W*-algebra, C. | Conversely, given J, generated by e, we have 

Proof. View KX as a self-dual C-rigged space. [] (Xj Xply =(Xe, Xedy =e(X, X)ye ST, 

so that /y : CJ. But since (X, X)y is weakly dense in NV by assumption, the opposite 
) ] } | inclusion is shown by making precise the symbolic calculation 

8. Properties of Morita equivalence | J=eNe=e(X, X)ye=(Xe, Xe), c Iy, 0 

In this section we gather together various general facts about operator algebras We remark that a similar result is true for C*-algebras which are related by an 

which are Morita equivalent. imprimitivity bimodule [30, Definition 6.10]. This fact is closely related to Mackey’s 
| normal subgroup analysis [24], as will be shown elsewhere.
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We now investigate how Morita equivalence is related to forming tensor products factor is isomorphic to the algebra of 2 X 2 matrices over itself (which is an algebra of W™.algebras (over the complex numbers, as on [7, p. 24] or [32, Definition to which it is clearly Morita equivalent). Notice also that Proposition 2.5 shows that 
1.22.10] — for an interesting different kind of tensor product see [19D). a type I factor cannot be Morita equivalent to a type II or type III factor, nor can a 

type II factor be equivalent to a type III factor. 
8.5. Proposition. Let M, M 1 NV, Ny be W*-algebras. Let X be a normal N-rigged | 
M-module and Y a normal N-rigged M;-module. Then the algebraic tensor product | 8.8. Corollary - Let N be a Walgebra, and let Vand W be two generators for Normod-V. 
X ® Y over the complex numbers, with N ® N,-valued inner product defined by Let Ny and Ny, denote the commutants of the actions of N on V and W. Then N Vv 

. , , and Ny, are Morita equivalent. (xe y, x 8 Ving, = (x ye (yy | w 

and completed for the usual norm, is a normal N @ N-rigged M ® M -bimodule. If | Proof. The representations of NV on ¥ and W are quasi-equivalent [8, 5.3] and so 8, 
Xand Y are in fact equivalence bimodules and if an Me My-valued inner product | 31] ere ae Fibers spaces H and K such that Ve a and re K an 

’ is defined by as normal /V-modules. But the commutant of NV acting on Ve His Ny ® , 
. , , i p. 24], which, by Corollary 8.5, is Morita equivalent to N y- Similarly, N we LK) is (xoy,x'®y") =(x, x"), (py) . ) , , 2 ) , MoM, M M, Morita equivalent to Vy,. But Ny, ® L(H) is isomorphic to Ny, ® L(K). O 

then X © Y (completed) becomes an equivalence bimodule. 

8.9. Proposition. If M and N are W*-algebras which are Morita equivalent, then their 
Proof. We have not found any way to prove that the indicated inner products are opposite algebras are Morita equivalent. 
positive except to imitate the proof for tensor products of ordinary Hilbert spaces, . 
which involves expressing vectors as linear combinations of orthonormal vectors. Proof. Let M and N denote the opposite algebras of M and NV and let x be an M-N- 
In our setting this means that we must embed X and Y in self-dual modules (Propo- | equivalence bimodule. Then X can be viewed as an N-M-equivalence bimodule by 
sition 6.10) so that by Proposition 6.12 we can apply Lemma 1.2 and Lemma 6.7 setting ix =xn, (x, y)gz = ((x, y),)~, etc. O 
to express elements of X and Yin terms of orthonormal families of elements. The | Wh W* aleobra i al Mor - + aleebra is not 
proof of positivity is then carried out pretty much as for ordinary Hilbert spaces. ether a W"-algebra is always Morita equiv ent to its opposite algebra is no 

The rest of the proof of this proposition is carried out by routine calculations. OJ | clear. This is related to the unsettled question of whether a W *-algebra is always 
isomorphic to its opposite algebra. 

8.6. Corollary. Let N be a W*-algebra, let K be a Hilbert space, and let L(K) be the | . 
von Neumann algebra of all bounded operators on K. Then N © L(K) is Morita 8.10. Theorem. 4 W “algebra is of type 1 if and only if it is Morita equivalent to a 
equivalent to N. commutative W*-algebra. In fact, any type W*-algebra is Morita equivalent to its 

| center. 
Proof. View K as an L(K)-C-equivalence bimodule as in Corollary 7.11, and NV as an . . 
N-N-equivalence bimodule. : Proof. If a W"-algebra M is Morita equivalent to a commutative W *-algebra NV, then 

Normod-M is equivalent to Normod-A, and so by Proposition 2.5, M must be of 
8.7. Corollary. Every type IL, factor is Morita equivalent to a type Il factor. Every type I. Suppose conversely that M is a type I W™*-algebra. Then by [7, Theorem 1, 
type 1 factor is Morita equivalent to a type I, factor. p. 123] there is an Abelian projection e in M whose central support is the identity 

element of M. Then eMe is a commutative W *-algebra which by [7, corollary to 
Proof. If Vis a type II; factor and if K is an infinite-dimensional Hilbert space, then Proposition 2, p. 18] coincides with eZe, where Z is the center of M. Now if p is any 
Ne L(K) is a type II factor {32, Theorem 2.6.6] to which N is Morita equivalent projection in Z, then epe 3 0 since e has the identity of M as central support. It 
by Corollary 8.6. Conversely, if M is a type II factor, then, as in [7, Exercise 5, follows that the surjective homomorphism z + eze of Z onto eZe is injective and so 
p. 242], M is isomorphic to N & L(K) for some type II; factor N and Hilbert space is an isomorphism of W™-algebras. Now MeM (the weak closure thereof) is a two- 
KO | sided ideal in M, so generated by some central projection which must dominate e, 

and so which must be the identity of M. Thus MeM = M. Finally, let X = Me, and 
Whether the type II; factor to which a type II_ factor is Morita equivalent is | define M and eZe-valued inner products on X by 

unique up to isomorphism is not clear, since it is still unknown whether a type II; * Cx 
(me, m ely, =mem,, (me, me), =em me.
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Then it is clear that X is an M-eZe-equivalence bimodule, so that M is Morita equiv- and L(A) is anti-isomorphic to R(4). Thus L(4) is isomorphic, hence Morita equiv- alent to eZe, and hence to Z. OJ alent, to the opposite algebra of R(4). Since the representations of N on both V and 
the Hilbert space U of 4 are faithful, and thus are generators for Normod-N, we can 

8.11. Corollary. Two type I W*-algebras are Morita equivalent if and only if their apply Corollary 8.8 and Proposition 8.9 to conclude that NV is Morita equivalent to 
centers are isomorphic. the opposite algebra of N'. 

Suppose now that M is isomorphic to the opposite algebra of N'. It follows that 
8.12. Corollary. Any two type 1 factors are Morita equivalent. ! M and N are Morita equivalent. Conversely suppose that M and V are Morita equiv- 

| alent. Choose U as above, so that R(4) is anti-isomorphic to V. Then the arguments 
8.13. Corollary. Any type I W*-algebra is Morita equivalent to its opposite algebra. in the second paragraph after Definition 7.4 show that, if we adopt the notation 

used there, F(U) is a faithful normal c(V)-module whose commutant is isomorphic 
8.14. Corollary. Any type 1 von Neumann algebra is Morita equivalent to its com- to M. But ¢(NV) = R(A) so that VN is anti-isomorphic to c¢(V). In other words, NV is 
mutant. | isomorphic to the opposite of the commutant of M acting on V. Passing to the real 

dual of V we obtain a normal N-module such that M is isomorphic to the opposite 
Let M and N be two type I W*-algebras which are Morita equivalent, so that their | of the commutant of NV. OJ 

centers are isomorphic. Then we can realize both of their centers as L=(S, u) for an 
appropriate measure space [7,32], and, in the separable case, we can form direct 8.16. Corollary. Let M and N be type 111 von Neumann algebras on separable 
integral decompositions of M and NV over this measure space [7, 32]. Thus we see that Hilbert spaces. If M and N are Morita equivalent, then they are isomorphic. 
the way in which M and WV differ is exactly in that their “full matrix algebras”, that 
is, type I factors, over each point of S can have different dimensions. Conversely, it | Proof. Let V'be a generator for Normod-V such that M is isomorphic to the opposite 
is clear that two W*-algebras constructed by taking direct integrals of type I factors of the commutant of N on V. Let U be the Hilbert space of a modular Hilbert algebra 
of possibly differing dimensions but over the same measure space will have isomor- | of which A is.isomorphic to the left algebra. We view U as a normal N-module, whose 
phic centers and so will be Morita equivalent. Thus at least in the separable type I commutant is isomorphic to the opposite of N. Since both M and the opposite of N 
case we obtain a good picture of how W *-algebras which are Morita equivalent are are countably decomposable and of type II, it follows from [7, Corollary 8, p. 301] 
related. that U and V are isomorphic as N-modules. Then their commutants, which are the 

The above considerations are all quite elementary. But by invoking Tomita theory | opposites of NV and M, are isomorphic, so NV and M are isomorphic. 0 
we can obtain a quite precise description of Morita equivalence for general W*-algebras | . 
in terms of traditional concepts. The above results indicate that for W™-algebras, Morita equivalence is not a funda- 

. mentally new concept. For type I algebras it does provide a pleasant point of view. 
8.15. Theorem.* Let M and N be W *-algebras. Then M and N are Morita equivalent | In fact it suggests that perhaps a neater way to define type I algebras is simply to 
if and only if there is a generator V for Normod-N such that M is isomorphic to the say that they are the ones which are Morita equivalent to commutative ones. On the 
opposite algebra of the commutant of N acting on V. | other hand, in the type II case the fact that Morita equivalence seems to be weaker 

than isomorphism may possibly prove useful since isomorphism seems so intrac- 
Proof. Let V be a generator for Normod-¥, and let N' denote the commutant of N | table there — witness the questions of whether a type II; factor is isomorphic to 
acting on V. By [35, Theorem 12.2] N is isomorphic to the left algebra L(4) of 2X 2 matrices over itself. It might, for example, be possible to obtain at least a 
some modular Hilbert algebra A. By the commutation theorem for left Hilbert al- partial classification of Morita equivalence classes of type II factors. A number of 
gebras [35, Theorem 4.1], the commutant of L(4) is R(4), the right algebra of 4, the invariants which have already been introduced for factors will probably turn 

* Alain Connes and Masamichi Takesaki have pointed out that for factors on separable Hilbert | out to be, in fact, invariants for Morita equivalence classes of factors. 
i ivalence t ut to be the same as the notion of genus introduced b . . 

Myrray ve Neumann (26a, Section 3]. Alain Connes has also bointod out that ed 8.17. Definition. Let 4 and B be C™algebras. We say that 4 and B are Mor ia 
W -algebras are Morita equivalent if and only if they have faithful representations with iso- | equivalent if there is an equivalence of Hermod-B with Hermod-A which is imple- 
morphic commutants. | mented by #-functors (which will automatically be normal). 

8.18. Proposition. The C*-algebras A and B are Morita equivalent if and only if 
| their enveloping W*-algebras n(A) and n(B) are Morita equivalent.
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It follows that the earlier results of this section are immediately applicable to {31 po Alacra Toros wn on lo the nor separable case of Takesaki’s duality theorem for 
C*-algebras, although they do not, in general, have nice formulations in terms of the [4] N. Bourbaki, Topologie Generale, Actualités Sci. Indust. 1045, (Hermann, Paris, 1958) C*-algebras themselves rather than the corresponding W enveloping algebras. ch. 9. 

: The detailed study of Morita equivalence for special classes of C" -algebras must [5] C. Chevalley, Theory of Lie Groups (Princeton Univ. Press, Princeton, N.J., 1946). R . . : .M. Cohn, Morita equivalence and dualit Queen Mary College Math. Notes, London, n.d. 
e. include here only the following result. [6] P.M Col q : Ys g , await another time. We y 8 Co . [7] J. Dixmier, Les Algebres d’Operateurs dans I'Espace Hilbertien, 2d ed. (Gauthier-Villars, : . . . Paris, 1969). . 8.19. Proposition. Two commutative separable C*-algebras are Morita equivalent if (8] J. Dixmier, Les Caleb . . . - : 

19. . - . , gtbres et leurs Representations, 2d ed. (Gauthier-Villars, Paris, 1969). and only if their spectra are Borel isomorphic. [91 S. Doplicher, R. Haag and J.E. Roberts, Local observables and particle statistics I, Commun, 
! Math. Phys. 23 (1971) 199-230. 

Proof. Any two commutative C*-algebras (separable or not) which have Borel iso- | [10] y th Pre 28 (Lorn ar elds statistics and non-Abelian gauge groups, Commun. ; ; i i Example 3.11. Con- ath. Fhys. TI%0 morphic spectra will be Morita equivalent, as can bes on from hi o are Morita [11] S. Eilenberg, Abstract description of some basic functors, J. Indian Math. Soc. 24 (1960) versely, let A and B be two separable commutative -algebras whic 231-234. 
equivalent. Then there will be a bijection between their equivalence classes of irre- [12] J. Ernest, A new group algebra for locally compact groups, Am. J. Math. 86 (1964) 467-492. ducible representations, and so between their spectra. Thus their spectra have the [13] J. Ernest, A new group algebra for locally compact groups II, Can. J. Math. 17 (1965) 

inality. Si d B are separable, their spectra are separable locally com- 604-615, 
arch eres force sol onais sp > es [ 4 p 122] and so their Borel structures [14] J. Ernest, Hopf—von-Neumann algebras, in: Proc. Functional Analysis Conf., Irvine pact metric ’ br ’ (Thompson, Washington, D.C., 1967) 192-2135. 

are those of standard Borel Sp aces [1 ’ Proposition 2.3]. But any two standard Borel [15] J. Ernest, The enveloping algebra of a covariant system, Commun. Math. Phys., to appear. spaces of the same cardinality are isomorphic [1, Proposition 2.7]. (J [16] J. Ernest, A duality theorem for the automorphism group of a covariant system, Commun. . Math. Phys., to appear. 
i mutative C*-algebras 4 and B are Morita equivalent, [17] P. Freyd, Abelian Categories (Harper and Row, New Yo.k, 1964). We remark that if two com, & 'B t al [18] L.T. Gardner, On the “third definition” of the topology on the spectrum of a C*algebra, so that n(4) is isomorphic to n(B), then the pre-duals of n(4) and n(B) must also Can. J. Math, 23 (1971) 445450 

be isomorphic. (The pre-dual of any W-algebra is unique — see [32, p. 29].) Thus, . [19] A. Guichardet, Sur la catégorie des algebres de von Neumann, Bull. Sci. Math. 90 (1966) if X and Y are the spectra of A and B, and M(X) and M(Y) denote the spaces of 41-64. 
regular Borel measures on X and Y respectively, there will be an isometric order- [20]. E. Hewitt and K.A. Ross, The Tannaka—Krein duality theorems, Jber. Deutsch. Math.-Verein. ing i i onto M(Y'). One can conclude from this also that 71 (1969) 61-83. preserving isomorphism of MX) But ( )-O t clear how much more one can con- [21] I Kaplansky, Modules over operator algebras, Trans. Am. Math. Soc. 75 (1953) 839-858. X and Y have the same cardinality. u 1 163.13 sh that the bijection [22] G.I Kac, Ring-groups and the principle of duality I, Tr. Moskov. Mat. Obs. 12 (1963) clude in general about X and Y. Certainly Example 3.13 shows j 259-300. 
of X with Y corresponding to a Morita equivalence can be very badly behaved. [23] G.W. Mackey, Induced representations of locally compact groups I, Ann. Math. 55 (1952) 

The above considerations indicate that for C*-algebras the notion of Morita 101-139. 

equivalence as defined in Definition 8.16 is probably too weak to be very interesting. | [24] sw. Mackey, Unitary representations of group extensions I, Acta Math. 99 (1958) 
Fa i i r C-algebras which ol 

Rather, it will be strengthened forms of Morita : quivtlence for M CE equivalences [25] S. MacLane, Categories for the Working Mathematician (Springer, Berlin, 1971). will provide the more interesting and useful tools — for example, q oo [26] K. Morita, Duality for modules and its applications to the theory of rings with minimum which preserve direct integrals, or weak containment, as do those defined by an im- condition, Tokyo Kydiku Daigaku (A) 6 (1958) 83-142. 
primitivity bimodule [30, Proposition 6.26]. Such strengthened forms of Morita [262] Murray and von Neumann, Rings of operators VI, Ann. Math. 44 (1943) 716-808. equivalence will play an important role in, among other things, the classification of [27] le Paschice Inner product modules over B*-algebras, Trans. Am. Math. Soc. 182 (1973) 

» . . : + e. — . 

C *.algebras, but discussion of this matter must await another tim [28] M.A. Rieffel, Multipliers and tensor products of LP-spaces of locally compact groups, 
Studia Math. 33 (1969) 71-82. : 

| [29] M.A. Rieffel, Unitary representations induced from compact subgroups, Studia Math. 42 
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