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ABSTRACT OF THE DISSERTATION 

Homology of Algebraic Theories 

by 

Christopher Leonard Reedy 

Doctor of Philosophy in Mathematics 

University of California, San Diego, 1974 

Professor Donald W. Anderson, Chairman 

A model category structure on the category of simplicial 

algebras over a simplicial theory is constructed. Given an 

extension of theories, ¢:5 - T, and an algebra over S, we construct 

the free extension of this algebra to T. We define the homotopy 

free extension to T by using the definition of Anderson (unpublished.) 

It is shown that the natural map from the homotopy free extension 

to the free extension is a weak homotopy equivalence. This is 

also shown to be the case for extensions from based spaces to the 

algebras over pros and props with free symmetric group action. 

A decomposition theorem for the homology of the free algebra for 

this second extension is proved. As an example the graded group 

structure of H (RS X;2/2) for X a connected space is computed. 
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Chapter I. Introduction. 

The notion of an algebraic theory was originally introduced 

by Lawvere(AT). An algebraic theory is basically a formal description 

of a system of operations, satisfying certain relations. that can 

act on a set. Familiar objects of algebra, like groups and rings, 

can be described as the algebras of an algebraic theory. 

A topological algebraic theory is an algebraic theory 

where the sets of operations have a topology. Ordinary algebraic 

theories can be considered as being topologized by the discrete 

topology. A topological algebra over a topological theory has 

the obvious definition. 

The interest in topological theories has not arisen 

from the study of objects like topological rings; but, rather 

from the study of iterated loop spaces. One of the early examples 

of a topological theory was Stasheff 's (HV) A -spaces, which can 

easily be seen to be the algebras of the appropriate theory. 

Stasheff's work provides a good description of the theory of 

one-fold loop spaces. 

Important later results were obtained by Beck, and 

Boardman-Vogt and May. Beck (IH) showed that there is a theory 

resembling Q"s™ (=), which has the property that the algebras 

over this theory are n-fold loop spaces. Boardman-Vogt (HE,AS) 

and May (IL) showed that n-fold loop spaces can be approximated 

by the algebras over certain objects, known as props, out of which 

theories can be built, but which are, in some ways, more easily 

handled than theories. 
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An important element of all of this work has been the study 

of the free algebras over these theories, which exist by category 

theory. The free algebra on a space, for any theory whose algebras 

approximate n-fold loop spaces, must approximate (homotopically) the 

Q"s"™ functor. 

One problem with the standard constructions of 

free algebras has been the rigidity of the constructions for these 

objects. For this reason, the study of these objects, from a homotopy 

point of view, can be difficult. The main results of this thesis, 

Theorems III and IV, state that, for a certain sufficiently large 

class of algebras over a theory, the homotopy type of the free algebra 

can be approximated by the realization of a certain simplicial 

space, this realization being the homotopy free algebra [Anderson(HF)]. 

This allows the use of the standard techniques of simplicial theory 

in the study of these objects. 

In chapter two, theories and algebras over theories are 

defined, and some of the equivalent formulations of these objects 

‘are exhibited. In chapter three, a model category structure on 

the category of algebras over a theory is constructed, The importance 

of this wark is to show that the class of algebras for which the 

later results hold is large enough to approximate all the algebras. 

Chapter four is the proof that the construction of the homotopy 

free algebra produces a homotopy algebra. Chapter five contains 

the proofs of the main theorems. In the last chapter some examples 

‘and applications of the previous results are produced. These include 

a theorem describing the homology of a free algebra over a prop,
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and a computation of the homology of RS (X), for connected spaces 

X, based on this work. Other similar results in this line, have 

been proved by Fred Cohen (HL). 

In this paper I always work in simplicial sets, rather than 

topological spaces. Though the proofs seem to depend explicitly 

on the simplicial structure, they could, presumably, be translated 

into topological spaces. The problem with this translation seems 

to be the "cofibrancy' of the theories, and not that of the spaces. 

Lacking a good description of what a cofibrant theory is I have 

not made this translation. I should point out, however, that these 

results do apply to topological theories which are the realizations 

of simplicial theories.



Chapter II, Algebraic Theories 

At all times Sp (spaces) will refer to the category of 

simplicial sets, always considered to have the standard closed 

simplicial model category structure [Quillen(HA)]. Several times 

throughout the paper I will use standard constructions in category 

theory, which can be found in MacLane(CT). I will use the term 

simplicial category to mean a simplicial object in the category of 

categories which has the additional property that all of the 

face and degeneracy functors are isomorphisms on objects. Such 

an object should be thought of as a category in which the objects 

are endowed with a simplicial-set-valued hom. The underlying 

category of a simplicial category is the degree zero part of the 

simplicial category. I will sometimes use constructions such as Kan 

extension in simplicial categories, or in more general simplicial 

objects in the category of categories. When I do this I will 

mean that the construction is to be done in each degree, and 

then pieced together to form a simplicial object. Finally, I will 

follow MaclLane's convention, and take the symbol C(a,b) to mean the 

morphisms in the category C from the object a to the object b. 

Let N be the opposite category to the category of finite sets, 

the empty set included. Following Lawvere(AT), define a simplicial 

algebraic theory as a functor T:N - T where T is a simplicial 

category, T is an isomorphism on objects, and the collection of 

maps T(p,):T(n) + T(1) represent T(n) as the product of n copies 

of T(1). (p, in T(n,1l) is the dual to the map 1 + n of finite sets 

4
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taking 1l€l to i€n. This map corresponds to the projection onto 

the jth factor.) Note that the identity functor Id, :N N is an 

algebraic theory, since the finite set with n elements is the n-fold 

coproduct of the finite set with one element, 

In the future the objects of T will be writtemas 0, 1, ..., n, ... . 

The identity morphism on any object will in general be denoted 

as Id, or id_. 

The condition for a theory implies that the map 

I1(p):Tm,n) ~ T(m,1)" is an isomorphism. We will use this to 

formulate an equivalent, but more useful definition of a simplicial 

theory. If T is a simplicial theory, let T(n) = T(n,1). We have 

seen that T (m,n) ~ T(n)". We see also that the functor T induces a 

map x :N(n) ~ T(n). Composition induces a map T(m,n)*T(k,m) = T(k,n), 

and so a map I (m,1)xT(k,m) > T(k,1), which is a map T(m) XT (k) + T(k). 

I will call this map Cpe If we let (ce) ™:T(m) "xT (ik) "> T(k)™ represent 

the composition in T, then it is easy to see that the 

equation ci oid x(c)” = coc xidy holds, since this is just the 

associativity of composition in the category T. From this it is 

easy to see that a theory is just a collection of spaces T(n), and a 

collection of maps c2:T() xT (m)" + T(m), and maps x _:N(n) + T(n), 

for all integers m,n = 0, and such that the following relations hold: 

(i) the associativity of composition holds. 

(ii) the map cox xid |[{p, Tm": {p, Tm)" + T(m) is just projection 

onto the jth factor. | 

(iii) the map c eid |T(@)x{e }:T(m)xe ~ T(m) is the identity, 

where c €N(m)™ corresponds to the identity function m - m.



6 

Lemma 1. Any collection of spaces T(n), n = 0, together with maps 

c™:T (0) XT (m)™ -+ T(m), and x iN(n) ~ T(n), satisfying (i), (ii), and 

(iii), give rise to a category T and a functor T:N =» T , where the 

objects of T are 0,1, ..., and the morphisms T (m,n) > T(m)". The 

functor T is given by T(n) = n, and T:N(m,n) » T(m,n) is given by 

ns Further the functor T is a simplicial theory. 

Proof: The proof is straightforward. The associativity of composition 

is guaranteed by condition (i). Conditions (ii) and (iii) are used 

to verify that the identities behave properly. Condition (ii) 

also shows that T is a functor, and the fact that T is a theory 

follows from the definition of T (m,n). 

Given two theories S and T, S:N > 3S, T:N > T, then a functor 

¢:S »- T is a morphism of theories if ¢°S = T. In terms of 

Lemma 1 this is the same as having a collection of maps eo Sn) + T(), 

such that ¢ ox = x , and ¢ oc = cog x (op ye, We will write 
n n Tn m m m ‘nn om 

¢:S = T for such a ¢. Given any object XéSp we have a natural 

functor X:N - Sp by X(n) = x", and if a*¢N(m,n), (i.e. a:n > m, a 

map of finite sets), then X(a*) = GED GE a We define an algebra 

over T as a functor X:T = Sp such that the functor XoT is naturally 

isomorphic to the functor (1) ( we require that X(1) (1) = 

X(1) = X°T(1l)). We see that the functor X is an algebra over 

Id. We call the space X(1) the underlying space of X. 

Given two T-algebras X and Y, then a T-algebra morphism 

is a natural transformation n:X -» Y. We define the category T-Alg 

to be the full subcategory of the functor category F, (T,Sp) of 

functors from T to Sp, whose objects are the T-algebras. We see that
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the underlying space defines a functor U:T-Afg - Sp. 

Lemma 2. The category Id, -Alg is equivalent to the category Sp. 

Proof: The functor U and "7", exhibited above, provide 

the equivalence. 

In the future I shall tend to confuse 1d, -ALg and Sp. The importance 

of the lemma above is that it tells us that a homomorphism of 

algebras is determined by the map on the underlying spaces. 1l.e. 

the forgetful functor U:T-ALg - Sp is faithful, or one-to-one on 

morphisms. 

If we let X€Sp and define End, to be the full subcategory 

of Sp whose objects are xax 0, XT, ... 5 then X can be considered 

as a functor X:N - End, (if X=*, then we must make — etc. 

into different objects.) The condition for a theory is easily 

verified, so that X is a theory. Further; we see that a transformation 

@:T + X of theories is just a functor ¢:7T — End, with @oT = X, 

i.e. op is a T—-algebra. On the other hand, any T-algebra comes 

from a functor T — End, and therefore, we get the familiar result 

that the T-algebra structures on X correspond to morphisms 

of theories T - X. [See May(IL).] 

Combining the above observations and Lemma 1, we get the 

following result: 

Proposition 3. A T-algebra structure on a space X is given by 

a collection of maps 6(n) :T(n) xX" -+ X, such that: 

(i) 0(n) (p,»x,, coe »X_) =X, (i.e. 6(n) | {p, PX" is projection 

on the ; £0 factor.)
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(ii) B(m) ec = 6(n)eidx6(m) :T(n) xT (m) "xx" - X. 

Proof: The proof is immediate. Condition (i) is a normalization 

condition, while condition (ii) is the associativity of composition. 

Given two theories S and T, and a transformation ¢:S =» T, 

there is a functor ¢*:T-ALg -» S-ALg, given by ¢*(X) = Xep. Clearly 

Xop - is an algebra since composition with ¢ does not change 

the Id structure, which determines whether a functor is an algebra. 

Consider the diagram: 
eX 

T-Alg —— S-ALd 

A p% 1 

F (T,Sp) — F,(S,Sp) 

There is a standard construction for a left adjoint to the ¢* 

on the bottom line of the diagram, given by Lan’ [MacLane (CT) ]. 

Proposition 4. If X€S-A{g then Lan" (X) €T-ALg. 

I will defer the proof of this proposition until Chapter IV 

when it can be produced as a corollary to a more general theorem. 

This proposition does allow us to assert the following corollary 

"which states the existence of free algebras. 

Corollary: T-ALg (Lan”® (X),Y) ~ S-ALg(X,Yoqp). 

Proof: This is the definition of the left adjointness of Lan” in the 

functor categories above. Since T-ALg and S-ALg are full subcategories 

of the functor categories, then we only need to know that Lan” (X) 

is in T-A{Lg, but this is the proposition. 

If S = Id,, then ¢ = T above, and we write Lan® (X) = TX, 

which is the free T-algebra on the space X. For reference I state
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the following standard result [Beck(IH)]. 

Proposition 5. If X€Sp, and T is a simplicial theory, then TX is 

given as 2 X"'xT (n) /~, where ~ is the equivalence relation generated 

by (a(x),®) ~ (x,90a), where x€X", and 9€T(n), and a:m - n is a 

morphism in N(m,n). 

Note: If T is a theory, then T(n) is a T-algebra, given 

by the functor Fn:T - Sp by Fn(m) = T(n,m). The condition 

for Fn to be an algebra is the same as that for T to be a theory. 

The maps c are the structure maps for the algebra Fn. An obvious 

result is the fact that Fn is the free T-algebra on the set 

{ps coe s p_} C T(n), This follows easily from the fact that the 

element (Pp, cee P_) € Tn)" corresponds to the identity morphism 

in T(n,n) . 

There are two other types of algebraic structures which will 

be studied in this paper, which are similar to theories. These 

two objects are known as Pros and Props [Beck(HS), or Boardman-Vogt(AS)]. 

Let P be the category of finite ordered sets (the empty set included), 

where the morphisms are the monomorphisms. Let F be the category 

of monomorphisms of unordered sets. Note that Pcp in the obvious 

way. P_ differs from P in that ZL (the nth symmetric group) acts 

on n € P_ 

Definition: A Pro (Prop) A is a contravariant functor A:P(P ) = Sp, 

together with maps cp iA(m)*A(1,)> co xA(1 ) ~ A(1. + cee Ho), and a 

point ¢t € A(l), such that 

(1) AO) = *,
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(ii) the obvious associativity for c holds, 

(iii) © acts as a two sided identity for c, i.e. 

cr: {L}xA(n) + A(n), and cq. A@X{(Ly 0) > A), are the 

identity maps, 

((iv) and if A is a prop, c¢ satisfies the obvious equivariance 

relations, with respect to the actions of the symmetric groups on A.) 

Let N_ be the theory of based spaces. This theory is given 

by N, (0) a. the set with n elements and a base point, and the 

compositions given in the obvious way. It is easily verified that 

an N -algebra is just a base pointed space. If (X,x) is a based 

space, then X defines a covariant functor X:P_~ Sp, given 

by X(n) = XT, and if aim - n is a map in Ps then X(a) puts the 

jth coordinate of X in the a(i) th coordinate of XT, and makes the 

other coordinates the base point. 

Definition: If A is a pro (prop) then (X,x) is an A-algebra 

if there are based maps 6(n) :A(n) xX" -+ X, such that the relation 

6(n)° (idxX(a)) = 6(m)e(A(a)xid) :A(n) xX —- X holds for all aim -> n 

in P (Ps and such that 6 is compatible with the composition c. 

It is easy to show that there is a category of A-algebras, 

defined in the obvious way [cf. May(IL)], and a free A-algebra 

AX on any based space (X,x), which is the left adjoint to the 

forgetful functor A-Alg - Sp. In fact, 

AX is given in an analogous way to the construction of TX 

in Proposition 5. The following result of Beck(HS), is quoted to 

show that the category of A-algebras is the same as a category 

of algebras over a theory. This allows us to use the results of
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the next chapter when we are considering a pro or a prop, as well 

as when we are considering a theory. 

Proposition 6. If we let A be the category with objects 0, 1, ... . 

and A(m,n) = (Am), and if we let AN — A be the obvious functor, 

then the functor AeN, is a theory, and the functor A is a morphism 

of theories. Further; the forgetful functor A-Alg + A-Aflg is ad 

equivalence of categories. | 

Note from the proposition that An = A(n,1) = An. In fact 

it is clear that in order for the forgetful functor to be an 

equivalence of categories that it must be true that AX is isomorphic 

to Lan X for all based spaces X. 

One other concept I need to mention, is that of a monad (other- 

wise known as a triple.) If C is a category, then a monad in C is 

a functor T:C =» C together with natural transformations M:id, - T, 

and LT T, such that poTn = ponT = ids, and UoTu = Jo pT :T> - T, 

An algebra over T is an object X € C, together with a morphism 

£:TX - X, such that EonX = id, and EoTE = Eon. It is a standard 

‘result that T-algebra X in C has a simplicial resolution, where 

X is the augmentation of a simplicial C-object, whose nth degree 

is iy, and where the face maps are induced by pn and &, and 

the degeneracy maps are induced by m. (See Beck(IH), for more 

details.) The first degrees of this simplicial object look like: 

oi 
X ” 1x £7 1x Ce 

E “+ 
& 

The maps mM and NT are the contracting degeneracies, and are the
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only maps in the diagram which are not T-algebra morphisms. 

Any pair of adjoint functors induce a monad, which is the 

composition of the right adjoint with the left adjoint. Thus, if 

@:sS + T is a morphism of theories, then the functor e*oLan’:S-ALg 

S-ALg is a monad. It is interesting to note that the algebras over 

this monad are just the T-algebras in S-Afg, and that in fact the 

functor ¢* carries the category T-A{g to the category of e*oLan" 

algebras, and is an equivalence of categories.



Chapter III. The Model Category Structure on T-Afg 

The object of this chapter is to prove: 

Theorem: The category T-Afg is a closed simplicial model category. 

And, also, to understand the structure of T-A{g as a model 

category, It will be helpful to know the following proposition: 

Proposition 1. If F:Sp » Sp is a functor with a natural transformation 

eildg) ~ F, such that the natural map F(XxY) = F(X)xF(Y) is an 

isomorphism, then if X is a T-algebra, so is F(X). Further given 

another such functor G, and a natural transformation ¢:F = G, such 

that gee = ¢, then ¢o(X):F(X) » G(X) is a map of T-algebras. In 

articular the map ¢(X) :X =» F(X) is a map of T-algebras. 

Proof: Let 06(n):T(n)xX" —+ X be the structure map for X. The structure 

map for F(X) is given by the composition 

exid F(6(n)) 
T@)xFE)" ——— F(T(@))xFX)" = F(T(n) xX") ———— F(X) 

It is easy to verify that the fact that X is a T—-algebra implies 

the associativity of the T-algebra for F(X). The projections are 

correct because of the definition of the isomorphism F(X)" ~ F(X"). 

To verify that ¢(X) is a T-algebra map, it is enough to notice that 

¢ induces a map from the above diagram for the structure maps of 

F(X) to the corresponding ones of G(X). 

It will be important to know some category theoretic results 

about the category T-Aflg. 

13
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Proposition 2. The category T-Afg has images, i.e. given any 

T-algebra map £:X > Y then £(X) C Y is a sub T-algebra of Y. 

Proof: Obvious. 

Proposition 3. The functor U:T-Alg — Sp creates limits. 

Proof: This is the familiar result that the categorical product 

for groups, rings, etc. is gotten by taking the categorical product 

as sets and then giving the product the obvious structure as a 

group, ring, etc. This result holds for pullbacks, equalizers, and 

all other forms of inverse limit. 

Corollary: T-Afg has all small limits. 

Proof: Since U creates limits, and Sp has all small limits, then 

T-ALg has all small limits. 

Proposition 4. T-ALg has co-equalizers. 

Proof: Let D be the category - NE with two objects and two maps 

from the one to the other. There is a natural functor 

R:T-ALg — F,(D,T-ALg) which is the adjoint to the functor D — *, 

R preserves limits since they are computed degreewise in the functor 

category. Further it is easy to verify that the smallness condition 

necessary for the Freyd Adjoint Functor Theorem holds [MacLane(CT), 

page 117], since the category T-A£g has images. Thus by the 

Adjoint Functor Theorem there is an adjoint functor 

L:F,(D,T-ALg) -» T-ALg to the functor R. It is now easy to verify 

that L applied to any coequalizer diagram is the coequalizer of that 

diagram.
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Proposition 5. T-A{g has all small coproducts. 

Proof: Take a family {X_ toca of T-algebras. Consider the diagram: 

2H 

T(UTX ) ___ T(JUX ) ~ Z 

Te, 
where pn is the product in the monad determined by T, & is the 

structure map for Xx as a T-algebra, and Z is the coequalizer of the 

above diagram. Since T is a left adjoint then T(ZX ) = ST (X ), 

where @ is the categorical coproduct in T-A{g, and 2 is the disjoint 

union, which is the categorical coproduct in Sp. 

Given a collection of maps g XxX > Y, we get a map 

5g 13UX_ > UY, which gives a map T(ZUX ) + Y by the adjointness of 

T and U. This map equalizes the two arrows in the above diagram 

(since it does on each factor of the direct sum), and, therefore, 

we get a map g:Z =» Y extending each 8g xX, = ¥, which is uniquely 

determined, since it is on each IX . Thus Z = WX as desired. Q.E.D. 

Corollary: T-AfLg has all small co-limits, 

Proof: This follows as a standard result from the fact that T-AlLg 

has coequalizers and all small coproducts. 

We will say that an algebra T is discrete if the spaces 

I'(n) are discrete simplicial sets (i.e. the only non-degenerate 

simplices are in degree zero) for all n. It is clear that discrete 

algebras are just algebras in the sense of Lawvere(AT). In 

particular monoids, groups, abelian groups, etc. are discrete 

algebraic theories.
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If T is a simplicial theory, define T_(m) = (T(m)) that is 

the nth degree of the simplicial set T(m) . The sets T_ (m) fit 

together to form a theory (discrete). This allows us to consider 

a simplicial theory as a simplicial object in the category of theories. 

Given a theory T, let T be the nth degree of T, which is a discrete 

theory. If X is a T-algebra then Xx (the ntl degree of X) is a T 

algebra. Given a simplicial map a:m = n, we have a transformation 

of theories Ta:T > T , which induces transformations Ta*:T -Alg ~ 

T_-Alg, and Ta,:T -ALg > T_-Alg, where Ta, is the left adjoint 

of Ta* which is just the restriction of theories. If X is a T-algebra 

then in fact we can consider Xa:X Ta*(X ) and this will be a 

T -algebra map. Thus we can consider a simplicial algebra over a 

simplicial theory as a space X such that each X_ is a I -algebra, 

and such that the function Xa:X - Ta*(X ) is a T -algebra 

homomorphism. This gives us an alternative description of T-algebras 

which will be useful later. Anderson(TT) has used this description 

of simplicial theories to provide another proof that simplicial 

T-algebras form a model category. 

Consider the category of discrete algebras over a discrete 

theory. We define a projective T-algebra as a T-algebra which 

lifts through any map of T-algebras which is onto as sets. A 

projective extension is a map S + P, such that the dotted arrow 

exists (making the diagram commute) in any diagram of the form: 

S — A 

L.--") 
P — B where the morphism A - B is onto as sets. It 

is easy to verify that any map of the form S + SWF, where F is a free
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algebra, that is F = TX, for some set X, is a projective extension. 

Any projective object is a retract of a free object, 

and any projective extension is a retract of a free extension 

(that is one of the form S > SF.) 

Following Quillen(HA) define T-ALg(X®K,Y), where X, Y. € T-Alg, 

and K € Sp, to be the set of collections of maps (f_} ex such that 

if OER then SD Sa is a T -algebra map, and such that the relation 

Yaof = f oXa, where a:m > n is a simplicial map. It is easy to 

verify that T-ALg(-®-,-) defines a functor T-ALg°PxSp°PxT-ALg + Sp. 

Definition: T-ALg(X,Y) € Sp for X, Y € T-Alg, is given by T-Alg (X,Y) = 

T-ALg (XRA",Y) . 

By the arguments above, we see that T-A{g defines a functor 

T-ALg°PxT-ALg + Sp, Given f = {f_} ¢ T-ALg(X®K,Y), and 

g = {g J € T-ALg(Y®K,Z), then we can define gof € T-Aflg(X&K,Z) 

by the formula (gof) = g of This product allows us to define 

a composition T-ALg (X,Y) XT-ALg (Y,Z) + T-ALg(X,Z). It is clear that 

T-Alg (X,Y) , & T-ALg(X,Y). In fact, if f€ T-ALg(X,Y) 

and g ¢ T-ALg(Y,2) then the composition gos (£) from the above 

composition, is the same as that that arises from the fact that 

T-ALg(X@K,Y) is a functor. This shows that the composition above 

defines a simplicial category structure on the category T-Alg. 

Given X € T-A{g and K € Sp, define the object X®&K € T-Alg, 

by (XK) = otk Fy) , where © is the coproduct as T —algebras. 

Given a:m - n, a simplicial map, let i :X > &(X ) be the inclusion,
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then define (X¥K) a to make the relation (XK) aed = Ta*(i__)eXa hold. 

Since we have defined (X®K)a to be a T —algebra map, then X®K € T-ALg. 

Fur ther, a map f € T-ALg((X®K),Y), is a collection of maps LPR SR 

for all oo ¢€ K > such that the relation Yaeof = nS £2 This is 

just the definition of a map in T-ALg(X®K,Y). In fact there is a map 

canonical map in T~ALg(X&K, (X&)) which induces this isomorphism. 

Thus we have shown: 

Proposition 6. There is a natural isomorphism of T-Afg (X%K,Y) 

to T-ALg((X=K),Y). 

Prom now on I will use the terminology T-ALg(X®K,Y) to mean 

either of the two sets above. 

Define m:K -» T-ALg(X,X®K) as follows: if oc € K_ then n(o) 

equals X20: X®A" + X&K, where o:A" - K is the standard map. It is 

easy to verify that my is a simplicial map. 

Proposition 7. The composition KxT-ALg(X®K,Y) — 

T-ALg (X,XeK) xT-ALg (X&K,Y) —» T-ALg(X,Y) has an adjoint 

T-ALg (X2K,Y) = Sp(K,T-ALg(X,Y)), which is an isomorphism. 

Note: Sp(K,L) is the simplicial function space Le. 

Proof: By definition T-ALg (XRAY) ~ Sp(A",T-ALg (X,Y). Since 

both of these functors commute with colimits in the A" variable 

this is also true with A" replaced by any simplicial set K. Finally, 

it is enough to see that from the definitions all that is required 

is that X®W(KxXL) = (XK)®L, for any simplicial sets K and L, which 

is clearly true. 

Given a simplicial set K, define f € T-ALg" (X¥K,Y) , to be
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a simplicial map f:XxK - Y, such that f |X x{c} ~ Yo is a T -algebra 

map for all o € K . It is easy to see that a map in T-ALgt (XK, Y) 

is the same as a map in T-ALg(X®K,Y), and that in fact there is 

a natural map in T-ALgY (XxK, ¥3K) which induces this isomorphism. 

Proposition 8. f:XxK + Y, a simplicial map, is in T-ALgt (XxK, Y) 

if and only if the diagram, 

idxshuffle idx f 
T(n)xX "XK ———— T(n)x (XxK)" ————— T(n)xY" 

| 6(n)xid c 16 (n) 

XxK _—m™m™m™®m™m™®$m™®™®$§m——000—0—————— Y 

commutes, where 6(n), is the structure map for X or Y as a T-algebra, 

and shuffle is the obvious shuffle and diagonal homomorphism. 

Proof: Write down what it means for the above diagram to commute, 

and it is clear that this is the same condition as the one that 

is required for f to be a T-ALgE map. 

A map in 1-ALG should be thought of as a collection of 

maps X + Y parametrized by the points of K. Thus a map in T-ALg" (XXT,Y) 

is the analogous concept to the idea of homotopy of T-algebra 

‘morphisms, going through T-algebra morphisms. 

We know that the functor (-)%: Sp ~ Sp, has the properties 

of Proposition 1, where the natural transformation X + xX is given 

as the adjoint to the map K + * of simplicial sets. Thus if X 

is a T—-algebra then x" is also a T-algebra; further, the map 

x" Sx induced by a simplicial map K - L is a T-algebra map. 

Proposition 9. Given X,Y € T-ALg, and K € Sp, and f:X*K — Y, 

with adjoint f:X » rr, then f € 1- ALF (XK, Y) if and only if
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£ € T-ALg (X,Y). 

Proof: The diagram that is required for f to be a T-algebra morphism 

is the adjoint to the diagram of Proposition 8. Thus the one diagram 

commutes if and only if the other diagram commutes, thus f is a 

T-Alg" morphism if and only if f is a T-algebra morphism. 

This proposition shows us that T-ALg" (XXK,Y) ~ T-ARg (X,Y) . 

We also know that the relation xk ~ x (KXL) holds, since it holds 

for simplicial sets. Thus we can put these results together and 

get that T-ALg (X,Y) > T-ALG(X¥K,Y) ~ Sp(K,T-ALg(X,Y)). Thus we 

have shown: 

Proposition 10. T-Afg is a simplicial category with objects X®K and 

x for all X € T-Alg, and K ¢€ Sp. [ see Quillen (HA) ] 

We are now ready for the main result of this chapter: 

Theorem I. The category T-Aflg is a closed simplicial model category, 

where £:X » Y is a weak equivalence (resp. fibration), if it is 

on the underlying simplicial set, and is a cofibration if it has 

the lifting property with respect to all trivial fibrationms. 

Proof: We have verified that T-Afg is both small complete and 

cocomplete (i.e. that is has all small limits and colimits). 

From the properties of Sp it is immediate that weak equivalences 

compose and cancel, and that a map which is a retract of a weak 

equivalence or a fibration is a weak equivalence or fibration, 

respectively. The definition implies that any retract of a 

cofibration is a cofibration, and that cofibrations lift against 

trivial fibrations. Next we consider the factorizations.
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Proposition 11. Every T-algebra homomorphism f may be factored 

as £f = pei, where i is a cofibration and p is a trivial fibration. 

Proof: Use the "small object argument" [Quillen(HA), Ch. II, page 3.3], 

with the models T (34M) C TA", This inclusion is a cofibration, since 

it lifts against any trivial fibration If K is a finite simplicial 

set, TK will be a sequentially small T-algebra. Solving all 

lifting problems of the form T(3A™) C TA" is the same as solving lifting 

problems of the form dA" ¢ A" on the underlying simplicial sets; 

and, this lifting problem can be solved if and only if the map in 

question is a trival fibration. Thus, every map can be factored 

as a cofibration and a trivial fibration. 

Proposition 12. Every T-algebra homomorphism can be factored as 

f = poi, where i is a trivial cofibration, and p is a fibration. 

Proof: Use the small object argument again, using the models 

T(A) c TA", This will factor any map as a fibration, and a map 

which lifts against all fibrations (which is the property that 

describes a trivial cofibration in a closed model category.) 

Thus we only need to show that a map which lifts against all 

fibrations is a trivial cofibration. ) 

We note that the Kan Ex functor is a functor satisfying 

the conditions of Proposition 1. Thus if X is a T-algebra, then 

there is a natural map X > Ex (X), which is a T-algebra homomorphism,’ 

and the algebra Ex (X) is a Kan complex, and so a fibrant T-algebra. 

[See Kan(EX).] It is clear that any map which lifts against all 

fibrations, a priori lifts againgt trivial fibrations, and is therefore 

a cofibration. It is sufficient, therefore, to show that such a
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map is a weak equivalence. This is done by using the argument that 

appears in Quillen(HA), Ch. II, page 4.9. The important point 

of this argument is the existence of the space Ex (X), which allows 

us to find a fibrant approximation to any T-algebra. Therefore, 

any map can be factored as a trivial cofibration and a fibration. Q.E.D. 

The only thing left for a closed model category is to show 

that any trivial cofibration lifts against any fibration. However, 

the map which is constructed in Proposition 12 lifts against any 

fibration. Any cofibration which is also a weak equivalence may 

be retracted from such a map by liting in the diagram: 

X Ls 7 

£0 lo 
Y —> Y Where f is a trivial cofibration, and p and i 

are constructed from Proposition 12. Since f is a weak equivalence, so 

is p. The lifting makes the morphism f a retract of the morphism 

i, and since i lifts against all fibrations, then f will also 

lift against all fibratiomns. 

We have now shown that T-ALg is a closed model category. 

All that is left to show is that the simplicial structure is 

compatible with the model category structure. To show this it is 

enough to show that the maps gL IRIN JAD on and x" » xleds (o3¥ 

Y Y 

are (trivial) fibrations when f:X = Y is a (trivial) fibration. 

This is clear since these limits are computed on the underlying 

spaces, and these maps have the desired properties in Sp. Therefore, 

T-ALg is a closed simplicial model category. Q.E.D.
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Given a morphism of algebras ¢:S =- T, we know that there 

are adjoint functors ¢* and Lan’, between the categories S-Afg, 

and T-ALg. As a result of the theorem, ¢* preserves fibrations 

and weak equivalences, since ¢* does not change the underlying spaces. 

Lan’ must preserve cofibrations since it is adjoint to ¢*, and ¢¥* 

preserves trivial fibrations. It is also true that 

S-ALg (X,p*(Y)) ~ T-ALg (Lan"X,Y), since o* (VN = ox (x), since these 

are also computed on the underlying spaces. Thus, in particular, 

it is true that Lan” (X&K) ~ Lan" (X)&K. By Reedy(HM), we can now 

conclude that Lan” preserves weak equivalences of cofibrant objects. 

Therefore, we have adjoints R(¢*), and L(Lan") between the homotopy 

categories Ho S-ALg, and Ho T-ALg. Therefore, Lan’ can be restricted 

to the homotopy categories, and is computed by restricting consideration 

to the cofibrant objects. 

It is also interesting to know when the above pair of adjoints 

provide an equivalence of categories. From Quillen(HA), this pair 

of adjoints is an equivalence of categories if whenever X is a 

cofibrant S-algebra, and Y is a fibrant T-algebra, then a map 

X = ¢*(Y) is a weak equivalence if and only if the map Lan X — Y 

is a weak equivalence. By considering the composition 

X > @*Lan"X + ¢*(Y), where the second map comes from a map Lan'X - Y, 

it is easy to see that the required condition holds if and only if 

the adjunction morphism X - ¢*(Lan X) is a weak equivalence for all 

cofibrant T-algebras X. 

The later work requires a better understanding of 

cofibrations and cofibrant objects in the category T-Alg.



24 

In order to discuss cofibrancy, it is necessary to discuss the 

skeleton and coskeleton functors, since these are the functors 

that are used to construct liftings of simplicial maps inductively 

by degree. Formally, the skeleton and coskeleton are the left and 

right adjoint, respectively, to the functor which takes a simplicial 

object and truncates it above some degree. In fact, the skeleton 

and coskeleton are left and right adjoints to each other. In the 

category T-Alg it is easy to construct the coskeleton, since it 

is constructed on the underlying spaces. This works since the 

standard coskeleton functor on simplicial sets satisfies the conditions 

of Proposition 1; and therefore, is constructed as it is on simplicial 

sets. It is somewhat harder to construct the skeleton in the case 

of algebraic theories; however, it can be verified that the kth 

degree of the nth skeleton (skel (X),) is given by the requirements 

skel (X), = T(s 0) 4 (X,) and the following diagram is a pushout: 

aint La* (skel ,(X) ) > ain re (X)) 

J } 
skel =, (X), ——————— skel (X), 

A further discussion of the skeleton and coskeleton, and their uses 

in constructing liftings can be found in Reedy (HM). 

Proposition 13. In the category T-ALg a morphism i:A - B is a 

cofibration if and only if the function skel _.(B) VA > B_ (where 

the wedge is a pushout over skel _. (A) ) is a projective extension 

of T_-algebras, for all n.
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Proof: only if: It is easy to see that if K € LL is an inclusion 

of simplicial sets, then TK - TL is a free extension. It is also 

true that the pushout of a map satisfying the property also satisfies 

the property. Therefore, the cofibration constructed in Proposition 

11 satisfies the property in question. Since any cofibration can 

be retracted from such a map, and it is clear that the retract 

of any map satisfying the property also satisfies the property, 

then any cofibration satisfies this property. 

if: Given a lifting problem: 

A> X 

Lod 
B—+Y where p is a trivial fibration, then we construct 

the lifting inductively by degrees. In degree zero, Po is onto, 

and 1, is a projective extension, so that a lifting exists. 

Assuming that we have constructed a lifting through degree n-1, 

we then have a diagram: 

skel 108) Virel (A) A 7 A 
n-1""""n 

' | 
5 — cosk 1X) X osk (Y) ps 

n-1"" "n 

A lifting in this diagram will give us an extension of the lifting 

to degree n [Reedy(HM)]. The left hand map above is a projective 

extension by assumption. The right hand map above is the same 

EY A" 
set map as degree zero of the map X +X "on" Y . Since 

the map X + Y is a trivial fibration of simplicial sets, then 

this map is also a trivial fibration of simplicial sets, and is 

therefore onto in degree zero. Thus the right hand map above
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is an onto map of T -algebras; and, therefore, the lifting exists, 

which extends the lifting we are constructing to degree n. Therefore, 

any map satisfying the property is a cofibration. Q.E.D. 

Corollary: If X is a cofibrant T-algebra, then X is a projective 

T -algebra for all n. 

Proof: A cofibrant T-algebra, by the proposition, is one in which 

the map skel ,(X)_ > X_ is a projective extension for all n. It 

is obvious that a projective extension from a projective maps to 

a projective. Thus, we only need to show that the skeleta of X 

are degreewise projective. We do this inductively. Skel  (X) is 

degreewise projective, since by Xx is a projective T,-algebra. 

From the pushout diagram for skel (X), we see that the fact 

that skel ,(X) ~X is a projective extension, and the fact 

that skel _.(X) is degreewise projective, we can conclude 

that skel (X) is degreewise projective. Thus in particular, X 

is also degreewise projective. Q.E.D. 

It is this description of cofibrant T-algebras, together 

with the result that L(Lan") only needs to be computed on the 

cofibrant algebras, that will allow us to produce the results 

of Chapter V.



Chapter IV. Homotopy Algebras. 

In this chapter the concept of a homotopy T-algebra is 

defined, and some of the elementary theorems about them are discussed. 

There are several ideas about what a homotopy T-algebra should 

be. For the purposes of this paper I will use a definition due to 

Segal (HE) . 

Definition: Let T:N - T be a simplicial theory. A homotopy 

T-algebra is a simplicial functor X:T - Sp such that 

It n 
£12.) :X(n) -» X(1) 

is a weak homotopy equivalence. (X(0) - * is also a weak homotopy 

equivalence.) 

A map of homotopy T-algebras is a homotopy natural trans- 

formation, in the sense of Anderson(HF). The space X(1) is the 

"underlying space' of X. X will be said to admit the structure 

of a homotopy T-algebra if it is the "underlying space' of some 

homotopy T-algebra. (T)-ALg will be the category of homotopy T-algebras. 

It is true, for Xam complexes, that admitting the structure of a 

T-algebra is an invariant of homotopy type. If X and Y are homotopy 

T-algebras, then we define XY ory to be the homotopy classes 

of homotopy T-algebra maps from X to Y. 

Given a natural transformation of theories ¢:S = T, then 

we know that there is a functor (T)-ALg - (S)-ALg, given by restriction. 

From Anderson(HF), there is a functor LAN": (S)-ALg — (T) -ALg 

(homotopy left Kan extension), which has the property that there 

is an isomorpism [X,0%(¥) ] (gy = [LAN®(X),Y] (0. 

27
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The functor LAN® (X) is given as the realization of a 

collection of simplicial spaces. For n€S let L” (X) be the simplicial 

space given by: 

L°(X), = (ngs 2 yn ) X(T) *S (gm) coe Sn yn ) xT (ny 4) 

where (n,, coe 0) is a k+l tuple of objects of S. (IZ is the disjoint 

union of simplicial sets.) The jen face map is gotten by eliminating 

the object n, by composition. The jth degeneracy map is gotten 

by doubling the object n_, and inserting parallel to the ideniity 

in the factor Sn ,n.). It is easy to verify that this 1s a simplicial 

space. We define LAN? (X) (n) = lL> x, where ||-|| is the realization 

of a bisimplicial set (i.e. its diagonal.) Examination of the 

complex L”(X) shows that Lan” (X) (n) is the coequalizer of d, and 

d, going from degree one to degree zero. 

Each map p,m + 1 in N induces a map Lp, X11 (0 +L] (X), 

by taking the term T(n, ,n) to T(n, ,1) by composition with p_ 

LL ¢ CIS ae 
Theorem II. The map p21lp (01 (0 > LX) , is a simplicial 

homotopy equivalence, for all n=0. [See May(SO) |] 

Corollary: LAN? (X) is a homotopy T-algebra. 

Proof: |-| commutes with products, and preserves homotopy equivalences; 

thus, the map which is required to be a weak equivalence is, by 

the theorem. 

Corollary: If X is an S-algebra, then Lan" (X) is a T-algebra. 

Proof: The simplicial homotopy equivalence above will induce an 

isomorphism on PY which is just: the coequalizer of d, and d,
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Therefore Lan’ (X) will preserve products on the nose, which is the 

condition required for Lan’ (X) to be a T-algebra. 

The rest of this chapter will be devoted to the proof 

of Theorem II. 

Let I and J be discrete categories. Let R:I = J and 

L:J - I, be right and left adjoints respectively. Define C, (J;F) 

where F:J - Set is a functor, by C, (J5F) = ZF (3) where 

o = (3, > eed) is a k-path in J, and 2 is the disjoint union of 

sets. We give C,(J;F) the obvious face and degeneracy functions 

to make it a simplicial set. There are two maps we wish to consider. 

R,:C,(I;FeR) ~ C,(J;F) is given by FoR(1,)  ~ F(R, Jp 

L,:C (J;F) » C,(I;FoR) is given by FM3 FG) 5 > FeR(L], Ig os 

where Nyt dy > RL], is the unit of the adjunction between R and L. 

It is easy to verify that R, and L, are simplicial maps. 

We now construct two simplicial homotopies. (We use the 

definition of a simplicial homotopy found in May(SO).) Define 

h':id ~ RL, by ho :C, (J;F) > Cy 11 JF) by FG), F(j, ) m, where 

0" is the k+l-path (3+ +3 2RLY ~...9RLj). The map j = RLj 

is the unit of the adjunction Mj). Define h®:L, oR, ~ id by 

h takes FeR(4,) to FoR(LRi, ) my by F(MRL, ), where "0 is the k+1l-path 

given by (LRi, =>... .2LRi -1 =>...=1.). The function LRi > 1 

is the counit of the adjunction (ei). It is easy to verify that 

the maps defined provide a simplicial homotopy between the maps claimed. 

The only observation that needs to be made is that the composition 

Re€i°eNRi = id, for all objects 1 € I. (This follows from the fact 

that L and R are adjoint.)
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Given ¢:S - T a morphism of algebraic theories, then consider 

n 
Pp iS T There are natural functors p: (o, |n) > (9, 41) , and 

p: (9 $1)" > (9,40), where (om) is the comma category of morphisms 

in § over the object m € T. The functor p is given on objects by 

p(a) = (pea, cen P20), where a:k - n is a morphism in T, and 

p in > 1 is the jth projection. The functor p is given on objects 

by pla, s oo ya) = (a, X...xa ), where a, tk, 1 are morphisms in 

T and Ay Xe pe Xa tk Xeu Xk -+ n is their product. p and p are left 

and right adjoints. The unit of the adjunction is induced by the 

diagonal map k - kx...xk, where the product is taken k times. The 

co-unit of the adjunction is induced by the projections 

k Xe ooXK —> k.. 

1 n i 

If we let mz: (on) + S be the standard functor, then the 

preceeding work gives us a natural homotopy equivalence 

n : : 
Cy (9) |) 5Xom ) ~ Cy (C0, J1) 3 Xow _°p). Since this homotopy equivalence 

is natural, we can piece it together to get a simplicial homotopy 

equivalence of simplicial spaces Cy (on) ;Xom ) ~ Cy (91) "5Xem op). 

It is now easy to verify that Cy ((@n);Xom ) = 1° (X), 

d that C, ((p]1)";Xem op) = C, (()1);Xom )" = 1L7(X)", and that an d Je P ’ n © — ok ¢ b 1 — 1 y dll 

p, is the product of the projections. Since realization of 

bisimplicial sets commutes with products, and preserves homotopies, 

then realizing the above homotopy will provide the desired homotopy 

¢ ~ P n equivalence LAN" (X) (n) LAN" (X)(1) . Q.E.D.



Chapter V. The Main Theorem 

We know from chapter III that there is a natural transformation 

LAN” (X) - Lan” (X), when ¢ is a morphism of theories. It is natural 

to ask what the relationship between these two objects is. 

Theorem III. Let ¢:5 -~ T be a morphism of theories, and let X 

be a cofibrant S-algebra, then the map LAN? (X) - Lan” (X) is a 

weak homotopy equivalence. 

Proof: We proceed in stages. First assume that ¢:S + T is a morphism, 

where S and T are discrete theories. Take X = Sn, where n = {1,...,n}, 

so that X is the free S~algebra on n points. X is a discrete 

S-algebra. Note that in this case Lan® (X) is a discrete algebra, 

and LAN” (X) is a simplicial set. Lan” (X) is isomorphic to 

Tn, since by the adjointness Lan” (X) must be the free T-algebra 

on n points. We identify Lan” (X) and Tn by making the inclusions 

of the set n in each agree. There is a distinguished element 

x € (Tn), given by » = (1,.,..,n)., nn is distinguished by the following: 

‘Lemma: Given any x € (Tn) &, there is a unique ¥ € T(n,k) such that 

x = 09). (V(n) is the element given by the action of the operation 

V on the element x. This can be described in this way since we 

are. taking everything to be discrete.) 

Proof: This is easy once we identify Tn = T(n). Then we see that 

(Tn) * = T(n,k), and that x ¢€ (Tn)" corresponds to the identity element 

in T(n,n). The result of the lemma then reduces to the fact that 

the identity element is an identity element for the composition in 

T. 

31
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Now consider the map LAN’ (X) - Lan” (X), where we now 

identify X = Sn, and Lan” (X) ~ Tn. The complex L7 (Sn) is, in this 

case, a simplicial set, since all of the objects involved are 

discrete. Since Tn is the coequalizer of d, and d, >» then we can 

consider Tn as augmenting the complex L7 (Sn). Write L7 (Sn) (-1) = Tn, 

and the map L; (Sn) (0) ~ Tn as dg L; (Sn) is now an augmented 

simplicial set. We want to find a map s_;:L7 (Sn) (s) » L7 (Sn) (s+1) 

s = =1, which satisfies the simplicial identities. If we can do 

this, then this extra degeneracy provides a homotopy equivalence 

IL] (sn) || ~ Tn [May(S0)]. 
To construct S_1s take a typical point (X,0;5000,0 50) 

in L7 (Sn) (s) , s = 0, where x € (sn) XO, a, € Sk, sk.) and 0 € Tk), 

where the k. are objects in S. Write x = NCOP where ay € S(n,k,) 

is the unique element provided by the lemma. Define 

s_1(%,a,5...5a_,9) = (L008 50000 50), For the case s = -1, 

define s_; (x) = (x,9), where x € Tn, and ¥ € T(n) is the unique 

element such that x = 0(x). It is easy to verify that this extra 

degeneracy satisfies the simplicial identities, and that it, therefore, 

provides a contraction of the complex L7 (Sn) to Tn. 

Having shown that the theorem is true in this special case 

we first extend to the case where X = S(A), where A is any discrete 

set. Write A = colim F, where F runs over the finite subsets of A. 

F CA 

Then Lan” (X) £ colim Lan’ (SF), and LAN’ (X) & colim LAN’ (SF), 

since both of these functors commute with filtered direct limits. 

We know that the map LAN” (SF) + Lan’ (SF) is a weak homotopy equivalence,
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since F = n for some n, and we have proved the theorem in that case. 

Since this is a filtered colimit, and filtered colimits commute 

with homotopy groups, then we see that the map LAN? (X) - Lan” (X) 

must be a weak homotopy equivalence in this case. 

Now let X be a discrete projective S-algebra. Since X 

is projective we can retract X from a free S-algebra, SA. We then 

see that the map LANY (X) —-» Lan’ (X) can be retracted from the map 

LAN” (SA) — Lan’ (SA). Since the second map is a weak equivalence, 

and since the retract of a weak homotopy equivalence is a weak 

homotopy equivalence, then the map LAN® (X) - Lan” (X) is a weak 

homotopy equivalence. 

We are now ready to consider the general case. ¢:S => T is 

a morphism of simplicial theories, and X is a cofibrant S-algebra. 

lle see that there are morphisms ¢_:S_ T of discrete theories, 

and that each X_ is a discrete projective S, algebra. Thus by the 

previous work, the map LAN'D(X ) Lan 0 (X ) is a weak homotopy 

equivalence. 

Consider the complex L] (X), which is augmented by the 

space Lan’ (X). L; (X) is a bisimplicial set, and its vertical 

realization and horizontal realization are the same as its diagonal. 

In particular, we see that each horizontal section of LX) is 

L 0X), which is augmented by the algebra Lan’ P(X ). So we see 

that the vertical realization is LAN’ (X) = Inge] — |Lan"n (xX) | = 

Lan’ (X). Thus we need only know that the realization of a degreewise 

weak equivalence is again a weak equivalence; however, this is
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known [Reedy (HM)]. Thus LAN® (X) — Lan” (X) is a weak homotopy 

equivalence, when X is a cofibrant S-algebra. Q.E.D. 

It will be useful to know the analog of the above theorem 

when we are working in the case of a pro or a prop, especially since 

many of the theories that are of interest arise in this manner. 

When we are considering the case of a prop 

some restriction on the prop is necessary. We say that a prop is 

»—free if the nth symmetric group Z_ acts freely on the space A(n). 

We further assume that if A is a Z-free prop, then A comes equipped: 

with a choice (not necessarily natural) of one representative 

of every orbit class in A. Given this condition we can now formulate 

a uniqueness property analogous to the one in the Lemma to Theorem III. 

Proposition 1. If A is a pro or a Z-free prop, then given any 

y € AX, where X is a based space, there exists a unique (x,v), 

where x € x<, 9 € A(k), none of the coordinates of x are at 

the basepoint, U(x) = y (and if A is a prop, UV is the representative 

of its orbit class.) 

"Proof: AX = ZX XA (n) /~. Take k minimal such that y = 1x” ,97 |, 

where x” ¢€ x< 0” € A(k), and |x, | is the equivalence class of 

(x,9). Let © be the representative of the orbit class of v7, 

then 0° = don, where m ¢ Z_ Thus |x” ,9" | = |x”, Oo | = Im (x"),9]. 

Let x = n(x”). If x has a component at the base point, then there 

is an a:m — k, such that x = a(z), where z € x, But, then, we 

would have |x,9| = |z,9°a|, which would contradict the minimality 

of k. Thus, the pair (x,0) satisfies the condition of the proposition.
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We now prove uniqueness. 

Lemma. Let a(x) = B(x”) ¢ x", where x € X<, and x’ ¢€ x", and such 

that x has no. components which are the base point. Then there exists 

a ytk > m such that x’ = y(x), and Boy = a. 

Proof: take j € k. Then we must have that a(j) = B(j’), for some 

unique j’ € m, since the a(5) PR component of a(x) is not the base 

point, and BB is one-to-one. Then Bey = a. Since B:X > Xx" 

is a monomorphism, then B(x”) = Bey(x) implies that x’ = v(x). 

Suppose, now, that (a(x),9’) = (B(x"),0’), so that 

x,0°°a] =|x”,9”°8|; and that the element x has no base point components. 

Then the lemma above constructs a Y such that x” = v(x), and so 

that 9%ea = (0“ eBoy. In particular, if 9 oa = 9, then © = (07 ~B)ey. 

This shows that if |x” 0] = |x,9], then there is a ¥ such that 

x” = y(x), and ¥ = ¥”0oy. Thus, if we have two elements satisfying 

the conditions of the proposition, then they must be connected by 

a permutation. But, the group of permutations acts freely on A(n), 

so that the condition that V be the representative of its orbit 

class means that any two elements satisfying the conditions must 

be equal. 

Corollary: Given (x”,07) € X"xA (n), then let (x,9) be the pair 

chosen by the proposition (i.e. |x” ,97 |= |x,9].) Then there exists 

a unique a:k > n, such that x” = a(x), and 0 = 97a 

Proof: (see above). 

Theorem IV, If A is a pro or a 2-free prop, then LAN" (x) ~ AX 

is a weak homotopy equivalence.
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Proof: (Note that LAN (X) = LT, where Ly (X) is the complex 

constructed analogously to L.(X).) As before we need only prove 

this when A is discrete, and X is a discrete based set. (Note that 

discrete based sets are always the free based set on the set minus 

the base point.) 

As before we consider AX as augmenting LX), and attempt 

to construct an s_,. Given y € AX, let (x50) be the unique 

pair constructed by the previous proposition. Define s_,(y) = (x 500). 

Given a typical element (x,0750005a 0) € Ly (0), then let y €¢ AX 

be the element |x,90a co... 0a |. By the corollary, there is a unique 

ay such that x = (xy) and such that Joa o...0a 0a, = D- 

Define s_1(x,0,5..05a 50) = (X050550750 005050). The simplicial 

relations follow from the uniqueness of aye Thus the result is 

true for discrete pros and props and discrete sets, and thus, 

as in the previous theorem, it is also true for simplicial pros 

and props and spaces. Q.E.D. 

Note: This result also follows from a result of Ron Williams 

which states that if A is the theory derived from A and oN + A 

is the standard morphism, then LAN (X) ~ LANY (X) is a weak homotopy 

equivalence. 

There is another filtration on AX (or TX) which is standardly 

used [May(IL)]. This filtration has FAX is the image of ZX XAG) 

(respectively 5 XT (Kk) in AX. If we let FLAN (X)) be the 

subcomplex generated by sequences (kgs eoesk ) such that k, = P 

for all i, then we see that FLAN (X) ~ FAK.
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Corollary: The map FLAN (X) > F AX is a weak homotopy equivalence. 

Proof: Examination of the proof of the theorem shows that S_1 

respects the filtration. Thus the same proof applies. 

It is also the case that the corollary is true for TX. 

However, the proof given for Theorem III does not preserve 

filtrations. It is the case, however, that there is a two stage 

homotopy contracting the complex in Theorem III that does preserve 

the filtration. 

Corollary: [Beck(HS)] If ¢:S + T is a morphism of theories, 

such that ¢(n):S(n) » T(n) is a weak equivalence for all n, 

then ¢X:SX - TX is a weak homotopy equivalence for all X, 

and the categories HoS-Afg and HoT-Afg are equivalent. 

Proof: It is immediate that ¢ induces a degreewise weak equivalence 

L) (X) ~ L, (X). Since the realization of a degreewise weak 

equivalence is a weak equivalence [Reedy(HM)], then theorem III 

shows that ¢X:SX + TX is a weak homotopy equivalence. 

As for the second part, let id:S += S be the identity 

morphism, It is immediate that Lan*9 (x) = X for any S~algebra X. 

For any cofibrant S—-algebra, there is a natural transformation 

L714 (x) > 17 (X), which is a degreewise weak equivalence. Thus, again 

LAN d(x) » LAN? (x) is a weak equivalence, and so by Theorem III 

X - Lan’ (X) is a weak equivalence. But this is the condition required 

for HoS-ALg - HoT-ALg to be an equivalence of categories. Q.E.D.



Chapter VI. Examples and Applications 

In this chapter I will discuss some examples of pros, props 

and theories, and show some of the reasons for pursuing the previous 

results. 

Example 1. Let A and E be the props defined by A(n) = *, 

and E(n) = W2_, the contractible space on which 2 acts freely. 

The structure of A as a prop is obvious. The structure of E as 

a prop is given by the wreath product. There is a morphism of 

props ¢:E - A. Note that E is a Z-free prop, and A is not. If 

Theorem IV were true for A then we would necesarily have EX — AX 

a weak homotopy equivalence, since ¢(n):E(n) - A(n) is, and so 

would induce a degreewise weak equivalence LT (%) > LT). It is 

easy to see that AX is the infinite symmetric product (free abelian 

monoid) on X, However, EX is known [Barratt(FG), for example] to 

be homotopy equivalent to QS (X) for connected spaces X. So the map 

EX - AX cannot be a weak homotopy equivalence, since, for example, 

EX is not a product of Eilenberg-MacLane spaces, and AX is. This 

‘example shows that Theorem IV does require the freeness of the 

symmetric group actions for props. 

The idea behind Theorems III and IV is to use these results 

to study the homology groups H, (Lan®X) = H, (LAN'X) for interesting ¢. 

Theorem III does show that H, (Lan"X;R) (R a ring) should depend 

only on the structure of C, (X;R) as an infinite homotopy S—-algebra, 

provided we understood exactly what that meant. However, this 

does show that if T is a theory, then H, (TX;Q) depends at most on 

38
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H,(X;Q) as a graded coalgebra, since by Quillen(RH) the infinite 

homotopy coalgebra structure on C, (X;Q) is determined by the 

coalgebra structure on H, (X;Q). 

In example four I will show why very general results 

of this sort are difficult to obtain. However, in the cases covered 

by Theorem IV we have the following result: 

Theorem V. If A is a pro or a 2-free prop, then H, (AX;R) is isomorphic 

oil, (amx™y/z 5p), where R is a principal ideal domain, and 

xto is the n-fold smash product of X. 

Proof: The idea of the proof is to use the fact that C, (X;R) is 

isomorphic to C, (X;R)¢R, naturally, since X is a base pointed space, 

and to exploit the observation that AX) = ZA(n) xX". 

Consider the complex Cy (LT (X)5R) winich is the simplicial 

chain complex gotten by taking the chains vertically. Cy (U7 (X)5R) 

(the kh vertical slice) is naturally chain equivalent to the chain 

complex Dy 1 = 8c, (x 0)ec, (Any), by the Eilenberg-zilber theorem. 

We then get a double complex D,, which is equivalent to the original 

‘complex. 

Consider C, (X). There is an equivariant collection 

of commuting projections on x" given by replacing the coordinates 

with basepoints. Let x, c X" be the subset complex where one 

or more coordinates are the base point. Then C, (X) =~ C, (X7,X) 4C, (X)) 

equivariantly, since Cy (X7,X) is the kernel of all the projections. 

In fact, we have the decomposition C, (X) = ac, X°,X), where a runs 

over all the ordered monomorphisms a:¢ — n.
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Define Dy _1° an augmentation to Dy x by 

Dy = 9[C, (X",X)8C, (A(m)]/Z and using the decomposition 

of C, (Xx) given above to define 40: Px ¢ > Dy 3 By choosing a 

basis for Cy (X7,X7) for each n, the proof of Theorem IV can now be 

repeated to show that 1 (,,), the horizontal homology, collapses 

onto an edge, so that Hy | = 0 if n>0, and Hy =Dy _ps naturally. 

Thus if tot(D,,) is the total complex, then we know that H(tot(D,,)) 

is isomorphic to HD, _q)- 

The only observation needed now is that H, (C, (X",X)8C, (A(n))/Z) 

is isomorphic to i (Amxx™)/z which is clearly true by 

the Eilenberg-Zilber Theorem. 

Corollary: If R is a field (or if H, (X;R) is a free R-module), 

then fi, (Axx 73) ~ 520 (A(n) 3H, (X)™) (the equivariant homology.) 

Proof: By an acyclic models argument, c, (A(m))ec, x!™) is chain 

equivalent (equivariantly) to c, (A(n))&C, (X)". If H, (X;R) is 

free, then C, (X) is chain equivalent to H, (X), thus giving the 

result. [See Dyer-Lashof (HI), Theorem 2.1, and following, for details]. 

Thus we see that if H, (X;R) is free then H, (AX;R) is isomorphic 

to GHD (An) 3, (GRD), Note that this implies that, for example, 

H, (A(S°vs™);2) is isomorphic to H, (A(CP?);2), at least as a graded 

group. Thus, even though s%ys® and cp? are two different spaces, 

they generate the same homology for H, (A(-)). Thus, for example, 

H, (2757 (CP?) = 1, (27s™(s%vs™)), at least as graded groups. 

Example 2. As an immediate consequence of the above 

result we can prove the known result that the homology of Q"'s™ (X)
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with field coefficients, depends only on the homology of X with 

coefficients in the same field. This is an immediate consequence 

of Theorem V, and the fact that there is a prop C_ [May (IL) |] such that 

the space CX) is homotopically equivalent to Q's"x, when X is connected. 

Thus by the above results, since we have seen that the homology 

of CX) depends only on the homology of X, then the homology of 

Q"'s"x, must depend only on the homology of X. 

Example 3. As another example of the results above, I will 

compute H, (EX;Z/2), where E is the prop of example one. 

Let J=(3qsee0sdp)s £=0, be a sequence of positive integers. 

J is admissible if Ji > 231 41° for 1<k<f, and iy> Jot. t],. 

We set rank(J) = 2”. Let {x} be a homogeneous basis for H, (X), then 

H, (EX) is isomorphic (as a graded group) to the polynomial algebra 

on the symbols Q(x.) of dimension 5425 be 420 +2’dim(x), 

where J is admissible. Note that this must surely be true as an 

algebra over the Dyer-Lashof algebra; but, I have not yet verified this. 

The proof is as follows: Let P be the polynomial algebra 

on the specified set of generators. Given a monomial Qp, (xp). Qy (3) 

then the rank of the monomial is the sum of the ranks of the Qj 

Let u_(P) C P be the subgroup generated by the rank m monomials. 

It is clear that P = 8m (FP), so we only need to show that 

U_(P) =H, (2 3H, (X)"), which is the term given by Theorem V. 

This is done by writing H, x)" as the direct sum of the 2/2[2_]-modules 

generated by the elementary tensors of basis elements. Any such 

tensor is 2 equivalent to some tensor of the form x 1®.. xs, 

where e;t...te_ = m. and X 7X, for i#j. For this element we get
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a copy of Hy (2g Xoo oX2 ) offset by the dimension of x; 1®.. ex 8 

appearing in Hy (25H, (X)7) 

Let A be the polynomial algebra generated by the symbols 

Q,(%) for some single generator x. Let U (A) be the rank m part 

of A. Then, since Hy (2g Xow x2) is isomophic to Hy (2g 08. BH, (2, J, 

then we only need to know that H, (2) =U (A). But this follows 

immediately from the computation of H, (2) in Nakaoka(SG), Theorem 6.3. 

This show that H, (EX52/2) is as claimed. 

We note that the class Q(x) ought to be the class 

Q+e+Qy, 0) in H, (EX), where Q, (x) is the standard Dyer-Lashof 

operation "I (x), where the dimension of x is n. 

Example 4. This final example is an attempt to show that 

the results that have been proved can be applied to examples that 

are different from the ones above, which are the types of examples 

which I had in mind when I pursued this work. 

Let G be a simplicial group, then there is a theory 

given by G(n) = GxN(n), with the proper composition. It is immediate 

that the G-algebras are just the G-spaces, in the ordinary sense. 

Let H be another simplicial group, and ¢:G - H a homomorphism of 

groups, then ¢ induces a morpism of theories ¢:G - H. It is easily 

verified that Lan” (X) = Xx H, and that LAN? (X) = (XxWG) x H, where 

WG is a contractible space on which G acts freely. 

A cofibrant G-space is just a free G-space, since any 

equivariant retract of a space on which G acts freely, must also 

have free G action. If we let H = {e}, the trivial group, in the 

above example, then the content of Theorem III is the standard
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result that X/G is homotopically equivalent to Xx WG. 

Homologically this example is more complicated than the 

previous ones. I believe it is the case that the groups H, (Xx WG) 

do not depend in any nice way on H _(X) and the action of H_(G) 

on H, (X). Thus, no result as nice as Theorem V is likely to exist 

in all of the cases covered by Theorem III. However, Theorem V 

does show that results about the homology in certain situations 

are available, 

As concluding remarks I would like to discuss some immediate 

areas of pursuit on these problems. First, Theorem V should be 

expanded to describe the complete structure on H, (AX;k), where 

k is a field. This would presumably include results giving the 

coalgebra structure and the Steenrod Algebra structure in terms 

of these structures on H, (X;k). This should also include a 

description of the structure that the homology of any algebra 

over A has, and possibly describe a convenient category of algebraic 

structures on graded groups where the homology of an algebra lies. 

A second area would be a description of the properties 

that a theory must have in order for a result like Theorem V 

to be true in that case. This would hopefully allow a direct 

discussion of objects like H, (R"s"(X)), for non-connected spaces 

X, which cannot directly arise from a prop, because of the inverses, 

but which do arise indirectly from props, e.g. by group completion, 

as is the case for "x" (x). 

A last possible area of research, which is tangential 

to the results of this paper, would be a description of what an
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infinite homotopy differential graded coalgebra structure is. (C,(X;Z/p) 

clearly should be one.) This would be designed to allow one to 

make the statement that H, (Lan’ (X)) depends only on the infinite 

homotopy S—algebra structure on Cc, (X). This might even include a 

model category structure on the homotopy coalgebras (or homotopy 

S-algebras), and also a theorem that the chains on a space constitute 

a good functor between these model categories. However, it is 

unfortunate that no result as nice as Quillen's(RH) is likely to 

be available here, since non-trivial higher operations do exist 

in the mod p homology of a space.
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