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ABSTRACT OF THE DISSERTATION

Homology of Algebraic Theories
by

Christopher Leonard Reedy

Doctor of Philosophy in Mathematics
University of California, San Diego, 1974

Professor Donald W. Anderson, Chairman

A model category structure on the category of simplicial
algebras over a simplicial theory is constructed. Given an
extension of theories, ¢:S - T, and an algebra over S, we construct
the free extension of this algebra to T. We define the homotopy
free extension to T by using the definition of Anderson (unpublished.)
It is shown that the natural map from the homotopy free extension
to the free extension is a weak homotdpy equivaience. This is
also shown to be the case for extensions from based spaces to the
algebras over pros and props with free symmetric group action.

A decomposition theorem for the homology of the free algebra for
this second extension is proved. As an example the graded group

structure of H*(QMSWX;Z/Z) for X a connected space is computed.
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Chapter I. Introduction.

The notion of an algebraic theory was originally introduced
by Lawvere(AT). An algebraic theory is basically a formal description
of a system of operations, satisfying certain relations, that can
act on a set. Familiar objects of algebra, like groups and rings,
can be described as the algebras of an algebraic theory.

A topological algebraic theory is an algebraic theory
where the sets of operations have a topology. Ordinary algebraic
theories can be considered as being topologized by the discrete
topology. A topological algebra over a topological theory has
the obvious definition.

The interest in topological theories has not arisen
from the study of objects like topological rings; but, rather
from the study of iterated loop spaces. One of the early examples
of a topological theory was Stasheff's(HV) Am—spaces, which can
easily be seen to be the algebras of the appropriate theory.
Stasheff's work provides a good description of the theory of
one-fold loop spaces.

Important later results were obtained by Beck, and
Boardman-Vogt and May. Beck(IH) showed that there is a theory
resembling Qnsn(—), which has the property that the algebras
over this theory are n-fold loop spaces. Boardman-Vogt (HE,AS)
and May(IL) showed that n-fold loop spaces can be approximated
by the algebras over certain objects, known as props, out of which
theories can be built, but which are, in some ways, more easily

handled than theories.



An important element of all of this work has been the study
of the free algebras over these theories, which exist by category
theory. The free algebra on a space, for any theory whose algebras
approximate n-fold loop spaces, must approximate (homotopically) the
Q"s™ functor.

One problem with the standard constructions of
free algebras has been the rigidity of the constructions for these
objects. For this reason, the study of these objects, from a homotopy
point of view, can be difficult. The main results of this thesis,
Theorems III and IV, state that, for a certain sufficiently large
class of algebras over a theory, the homotopy type of the free algebra
can be approximated by the realization of a certain simplicial
space, this realization being the homotopy free algebra [Anderson(HF)].
This allows the use of the standard techniques of simplicial theory

in the study of these objects.

In chapter two, theories and algebras over theories are
defined, and some of the equivalent formulations of these objects
‘are exhibited. In chapter three, a model category structure on
the category of algebras over a theory is constructed, The importance
of this werk is to show that the class of algebras for which the
later results hold is large enough to approximate all the algebras.
Chapter four is the proof that the construction of the homotopy
free algebra produces a homotopy algebra. Chapter five contains
the proofs of the main theorems. In the last chapter some examples
.and applications of the previous results are produced. These include

a theorem describing the homology of a free algebra over a prop,



and a computation of the homology of Qmsw(x), for connected spaces
X, based on this work. Other similar results in this line, have

been proved by Fred Cohen(HL).

In this paper I always work in simplicial sets, rather than
topological spaces. Though the proofs seem to depend explicitly
on the simplicial structure, they could, presumably, be translated
into topological spaces. The problem with this translation seems
to be the '"cofibrancy" of the theories, and not that of the spaces.
Lacking a good description of what a cofibrant theory is I have
not made this translation. I should point out, however, that these

results do apply to topological theories which are the realizations

of simplicial theories.



Chapter II., Algebraic Theories

At all times Sp (spaces) will refer to the category of
simp;icial sets, always considered to have the standard closed
simplicial model category structure [Quillen(HA)]. Several times
throughout the paper I will use standard constructions in category
theory, which can be found in MacLane(CT). I will use the term
simplicial category to mean a simplicial object in the category of
categories which has the additional property that all of the
face and degeneracy functors are isomorphisms on objects. Such
an object should be thought of as a category in which the objects
are endowed with a simplicial-set-valued hom. The underlying
category of a simplicial category is the degree zero part of the
simplicial category. I will sometimes use constructions such as Kan
extension in simplicial categories, or in more general simplicial
objects in the category of categories. When I do this I will
mean that the construction is to be done in each degree, and
then pieced together to form a simplicial object. Finally, I will
follow MaclLane's convention, and take the symbol C(a,b) to mean the

morphisms in the category C from the object a to the object b.

Let N be the opposite category to the category of finite sets,
the'empty set included. Following Lawvere(AT), define a simplicial
algebraic theory as a functor T:N - T where T is a simplicial
category, T is an isowmorphism on objects, and the collection of
maps T(pi):T(n) - T(1) represent T(n) as the product of n copies

of T(1). (pi in T(n,1) is the dual to the map 1 - n of finite sets



taking 1€1 to i€n. This map corresponds to the projection onto

the ith factor.) Note that the identity functor IdN:N -+ N is an
algebraic theory, since the finite set with n elements is the n-fold
coproduct of the finite set with one element,

In the future the objects of T will be written as 0, 1, ..., n, ... .
The identity morphism on any object will in general be denoted

as IdN or idn.

The condition for a theory implies that the map
iI;Ian(pi):T(m,n) - T(m,l)n is an isomorphism. We will use this to
formulate an equivalent, but more useful definition of a simplicial
theory. If T is a simplicial theory, let T(n) = T(n,1). We have
seen that T(m,n) = T(n)™. We see also that the functor T induces a
map Kn:N(n) - T(n). Composition induces a map T(m,n)xT (k,m) - T(k,n),
and so a map T(m,1)xT(k,m) - T(k,1), which is a map Tm)xT (&)™ - T(k).

I will call this map c If we let (ct)n:T(m)nXT(k)m* T represent

m
k.
the composition in T, then it is easy to see that the

nO

k

. mn _ m n . .m . R
1an(ck) = ¢ cm><1dk holds, since this is just the

equation c¢
associativity of composition in the category T. From this it is
easy to see that a theory is just a collection of spaces T(n), and a

collection of maps c;:T(n)XT(m)n -+ T(m), and maps xn:N(n) - T(n),

for all integers m,n = 0, and such that the following relations hold:

(i) the associativity of composition holds.

(ii) the map c:loxnxid[{pi}xT(m)n:{pi}xT(m)n -+ T(m) is just projection
onto the ith factor. |

(iii) the map c$°idxn:IT(m)X{om}:T(m)XLm -+ T(m) is the identity,

where LmEN(m)m corresponds to the identity function m - m.



Lemma 1. Any collection of spaces T(n), n =2 0, together with maps
c:l:T(n)XT(m)n -+ T(m), and xn:N(n) -+ T(n), satisfying (i), (ii), and
(iii), give rise to a category T and a functor T:N - T , where the
objects of T are 0,1, ..., and the morphisms T(m,n) = T(m)n. The
functor T is given by T(n) = n, and T:N(m,n) - T(m,n) is given by

x;. Further the functor T is a simplicial theory.

Proof: The proof is straightforward. The associativity of composition
is guaranteed by condition (i). Conditions (ii) and (iii) are used

to verify that the identities behave properly. Condition (ii)

also shows that T is a functor, and the fact that T is a theory

follows from the definition of T(m,n).

Given two theories S and T, S:N - S, Ti:N - T, then a functor
¢:S » T is a morphism of theories if ¢°S = T. In terms of
Lemma 1 this is the same as having a collection of maps @n:S(n) -+ T(),
such that ¢ ox = x , and @moc; = c§o¢nx(¢m)n. We will write
¢:S + T for such a ¢. Given any object X€éSp we have a natural
functor X£:N - Sp by X(n) = Xn, and if a*éN(m,n), (i.e. a:n > m, a
-map of finite sets), then ﬁ(a*) = Xa:Xm - Xn. We define an algebra
over T as a functor X:T - Sp such that the functor XoT is naturally
isomorphic to the functor le) ( we require that le)(l) =
X(1) = X°T(1)). We see that the functor X is an algebra over
IdN. We call the space X(1) the underlying space of X.

Given two T-algebras X and Y, then a T-algebra morphism
is a natural transformation r:X - Y. We define the category T-Afg
to be the full subcategory of the functor category F,(T,Sp) of

functors from T to Sp, whose objects are the T-algebras. We see that



the underlying space defines a functor U:T-Afg - Sp.

Lemma 2. The category IdN—Aﬂg is equivalent to the category Sp.
mnan

Proof: The functor U and » exhibited above, provide

the equivalence.

In the future I shall tend to confuse IdN—AKg and Sp. The iﬁ§0rtance
of the lemma above is that it tells us that a homomorphism of
algebras is determined by the map on the underlying spaces. 1I.e.
the forgetful functor U:T-ALg -+ Sp is faithful, or one-to-one on
morphisms.

If we let X€Sp and define Endx to be the full.subcategory
of Sp whose objects are *=X0, Xl, «es , then R can be consideredl
as a functor X:N - EndX. (if X=*, then we must make *,*1, etc.
into different objects.) The condition for a theory is easily
verified, so that % is a theory. Further; we see that a transformation
©:T » X of theories is just a functor ¢:T - Endx with @oT = X,
i.e. ¢ is a T-algebra. On the other hand, any T-algebra comes
from a functor T - EndX and therefore, we get the familiar result
that the T-algebra structures on X correspond to morphisms
of theories T - &. [See May(IL).]

Combining the above observations and Lemma 1, we get the
foliowing result:
Proposition 3. A T-algebra structure on a space X is given by
a collection of maps e(n):T(n)XXn -+ X, such that:
(i) G(n)(pi,xl, vee 43X ) = X (i.e. G(n)l{pi}xxn is projection

n

on the ith factor.)



(ii) e(m)oc:l = 0(n)oidx6(m)™: T(n)xT (m) *xx" - X.
Proof: The proof is immediate. Condition (i) is a normalization

condition, while condition (ii) is the associativity of composition.

Given two theories S and T, and a transformation ¢:S - T,
there is a functor ¢*:T-ALg - S-Afg, given by ¢*(X) = Xeqp. Clearly
Xop - 1is an algebra since composition with ¢ does not change
the IdN structure, which determines whether a functor is an algebra.

Consider the diagram:

(P*
T-Alg > S-Ald
LI N

F* (T,SP) - F* (Sasp)
There is a standard construction for a left adjoint to the ¢*

on the bottom line of the diagram, given by Lan” [MacLane(CT)].

Proposition 4. If X€S-Afg then LanQ(X)GT—Alg.

I will defer the proof of this proposition until Chapter IV
when it can be produced as a corollary to a more general theorem.
This proposition does allow us to assert the following corollary

"which states the existence of free algebras.

Corollary: T-Alg(Lan®(X),Y) = S-Alg(X,Yop).

¢ in the

Proof: This is the definition of the left adjointness of Lan
functor categories above. Since T-Afg and S-Alg are full subcategories

of the functor categories, then we only need to know that Lanw(X)J

is in T-A{g, but this is the proposition.

T
If S = IdN then ¢ = T above, and we write Lan (X) = TX,

which is the free T-algebra on the space X. For reference I state



the following standard result [Beck(IH)].

Proposition 5. If X¢Sp, and T is a simplicial theory, then TX is
given as % XHXT(n)ﬁw, where ~ is the equivalence relation generated
by (a(x),¥) ~ (x,%ca), where xEXm, and 9€T(n), and a:m - n is a

morphism in N(m,n).

Note: If T is a theory, then T(n) is a T-algebra, given
by the functor Fn:T - Sp by Fn(m) = T(n,m). The condition
for Fn to be an algebra is the same as that for T to be a theory.
The maps cz are the structure maps for the algebra Fn. An obvious
result is the fact that Fn is the free T-algebra on the set
{pl, e s pn} € T(n), This follows easily from the fact that the
element (pl, e pn) € T(n)n corresponds to the identity morphism

in T(n,n) .

There are two other types of algebraic structures which will
be studied in this paper, which are similar to theories. These
two objects are known as Pros and Props [Beck(HS), or Boardman-Vogt(AS)].
Let P be the category of finite ordered sets (the empty set included),
where the morphisms are the monomorphisms. Let Pa be the category
of monomorphisms of unordered sets. Note that PCPG in the obvious
way. Pc differs from P in that Zn (the nth symmetric group) acts

€ P,
o

on

I=]

Definition: A Pro (Prop) A is a contravariant functor A:P(PO) -+ Sp,
together with maps c?:A(n)xA(il)X “ee XA(in) *-A(il+ .o +in), and a
point ¢ € A(l), such that

(1) AC0) = *,
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(ii) the obvious associativity for c¢ holds,

(iii) ¢ acts as a two sided identity for c, i.e.

n

clz{L}XA(n) -+ A(n), and ¢
n 1,...,

1:A(n)X{(L,...,L)} -+ A(n), are the
identity maps,

((iv) and if A is a prop, c satisfies the obvious equivariance

relations, with respect to the actions of the symmetric groups on A.)

Let Nb be the theory of based spaces. This theory is given
by Nb(n) = gf, the set with n elements and a base point, and the
compositions given in the obvious way. It is easily verified that
an Nb—algebra is just a base pointed space. If (X,x) is a based
space, then X defines a covariant functor X:PO - Sp, given
by X(n) = Xn, and if a:m -+ n is a map in PO, then X(a) puts the
ith coordinate of X" in the a(i)th coordinate of Xn, and makes the
other coordinates the base point.

Definition: If A is a pro (prop) then (X,x) is an A-algebra

if there are based maps G(n):A(n)xXn - X, such that the relation
6(n)° (idxxX(a)) = 6(m)e°(A(a)xid) :A(n)*xX" - X holds for all a:im - n
in P (Po)’ and such that 6 is compatible with the composition c.

It is easy to show that there is a category of A-algebras,
defined in the obvious way [cf. May(IL)], and a free A-algebra
AX on any based space (X,x), which is the left adjoint to the
forgetful functor A-Alg - Sp. In fact,

AX is given in an analogous way to the construction of TX
in Proposition 5. The following result of Beck(HS), is quoted to

show that the category of A-algebras is the same as a category

of algebras over a theory. This allows us to use the results of



the next chapter when we are considering a pro or a prop, as well
as when we are considering a theory.

Proposition 6. If we let A be the category with objects 0, 1, ... .
and A(m,n) = (Aggn, and if we let A:Nb ~+ A be the obvious functor,

~

then the functor §°Nb is a theory, and the functor A is a morphism
of theories. Further; the forgetful functor A-Afg - A-ALg is an
equivalence of categories.

Note from the proposition that An = A(n,1) = An. In fact
it is clear that in order for the forgetful functor to be an
equivalence of categories that it must be true that AX is isomorphic

~

A
to Lan X for all based spaces X.

One other concept I need to mention, is that of a monad (other-
wise known as a triple.) If C is a category, then a monad in C is
a functor T:C = C together with natural transformations n:idC - T,
and u:T2 - T, such that peTn = penT = idc, and poTu = uou’I‘:T3 - T,
An algebra over T is an object X € C, together with a morphism
£:TX - X, such thét EonX = idX, and EoTE = Eop., It is a standard
‘result that T-algebra X in C has a simplicial resolution, where
X is the augmentation of a simplicial C-object, whose nth degree
is Tn+lx, and where the face maps are induced by p and &, and

the degeneracy maps are induced by m. (See Beck(IH), for more

details.) The first degrees of this simplicial object look like:

TX ...

R
~ 5T

The maps M and nT are the contracting degeneracies, and are the

11
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only maps in the diagram which are not T-algebra morphisms.

Any pair of adjoint functors induce a monad, which is the
composition of the right adjoint with the left adjoint. Thus, if
¢:S -+ T is a morphism of theories, then the functor w*oLanw:S—Aﬂg -
S-Alg is a monad. It is interesting to note that the algebras over
this monad are jus; the T-algebras in S-Afg, and that in fact the
¢

functor ¢* carries the category T-Afg to the category of ¢*cLan

algebras, and is an equivalence of categories.



Chapter III, The Model Category Structure on T-Alg

The object of this chapter is to prove:

Theorem: The category T-Afg is a closed simplicial model category.

And, also, to understand the structure of T-A{g as a model

category., It will be helpful to know the following proposition:

Proposition 1. If F:Sp - Sp is a functor with a natural transformation
e:IdSp -+ F, such that the natural map F(XxY) - F(X)xF(Y) is an
isomorphism, then if X is a T-algebra, so is F(X). Further given
another such functor G, and a natural transformation ¢:F - G, such

that goe = g, then ¢(X):F(X) - G(X) is a map of T-algebras. In
ﬁarticular the map e(X):X - F(X) is a map of T-algebras.

Proof: Let e(n):T(n)xXn -+ X be the structure map for X. The structure

map for F(X) is given by the composition

n gxid n o F(6(n))
T@)XFEX) —— F(T@))xFX) =2 F(T@)xX) — F(X)

It is easy to verify that the fact that X is a T-algebra implies
the associativity of the T-algebra for F(X). The projections are
correct because of the definition of the isomorphism F(X)n ~ F(Xn).
To verify that ¢(X) is a T-algebra map, it is enough to notice that
¢ induces a map from the above diagram for the structure maps of

F(X) to the corresponding ones of G(X).

It will be important to know some category theoretic results

about the category T-Afg.

13



Proposition 2. The category T-Afg has images, i.e. given any
T-algébra map £:X - Y then £(X) € Y is a sub T-algebra of Y.

Proof: Obvious.

Proposition 3. The functor U:T-ALg - Sp creates limits.

Proof: This is the familiar result that the categorical product
for groups, rings, etc. is gotten by taking the categorical product
as sets and then giving the product the obvious structure as a
group, ring, etc. This result holds for pullbacks, equalizers, and
all other forms of inverse limit.

Corollary: T-Aflg has all small limits.

Proof: Since U creates limits, and Sp has all small limits, then

T-Afg has all small limits.

Proposition 4. T-Afg has co-equalizers.

. -
Proof: Let D be the category - L, ° with two objects and two maps

from the one to the other. There is a natural functor

R:T-ALg — F*(D,T—Aﬂg) which is the adjoint to the functor D — *,

R preserves limits since they are computed degreewise in the functor
category. Further it is easy to verify that the smallness condition
necessary for the Freyd Adjoint Functor Theorem holds [MacLane(CT),
page 117], since the category T-Afg has images. Thus by the
Adjoint Functor Theorem there is an adjoint functor

L:F, (D,T-ALg) - T-Alg to the functor R. It is now easy to verify
that L applied to any coequalizer diagram is the coequalizer of that

diagram.

14



Proposition 5. T-A{g has all small coproducts.
Proof: Take a family {Xa}aéA of T-algebras. Consider the diagram:
Zu

T(ZUTX ) ) TQUX ) - 2
@ "a —/ "d T«

55

where p is the prodpct in the monad determined by T, Ea is the
structure map for Xa as a T-algebra, and Z is the coequalizer of the
above diagram. Since T is a left adjoint then T(éxa) = gm(xa),
where & is the categorical coproduct in T-Afg, and Z is the disjoint
union, which is the categorical coproduct in Sp.

Given a collection of maps gCL:X(I - Y, we get a map
ééa:éUXa -+ UY, which gives a map T(éUXa) -+ Y by the adjointness of
T and U. This map equalizes the two arrows in the above diagram
(since it does on each factor of the direct sum), and, therefore,
we get a map g:Z - Y extending each ga:Xa -+ Y, which is uniquely
determined, since it is on each TXa‘ Thus Z = gxa as desired. Q.E.D.
Corollary: T-Afg has all small co-limits.
Proof: This follows as a standard result from the fact that T-Afg

has coequalizers and all small coproducts.

We will say that an algebra T is discrete if the spaces
T(n) are discrete simplicial sets (i.e. the only non-degenerate
simplices are in degree zero) for all n. It is clear that discrete
algebras are just algebras in the sense of Lawvere(AT). In
particular monoids, groups, abelian groups, etc. are discrete

algebraic theories.

15



If T is a simplicial theory, define Tn(m) = (T(m))n that is
the nth degree of the simplicial set T(m), The sets Tn(m) fit
together to form a theory (discrete). This allows us to consider
a éimplicial theory as a simplicial object in the category of theories.
Given a theory T, let Tn be the nth degree of T, which is a discrete
theory. If X is a.T—algebra then Xn (the nthdegree of X) is a Tn
algebra. Given a simplicial map a:m -+ n, we have a transformation
'of theories Ta:Tm -> Tn’ which induces transformations Ta*:Tn—Aﬂg ->
Tm—AKg, and Ta*:Tm—AZg - Tn—Aﬂg, where Ta, is the left adjoint
of Ta* which is just the restriction of theories. If X is a T-algebra
then in fact we can consider ch:Xm -+ Ta*(Xn) and this will be a
Tm—algebra map. Thus we can consider a simplicial algebra over a
simplicial theory as a space X such that each Xn is a Tn—algebra,
and such that the function Xa:Xm - Ta*(Xn) is a Tm-algebra
homomorphism. This gives us an alternative description of T-algebras
which will be useful later. Anderson(TT) has used this description
of simplicial theories to provide another proof that simplicial

T-algebras form a model category.

Consider the category of discrete algebras over a discrete
theory. We define a projective T-algebra as a T-algebra which
lifts through any map of T-algebras which is onto as sets. A
projective extension is a map S - P, such that the dotted arrow
exists (making the diagram commute) in any diagram of the form:

S —a;A
Lk

P where the morphism A - B is onto as sets. It

is easy to verify that any map of the form S - S4¢F, where F is a free

16
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algebra, that is F = TX, for some set X, is a projective extension.
Any projective object is a retract of a free object,
and any projective extension is a retract of a free extension

(that is one of the form S - S¥F.)

Following Quillen(HA) define T-ALg(X®K,Y), where X, Y. € T-Alg,
and K € Sp, to be the set of collections of maps {fO}OEK such that
if 06K then f :X -+ Y 1is a T -algebra map, and such that the relation
m o 'm m m

YaofO = facoXa, where a:m - n is a simplicial map. It is easy to

verify that T-Afg(-®-,-) defines a functor T-ALg°PxSp°Pxr-Alg -+ Sp.

Definition: T-ALg(X,Y) € Sp for X, Y € T-Alg, is given by T—_AK&(X,Y,)n =
T-ALg (X2A™,Y) .

By the arguments above, we see that T-ALg defines a functor
T-ALg°PxT-ALg - Sp. Given f = {£_} € T-ALg(X&K,Y), and
g = {gc} € T-ALg(Y8K,Z), then we can define gof € T-Afg(X®K,Z)
by the formula (gof)o = goofc' This product allows us to define
a composition I&A&gﬂX,Y)XI:Aﬁg(Y,Z) + T-ALg(X,Z). It is clear that
L—_A_KQ_(X,Y)O = T-ALg(X,Y). In fact, if f€ T-ALg(X,Y)
and g € I:A@gﬂY,Z)n then the composition gosg(f) from the above
composition, is the same as that that arises from the fact that
T-ALg(X@K,Y) is a functor. This shows that the composition above

defines a simplicial category structure on the category T-Afg.

Given X € T-Afg and K € Sp, define the object X®&K € T-Alg,

by (XQiK)m = o%km(xm) , where © is the coproduct as Tm-algebras.

Given a:m - n, a simplicial map, let i :X - ¥(X ) be the inclusion,
o m o mo
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then aefine (X¥K)a to make the relation (X@K)GOiG = Ta*(iac)oxa hold.
Since we have defined (X%K)a to be a Tm—algebra map, then X8K € T-Alg.
Further, a map f € T-A£g((X®K),Y), is a collection of maps fiX > Y
for all o € K, such that the relation Yaef_ = f _°Xa. This is
just the definition of a map in T-ALg(X®K,Y). In fact there is a map
canonical map in T~A£g(X®K, (X®)) which induces this isomorphism.
Thus we have shown:
Proposition 6. There is a natural isomorphism of T-Afg(X®K,Y)
to T-ALg((X=K),Y).

Prom now on I will use the terminology T-Afg(X®K,Y) to mean

either of the two sets above.

Define m:K -+ T-ALg(X,X®K) as follows: if o € Km then (o)
equals X@o: XA ~ X&K, where o:A" > K is the standard map. It is
easy to verify that m is a simplicial map.

Proposition 7. The composition KxT-A£g(X®K,Y) -

T-ALg (X,XeK) xT-ALg (X®K,Y) - T-ALg(X,Y) has an adjoint

T-AZg (X*K,Y) - Sp(K,T-ALg(X,Y)), which is an isomorphism.

Note: Sp(K,L) is the simplicial function space LK.

Proof: By definition T-ALg(X®A",Y) = Sp(A",T-ALg(X,Y)). Since

both of these functors commute with colimits in the A" variable
this is also true with A" replaced by any simplicial set K. Finally,
it is enough to see that from the definitions all that is required
is that X®¥(KxL) = (X$K)&L, for any simplicial sets K and L, which

is clearly true.

Given a simplicial set K, define f € T—AEQP(XXK,Y), to be



a simplicial map f£:XxK - Y, such that fmIXmX{c}-+ Ym is a Tm-algebra
map for all o € Km. It is easy to see that a map in TqAﬂgP(XXK,Y)
is the same as a map in T-ALg(¥®K,Y), and that in fact there is

a natural map in T—AZgP(XXK,X8K) which induces this isomorphism.
Proposition 8. £f:XxK -+ Y, a simplicial map, is in T—AﬂgP(XXK,Y)

if and only if the diagram,

. idxshuffle . idx " .
T(n)xX xK > T(a)x (XxK)  ——— T(n)xY
l 6 (n)xid p Le(n)
XxK > Y

commutes, where 6(n), is the structure map for X or Y as a T-algebra,
and shuffle is the obvious shuffle and diagonal homomorphism.

Proof: Write down what it means for the above diagram to commute,

and it is clear that this is the same condition as the one that

is required for f to be a T—Ang map.

A map in T-AZQP should be thought of as a collection of
maps X - Y parametrized by the points of K. Thus a map in T—AZQP(XXI,Y)
is the analogous concept to the idea of homotopy of T-algebra

‘morphisms, going through T-algebra morphisms.

We know that the functor (—)K:Sp--> Sp, has the properties
of Proposition 1, where the natural transformation X — XK is given
as the adjoint to the map K -+ * of simplicial sets. Thus if X
is a T-algebra then XK is also a T-algebra; further, the map

XL - XK induced by a simplicial map K »+ L is a T-algebra map.

Proposition 9. Given X,Y € T-A4g, and K € Sp, and f:XXK ~ Y,

with adjoint £:x - YK, then f € T-AﬁgP(XXK,Y) if and only if
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£ € T-Alg(X,Y5).

Proof: The diagram that is required for f to be a T-algebra morphism
is the adjoint to the diagram of Proposition 8. Thus the one diagram
commutes if and only if the other diagram commutes, thus f is a

T—AigP morphism if and only if f is a T-algebra morphism.

{

This proposition shows us that T—AZgP(XXK,Y) o~ T—Aﬂg(X,YK).
We also know that the relation (XK)L &~ X(KXL) holds, since it holds
for simplicial sets. Thus we can put these results together and
get that E_@g_(X,YK) gT-_AzﬂP(XXK,Y) =~ Sp(K,T-ALg(X,Y)). Thus we
have shown:
Proposition 10. T-Afg is a simplicial category with objects X®K and

XK for all X € T-Afg, and K € Sp; [see Quillen(HA)]

We are now ready for the main result of this chapter:
Theorem I. The category T-Alg is a closed simplicial model category,
where f:X - Y is a weak equivalence (resp. fibration), if it is
on the underlying simplicial set, and is a cofibration if it has
the lifting property with respect to all trivial fibratioms.
Proof: We have verified that T-Alg is both small complete and
cocomplete (i.e. that is has all small limits and colimits).
From the properties of Sp it is immediate that weak equivalences
compose and cancel, and that a map which is a retract of a weak
equivalence or a fibration is a weak equivalence or fibrationm,
respectively. The definition implies that any retract of a
cofibration is a cofibration, and that cofibrations lift against

trivial fibrations. Next we consider the factorizatioms.



21

Proposition 11. Every T-algebra homomorphism f may be factored

as f = pei, where i is a cofibration and p is a trivial fibration.
Proof: Use the "small object argument" [Quillen(HA), Ch. II, page 3.3],
with the models T(3A™) ¢ TA™. This inclusion is a cofibration, since

it lifts against any trivial fibration If K is a finite simplicial
set, TK will be a sequentially small T-algebra. Solying all

lifting problems of the form T(aAn) c TA" is the same as solving lifting
problems of the form aA™ ¢ A" on the underlying simplicial sets;

and, this lifting problem can be solved if and only if the map in
question is a trival fibration. Thus, every map can be factored

as a cofibration and a trivial fibration.

Proposition 12, Every T-algebra homomorphism can be factored as
f = poi, where i is a trivial cofibration, and p is a fibrationm.
Proof: Use the small object argument again, using the models
T(AE) c 7", This will factor any map as a fibration, and a map
which lifts against all fibrations (which is the property that
describes a trivial cofibration in a closed model category.)
‘Thus we only need to show that a map which lifts against all
fibrations is a trivial cofibration.

We note that the Kan Ex functor is a functor satisfying
the conditions of Proposition 1. Thus if X is a T-algebra, then
there is a natural map X *-Exw(x), which is a T-algebra homomorphism,’
and the algebra Exm(X) is a Kan complex, and so a fibrant T-algebra.
[See Kan(EX).] It is clear that any map which lifts against all
fibrations, a priori lifts againgt trivial fibrations, and is therefore

a cofibration. It is sufficient, therefore, to show that such a



map is a weak equivalence. This is done by using the argument that
appears in Quillen(HA), Ch. II, page 4.9. The important point

of this argument is the existence of the space Exm(X), which allows
us to find a fibrant approximation to any T-algebra. Therefore,

any map can be factored as a trivial cofibration and a fibration. Q.E.D.

The only thing left for a closed model category is to show
that any trivial cofibration lifts against any fibration. Howevyer,
the map which is constructed in Proposition 12 1lifts against any
fibration. Any cofibration which is also a weak equivalence may
be retracted from such a map by liting in the diagram:

X = Z

£l
Y — Y Where f is a trivial cofibration, and p and i
are constructed from Proposition 12. Since f is a weak equivalence, so
is p. The lifting makes the morphism f a retract of the morphism
i, and since i lifts against all fibrations, then f will also
1lift against all fibrations.
We have now shown that T-A£g is a closed model category.
All that is left to show is that the simplicial structure is
compatible with the model category structure. To show this it is
n n n
enough to show that the maps XA - XaA X n YA , and XI - X{e}x YI,
aA {e}
Y Y
are (trivial) fibrations when f:X - Y is a (trivial) fibration.
This is clear since these limits are computed on the underlying

spaces, and these maps have the desired properties in Sp. Therefore,

T-ALg is a closed simplicial model category. Q.E.D.
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Given a morphism of algebras ¢:S - T, we know thaf there
are adjoint functors ¢* and Lan®, between the categories S-ALg,
and T-ALg. As a result of the theorem, ¢* preserves fibrations
and ‘weak equivalences, since ¢* does not change the underlying spaces.
Lan® must preserve cofibrations since it is adjoint_to ¢*, and o*
preserves trivial fibrations' It is also true that
S-ALg (X,0*(Y)) E__:AﬁQ(Lan¢X,Y), since cp*(Y)K 95@*(YK), since these
are also computed on the underlying spaces. Thus, in particular,
it is true that Lanw(XQK)éz Lanw(X)QK. By Reedy(HM), we can now

¢

conclude that Lan” preserves weak equivalences of cofibrant objects.

Therefore, we have adjoints g(w*), and L(Lanw) between the homotopy

categories Ho S-ALg, and Ho T-ALg. Therefore, Lan®

can be restricted
to the homotopy categories, and is computed by restricting consideration
to the cofibrant objects.

It is also interesting to know when the above pair of adjoints
provide an equivalence of categories. From Quillen(HA), this pair
of adjoints is an equivalence of categories if whenever X is a
cofibrant S-algebra, and Y is a fibrant T-algebra, then a map
X - ¢o*(Y) is a weak equivalence if and only if the map Lan®X - Y
is a weak equivalence.. By considering the composition
X - @*Lanmx - ¢*(Y), where the second map comes from a map Lanwx -Y,
it is easy to see that the required condition holds if and only if

the adjunction morphism X - ¢*(Lan X) is a weak equivalence for all

cofibrant T-algebras X.

The later work requires a better understanding of

cofibrations and cofibrant objects in the category T-Afg.
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In order to discuss cofibrancy, it is necessary to discuss the

skeleton and coskeleton functors, since these are the functors

that are used to construct liftings of simplicial maps inductively

by degree. Formally, the skeleton and coskeleton are the left and
right adjoint, respectively, to the functor which takes a simplicial
object and truncates it above some degree. In fact, the skeleton

and coskeleton are left and right adjoints to each other. In the
category T-ALg it is easy to construct the coskeleton, since it

is constructed on the underlying spaces. This works since the

standard coskeleton functor on simplicial sets satisfies the conditions
of Proposition 1; and therefore, is constructed as it is on simplicial
sets. It is somewhat harder to construct the skeleton in the case

of algebraic theories; however, it can be verified that the kth

degree of the nth skeleton (skeln(X)k) is given by the requirements

skelO(X)k = T(sg)*(XO) and the following diagram is a pushout:

* .
a:n@» kTa (Skeln—l(x)n) - a:n@+ k

Y |

—_—
skeln_l(X)k skeln(X)

Ta*(Xn)

k

A further discussion of the skeleton and coskeleton, and their uses

in constructing liftings can be found in Reedy(HM).

Proposition 13. In the category T-A{g a morphism i:A -+ B is a
cofibration if and only if the function skeln_l(B)nvAn - Bn (where
the wedge is a pushout over Skelnhl(A)n) is a projective extension

of Tn—algebras, for all n.
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Proof: only if: It is easy to see that if K € L is an inclusion
of simplicial sets, then TK - TL is a free extension. It is also
true that the pushout of a map satisfying the property also satisfies
the property. Therefore, the cofibration conétructed in Proposition
11 satisfies the property in question. Since any cofibration can
be retracted from such a map, and it is clear that the retract
of any map satisfying the property also satisfies the property,
then any cofibration satisfies this property.

if: Given a lifting problem:

A->X

Lo

B—>Y where p is a trivial fibration, then we construct
the lifting inductively by degrees. In degree zero, Py is onto,
and iO is a projective extension, so that a lifting exists.
Assuming that we have constructed a lifting through degree n-1,
we then have a diagram:

A - X
skeln_l(A)n n n

| 4
)

skeln_l(B)nv

X Y
n COSkn-l(Y)n n

Bn — coskn_l

A lifting in this diagram will give us an extension of the lifting
to degree n [Reedy(HM)]. The left hand map above is a projective

extension by assumption. The right hand map above is the same
n 3P AR
set map as degree zero of the map X~ —+ X = X 5 Y . Since
Y

the map X - Y is a trivial fibration of simplicial sets, then
this map is also a trivial fibration of simplicial sets, and is

therefore onto in degree zero. Thus the right hand map above
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is an onto map of Tn-algebras; and, therefore, the lifting exists,
which extends the lifting we are constructing to degree n. Therefore,

any map satisfying the property is a cofibration. Q.E.D.

Corollary: 1If X is a cofibrant T-algebra, then Xn is a projective
analgebra for all n.

Proof: A cofibrant T-algebra, by the proposition, is one in which
the map skeln__l(X)n - Xn is a projective extension for all n. It
is obvious that. a projective extension from a projective maps to

a projective. Thus, we only need to show that the skeleta of X
are degreewise projective. We do this inductively. SkelO(X) is
degreewise projective, since by X

is a projective T, -algebra.

0 0
From the pushout diagram for skeln(X), we see that the fact

that skeln_l(X)n *-Xn is a projective extension, and the fact
that skeln_l(X) is degreewise projective, we can conclude

that skeln(X) is degreewise projective. Thus in particular, X.

is also degreewise projective. Q.E.D.

It is this description of cofibrant T-algebras, together
with the result that E(Lanw) only needs to be computed on the
cofibrant algebras, that will allow us to produce the results

of Chapter V.



Chapter IV. Homotopy Algebras.

In this chapter the concept of a homotopy T-algebra is
defined, and some of the elementary theorems about them are discussed.
There are several ideas about what a homotopy T-algebra should
be. For the purposes of this paper I will use a definition due to

Segal (HE) .

Definition: Let T:N - T be a simplicial theory. A homotopy
T-algebra is a simplicial functor X:T - Sp such that

ﬁ, n

i=lX(pi)'X(n) -+ X(1)

is a weak homotopy equivalence. (X(0) -+ * is also a weak homotopy

equivalence.)

A map of homotopy T-algebras is a homotopy natural trans-
formation, in the sense of Anderson(HF). The space X(1) is the
"underlying space' of X. X will be said to admit the structure
of a homotopy T-algebra if it is the "underlying space" of some
homotopy T~algebra. (T)—AZg will be the category of homotopy T—algebras.
It is true, for Xan complexes, that admitting the structure of a
T-algebra is an invariant of homotopy type. If X and Y are homotoby
T-algebras, then we define [X,Y](T) to be the homotopy classes
of homotopy T-algebra maps from X to Y.

Given a natural transformation of theories ¢:S - T, then
we know that there is a functor (T)-ALg - (S)-ALg, given by restriction.
From Anderson(HF), there is a functor LANQ:(S)-AKQ -+ (T)-ALg
(homotopy left Kan extension), which has the property that there

is an isomorpism [x,w*(Y)](S) 25[LAN¢(X),Y](I).
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The functor LANw(X) is given as the realization of a
collection of simplicial spaces. For n€S let Li(X) be the simplicial
space given by:

¢ =
Ln(X)k = (no’.g.,nk)x(no)XS(nO,nl)x ve xS(nk_l,nk)xT(nk,n)

where (no, ces ,nk) is a k+l tuple of objects of S. (I is the disjoint
union of simplicial sets.) The ith face map is gotten by eliminating
the object n, by composition. The ith degeneracy map is gotten

by doubling the object n., and inserting parallel to the ideniity

in the factor S(ni,ni). It is easy to verify that this is a simplicial
space. We define LAN?(X)(n) = HLg(X)H, where ||-|| is the realization

of a bisimplicial set (i.e. its diagonal.) Examination of the

complex LE(X) shows that Lan®(X)(n) is the coequalizer of d, and

0

dl going from degree one to degree zero.

Each map p_:n ~ 1 in N induces a map Lg (X):Li(x) - L?(X),
i
by taking the term T(nk,n) to T(nk,l) by composition with p,

n
Theorem II. The map iEng (x):Li(x) -+ LT(X)H, is a simplicial
i

homotopy equivalence, for all n=0. [See May(SO)]

Corollary: LAN® (X) is a homotopy T-algebra.
Proof: ||| commutes with products, and preserves homotopy equivalences;
thus, the map which is required to be a weak equivalence is, by

the theorem.,

Corollary: If X is an S-algebra, then Lanw(X) is a T-algebra.
Proof: The simplicial homotopy equivalence above will induce an

isomorphism on ﬁo, which is just- the coequalizer of d_. and dl'

0



Therefore Lan®(X) will preserve products on the nose, which is the

condition required for Lanw(X) to be a T-algebra.

The rest of this chapter will be devoted to the proof
of Theorem II.

Let I and J be discrete categories. Let R:I - J and
L:J - I, be right and left adjoints respectively. Define C, (J;F)
wﬁere F:J - Set is a functor, by Ck(J;F) = gF(jk)O, where
o= (jk+...»j0) is a k-path in J, and 2 is the disjoint union of
sets. We give C*(J;F) the obvious face and degeneracy functions
to make it a simplicial set. There are two maps we wish to consider.
R*:C*(I;FOR) -+ C,(J;F) 1is given by FOR(ik)c - F(Rik)Rc'
L,:C,(J;F) » C,(I;FoR) is given by F(njk):F(jk)0 > FoR(ij)

Lo?

where njk ﬂ-Rij is the unit of the adjunction between R and L.

23q
It is easy to verify that R, and L, are simplicial maps.

We now construct two simplicial homotopies. (We use the

definition of a simplicial homotopy found in May(S0).) Define

1 1

h™:id ~ R, °L, by hm:Ck(J;F) - (J;F) by F(jk)o-+ F(jk)om’ where

Cet1
J" is the k+l-path (jk+...ejﬁ*Rij+...»RLjO). The map jm -+ Rij

. . . . . . 2 ,

is the unit of the adjunction (nJm). Define h™:L R, ~ id by

h2 takes FoR(i,) to FoR(LRi,),m \ by F(MRi, ), where "5 is the kt+l-path
m ko k' (To) 777 k'’

given by (LRik+...*LRimﬂim+...410). The function LRim - im

is the counit of the adjunction (sim). It is easy to verify that

the maps defined provide a simplicial homotopy between the maps claimed.
The only observation that needs to be made is that the composition
ReiomRi = idi for all objects i € I. (This follows from the fact

that L and R are adjoint.)
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Given ¢:S - T a morphism of algebraic theories, then consider
n
@k:Sk - Tk' There are natural functors p:(@kln) - (¢kll) , and
p:(wkil)n - (wkln), where (wim) is the comma category of morphisms
in S over the object m € T. The functor p is given on objects by
p(a) = (ploa, ces ,pnoa), where atk - n is a morphism in T, and
p,n > 1 is the ith projection. The functor p is given on objects
by p(al, vos ,an) = (a1X...xan), where o:i:ki -+ 1 are morphisms in
T and a,x.,.xa_:k
n

1 1
and right adjoints. The unit of the adjunction is induced by the

X...an -+ n is their product. p and p are left

diagonal map k - kx...xk, where the product is taken k times. The
co-unit of the adjunction is induced by the projections
XeooX .
kl . kn -+ ki
If we let Wn:(win) -+ S be the standard functor, then the
preceeding work gives us a natural homotopy equivalence
C*((@kln);X°ﬂn)'V C*((wkll)n;X°ﬂn°p). Since this homotopy equivalence
is natural, we can piece it together to get a simplicial homotopy
equivalence of simplicial spaces C*((wln);XOH ) N'C*((wll)n;Xon °op).
n n
It is now easy to verify that C*((wln);XOWH)ié L:(X),
d that C, ((¢)1)";Xem op) = C, (o)1) ;Xem )™ = L (X)", and that
an a % P ’ n p) = %* ¢ ’ 1 - l » an
P, is the product of the projections. Since realization of
bisimplicial sets commutes with products, and preserves homotopies,

theh realizing the above homotopy will provide the desired homotopy

equivalence LANw(X)(n)’” LANw(X)(l)n. Q.E.D.
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Chapter V. The Main Theorem

We know from chapter III that there is a natural transformation
LANw(X) - LanQ(X), when ¢ is a morphism of theories. It is natural

to ask what the relationship between these two objects is.

Theorem III. Let w;S -+ T be a morphism of theories, and let X

be a cofibrant S-algebra, then the map LANw(X) - Lanw(X) is a

weak homotopy equivalence.

Proof: We proceed in stages. First assume that ¢:S -+ T is a morphism,
where S and T are discrete theories. Take X = Sn, where n = {1,...,n},
so that X is the free S-~algebra on n points. X is a discrete
S-algebra. Note that in this case Lan¢(X) is a discrete algebra,

and LANw(X) is a simplicial set. Lan@(X) is isomorphic to

Tn, since by the adjointness Lanw(X) must be the free T-algebra

on n points. We identify Lan¢(x) and Tn by making the inclusions

of the set n in each agree. There is a distinguished element

% € (Tg)n, given by » = (1,...,n). » is distinguished by the following:

"Lemma: Given any x € (Tg)k, there is a unique ¢ € T(n,k) such that

x =9%(). (®(n) is the element given by the action of the operation
U on the element . This can be described in this way since we

are. taking everything to be discrete.)

Proof: This is easy once we identify Tn = T(n). Then we see that
(Ig)k =~ T(n,k), and that x € (Tg)n corresponds to the identity element
in T(n,n). The result of the lemma then reduces to the fact that

the identity element is an identity element for the composition in

T.
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Now consider the map LANw(X) - Lan¢(X), where we now
identify X = Sn, and LanQ(X) >~ Tn. The complex L?(Sg) is, in this
case, a simplicial set, since all of the objects involved are

discrete. Since Tn is the coequalizer of d_ and dl’ then we can

0
consider Tn as augmenting the complex Li(Sg). Write Li(SE)(—l) = Tn,
and the map Li(Sg)(Q) -+ Tn as dO. Lﬁ(SE) is now an augmented
simplicial set. We want to find a map s_lzLi(SE)(s) > Lﬁ(SB)(s+l)
s 2 -1, which satisfies the simplicial identities. If we can do
this, then this extra degeneracy provides a homotopy equivalence
||L‘i(sE)|| ~ Tn [May(SO)].

To construct S_1 take a typical point (x,al,...,as,ﬁ)
in 12(s0) (s), s 2 0, where x € (sm)'0, a, € S(k, k), and & € T(k ),
where the ki are objects in S. Write x = ao(x), where a, € S(n,ko)
is the unique element provided by the lemma. Define
s_l(x,al,...,as,ﬂ) = (x,ao,al,...,as,ﬁ). For the case s = -1,

define s_, (x) = (x,9), where x € Tn, and 9 € T(n) is the unique

1
element such that x = 9(x). It is easy to verify that this extra
degeneracy satisfies the simplicial identities, and that it, therefore,

provides a contraction of the complex LT(SE) to Tn.

Having shown that the theorem is true in this special case
we first extend to the case where X = S(A), where A is any discrete

set. Write A = colim F, where F runs over the finite subsets of A.
FCA

Then Lan®(X) & colim Lan” (SF), and LAN®(X) £ colim LAN®(SF),
since both of these functors commute with filtered direct limits.

We know that the map LANw(SF) -+ Lan¢(SF) is a weak homotopy equivalence,
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since F = n for some n, and we have proved the theorem in that case.
Since this is a filtered colimit, and filtered colimits commute
with homotopy groups, then we see that the map LAN®(X) - Lan®(X)

must be a weak homotopy equivalence in this case.

Now let X be a discrete projective S-algebra. Since X
is projective we can retract X from a free S-algebra, SA. We then
see that the map LANw(X) »»Lanw(x) can be retracted from the map
LAN@(SA) - Lan¢(SA). Since the second map is a weak equivalence,
and since the retract of a weak homotopy equivalence is a weak
homotopy equivalence, then the map LANw(X) - Lanw(X) is a weak

homotopy equivalence.

We are now ready to consider the general case. ¢:5 = T is
a morphism of simplicial theories, and X is a cofibrant S-algebra.
We see that there are morphisms q>n:Sn - Tn of discrete theories,
and that each Xn is a discrete projective Sn—algebra. Thus by the
previous work, the map LAan(Xn)-+ Lanwn(xn) is a weak homotopy
equivalence.

Consider the complex Li(X), which is augmented by the
space Lanw(X). L?(X) is a bisimplicial set, and its vertical
realization and horizontal realization are the same as its diagonal.
In barticular, we see that each horizontal section of Lﬁ(X) is
ﬁin(xn), which is augmented by the algebra Lanwn(Xn). So we see
that the vertical realization is LAN’ (X) = HL?“(Xn)H - HLanQn(Xn)H =
Lanw(X). Thus we need only know that the realization of a degreewise

weak equivalence is again a weak equivalence; however, this is



known [Reedy (HM)]. Thus LANw(X) - Lanw(X) is a weak homotopy

equivalence, when X is a cofibrant S-algebra. Q.E.D.

It will be useful to know the analog of the above theorem
when we are working in the case of a pro or a prop, especially since
many of the theories that are of interest arise in this manner.

When we are considering the case of a prop
some restriction on the prop is necessary. We say that a prop is
Z—-free if the nth symmetric group Zn acts freely on the space A(n).
We further assume that if A is a Z-free prop, then A comes equipped’
with a choice (not necessarily natural) of one representative
of every orbit class in A. Given this condition we can now formulate
a uniqueness property analogous to the one in the Lemma to Theorem III.
Proposition 1. If A is a pro or a 2-free prop, then given any
y € AX, where X is a based space, there exists a unique (x,¥),
where x € Xk, ¥ € A(k), none of the coordinates of x are at
the basepoint, ¥(x) = y (and if A is a prop, ¥ is the representative
of its orbit class.)

"Proof: AX = %XnXA(n)/ﬁu Take k minimal such that y = ‘x’,ﬁ’l,
where x” € Xk, 0’ € A(k), and lx,§| is the equivalence class of
(x,9). Let 9 be the representative of the orbit class of ¥/,

then ¢” = domn, where m € 2. Thus |x”,9%| = |x”,90m| = |n(x"),d].
Let x = w(x’). If x has a component at the base point, then there
is an a:m - k, such that x = a(z), where z € . But, then, we
would have |x,9| = |z,90a|, which would contradict the minimality

of k. Thus, the pair (x,9) satisfies the condition of the proposition.

34



35

We now prove uniqueness.
, n k , m

Lemma. Let a(x) = B(x’) € X', where x € X, and x* € X, and such
that X has no components which are the base point. Then there exists
a ytk » m such that x* = y(x), and Boy = a.
Proof: take j € k. Then we must have that a(j) = B(j’), for some
unique j’ € m, since the a(j)th component of a(x) is not the base
point, and B is one-to-one. Then Bey = a. Since B:Xm - X"

is a monomorphism, then B(x”) = Bey(x) implies that x’ = v(x).

Suppose, now, that (a(x),9’) = (B(x"),0’), so that
[x,0’°al =|x’,0’°B|; and that the element x has no base point components.
Then the lemma above constructs a Yy such that x* = yv(x), and so
that 0%ea = (¥“oB)oy. 1In particular, if 0’ca = ¥, then O = (¥79B)oy.
This shows that if |x”,9’| = |x,9|, then there is a ¥ such that
x” = yv(x), and ¥ = 9“0y, Thus, if we have two elements satisfying
the conditions of the proposition, then they must be connected by
a permutation. But, the group of permutations acts freely on A(n),
so that the condition that ¥ be the representative of its orbit
class means that any two elements satisfying the conditions must

be equal.

Corollary: Given (x",07) € XnXA(n), then let (x,9) be the pair
chosen by the proposition (i.e. |x”,9”|= |x,9|.) Then there exists
a unique a:k > n, such that x” = a(x), and ¥ = 9" ea_

Proof: (see above).

Theorem IV, If A is a pro or a Z-free prop, then LANA(X) -+ AX

is a weak homotopy equivalence.



Proof: (Note that LANA(X) = HL?(X)H, where Li(X) is the complex
constructed analogously to Ll(X).) As before we need only prove
this when A is discrete, and X is a discrete based set. (Note that
discrete based sets are always the free based set on the set minus
the base point.)

As before we consider AX as augmenting L?(X), and attempt

to construct an s_ Given y € AX, let (xy,@y) be the unique

1

pair constructed by the previous proposition. Define s_i(y) = (xy,@y).

Given a typical element (x,al,...,as,ﬁ) € L?(X), then let y € AX

be the element lx,@oaso...oa By the corollary, there is a unique

ik
a, such that x = ao(xy), and such that Ooaso...oaloao = Sy.
Define s_l(x,al,...,as,ﬂ) = (xy,ao,al,...,as,ﬁ). The simplicial

relations follow from the uniqueness of a Thus the result is

00
true for discrete pros and props and discrete sets, and thus,

as in the previous theorem, it is also true for simplicial pros

and props and spaces. Q.E.D.

Note: This result also follows from a result of Ron Williams
which states that if A is the theory derived from A and cp:Nb - A
is the standard morphism, then LANA(X) -+ LANw(X) is a weak homotopy

equivalence.

There is another filtration on AX (or TX) which is standardly

used [May(IL)]. This filtration has FPAX is the image of XkXA(k)

i&p
(respectively ZXkXT(k)) in AX. If we let FP(LANA(X)) be the
subcomplex generated by sequences (ko,...,ks) such that ki =p

for all i, then we see that FP(LANA(X)) -+ FpAX.
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Corollary: The map FPLANA(X) > FpAX is a weak homotopy equivalence.
Proof: Examination of the proof of the theorem shows that S_1

respects the filtration. Thus the same proof applies.

It is also the case that the corollary is true for TX.
However, the proof given for Theorem III does not preserve
‘filtrations. It is the case, however, that there is a two stage
homotopy contracting the complex in Theorem III that does preserve

the filtration.

Corollary: [Beck(dS)] 1If ¢:S - T is a morphism of theories,

such that ¢(n):S(n) - T(n) is a weak equivalence for all n,

then ¢X:SX - TX is a weak homotopy equivalence for all X,

and the categories HoS-Afg and HoT-Alg are equivalent.

Proof: It is immediate that ¢ induces a degreewise weak equivalence
Li(x) > Li(X). Since the realization of a degreewise weak
equivalence is a weak equivalence [Reedy(HM)], then theorem III
shows that ¢X:SX - TX is a weak homotopy equivalence.

As for the second part, let id:S - S be the identity
morphism, It is immediate that Lanid(X) > X for any S-algebra X.
For any'cofibrant S-algebra, there is a natural transformation
Lid(X) -> L?(X), which is a degreewise weak equivalence. Thus, again

LANld(X) -+ LAN@(X) is a weak equivalence, and so by Theorem III

X - Lanw(X) is a weak equivalence. But this is the condition required

for HoS-ALg - HoT-ALg to be an equivalence of categories. Q.E.D.
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Chapter VI. Examples and Applications

In this chapter I will discuss some examples of pros, props
and theories, and show some of the reasons for pursuing the previous
results.

Example 1. Let A and E be the props defined by A(n) = *,
and E(n) = WZn, the contractible space on which Zn acts freely.

The structure of A as a prop is obvious. The structure of E as

a prop is given by the wreath product. There is a morphism of
props ¢:E - A, Note that E is a 2-free prop, and A is not. If
Theorem IV were true for A then we would necesarily have EX - AX

a weak homotopy equivalence, since ¢(n):E(n) - A(n) is, and so
would induce a degreewise weak equivalence L?(X) - L?(X). It is
easy to see that AX is the infinite symmetric product (free abelian
monoid) on X. However, EX is known [Barratt(FG), for example] to
be homotopy equivalent to Qws”(x) for connected spaces X. So the map
EX - AX cannot be a weak homotopy equivalence, since, for example,
EX is not a product of Eilenberg-MacLane spaces, and AX is. This
‘example shows that Theorem IV does require the freeness of the

symmetric group actions for props.

The idea behind Theorems III and IV is to use these results
to étudy the homology groups H*(Lanwx) o H*(LAwa) for interesting ¢.
Theorem III does show that H*(Lanwx;R) (R a ring) should depend
only on the structure of C,(X;R) as an infinite homotopy S-algebra,
provided we understood exactly what that meant. However, this

does show that if T is a theory, then H*(TX;Q) depends at most on
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H,(X;Q) as a graded coalgebra, since by Quillen(RH) the infinite
homotopy coalgebra structure on C*(X;Q) is determined by the
coalgebra structure on H,(X;Q).

In example four I will show why very general results
of this sort are difficult to obtain. However, in the cases covered

by Theorem IV we have the following result:

Theorem V. If A is a pro or a Z-free prop, then H*(AX;R) is isomorphic
nGEB'OIN{*((A(n)XX[n])/Zn;R), where R is a principal ideal domain, and
X[n] is the n-fold smash product of X.
Proof: The idea of the proof is to use the fact that C (X;R) is
isomorphic to 6*(X;R)&R, naturally, since X is a base pointed space,
and to exploit the observation that A(X+) >~ EA(n)XXn.

Consider the complex C:(L?(X);R), wnich is the simplicial
chain complex gotten by taking the chains vertically. C:(L?(X);R)k
(the kth vertical slice) is naturally chain equivalent to the chain

complex D, . = gC*(Xno)GC*(A(nk)), by the Eilenberg-Zilber theorem.
b

k
We then get a double complex D,, which is equivalent to the original
‘complex.

Consider C*(Xn). There is an equivariant collection
of commuting projections on X" given by replacing the coordinates
n

with basepoints. Let Xd

or more coordinates are the base point. Then C*(Xn) o C*(Xn,XZ)iC*(Xz)

n
€ X be the subset complex where one

equivariantly, since C*(Xn,Xg) is the kernel of all the projections.

In fact, we have the decomposition C*(Xn) = gC*(XB,Xg), where a runs

over all the ordered monomorphisms a:¢ - n.
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Define D*,—l’ an augmentation to D*’* by

. n .n .
D*’?_l = Q[C*(X ,Xd)QC*(A(n))]/Zn, and using the decomposition

of C*(Xn) given above to define d D By choosing a

O:D*,O -+ *’_1.

basis for C*(x“,xg) for each n, the proof of Theorem IV can now be

repeated to show that Hh(D**), the horizontal homology, collapses

h h
onto an edge, so that H*,n = 0 if n>0, and H*’0

Thus if tot(D,,) is the total complex, then we know that H(tot(D,,))

~D naturally.
*,_1) y

is isomorphic to H(D, _l).
’
The only observation needed now is that H*(C*(Xn,Xz)QC*(A(n))/Zn)
is isomorphic to ﬁ*((A(n)XX[n])/Zn), which is clearly true by

the Eilenberg-Zilber Theorem.

Corollary: If R is a field (or if H (X;R) is a free R-module),

then ﬁ*(A(n)xX[n]/Zn) = Hzn(A(n);ﬁ*(X)n) (the equivariant homology.)
Proof: By an acyclic models argument, C*(A(n))gﬁ*(x[n]) is chain
equivalent (equivariantly) to C*(A(n))QE*(X)n. If H, (X;R) is

free, then a*(X) is chain equivalent to ﬁ*(X), thus giving the

result. [See Dyer-Lashof(HI), Theorem 2.1, and following, for details].

Thus we see that if H*(X;R) is free then H*(AX;R) is isomorphic
to %Hzn(A(n);ﬁ*(X;R)nL Note that this implies that, for example,
H*(A(SZVS4);Z).iS isomorphic to H*(A(CPZ);Z), at least as a graded
groﬁp. Thus, even though SZVS4 and CP2 are two different spaces,
they generate the same homology for H,(A(-)). Thus, for example,

H*(Qwsw(CPz)) o2 H*(Qws”(szvsa)), at least as graded groups.

Example 2. As an immediate consequence of the above

result we can prove the known result that the homology of gns“(x)



with field coefficients, depends only on the homology of X with
coefficients in the same field. This is an immediate consequence

of Theorem V, and the fact that there is a prop Cn [May(IL)] such that
‘the space Cn(X) is homotopically equivalent to QnSnX, when X is connected.
Thus by the above results, since we have seen that the homology

of Cn(X) depends only on the homology of X, then the homology of

QnSnX, must depend only on the homology of X.

Example 3. As another example of the results above, I will
compute H,(EX;Z/2), where E is the prop of example one.
Let J=(j1""’j8)’ £=0, be a sequence of positive integers.
J is admissible if jk > 2jk+1’ for 1<k<£, and j1> j2+"'+j8'
We set rank(J) = 25. Let {xi} be a homogeneous basis for ﬁ*(X), then
H,(EX) is isomorphic (as a graded group) to the polynomial algebra
on the symbols QJ(xi)’ of dimension jl+2j2+...+28—1j +25dim(xi),
where J is admissible. Note that this must surely be true as an
algebra over the Dyer-Lashof algebra; but, I have not yet verified this.
The proof is as follows: Let P be the polynomial algebra

)

‘on the specified set of generators. Given a monomial QJl(xl)...QJk(xk

then the rank of the monomial is the sum of the ranks of the QJi.
Let Um(P) C P be the subgroup generated by the rank m monomials.

It is clear that P = m? Un(P), so we only need to show that

Um(P) = H*(Zm;ﬁ*(x)m), which is the term given by Theorem V.

This is done by writing ﬁ*(X)m as the direct sum of the Z/Z[Zm]-modules
generated by the elementary tensors of basis elements. Any such

tensor is Zm equivalent to some tensor of the form x§1®...8xzs,

where e1+...+eS = m. and xi#xj for i#j. For this element we get
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e

a copy of H*(ZelX...XZeS) offset by the dimension of Xy

1®...ex° s
s
. . o m
appearing in H*(Zm,H*(X) ).
Let A be the polynomial algebra generated by the symbols
.QJ(x) for some single generator x. Let Um(A) be the rank m part

of A. Then, since H*(Zelx...xze ) is isomophic to H*(Zel)®...8ﬁ*(zes),

8
then we only need to know that H*(Zm) EéUm(A). But this follows
immediately from the computation of H*(Zm) in Nakaoka(SG), Theorem 6.3.
This show that H*(EX;Z/Z) is as claimed.

We note that the class QJ(X) ought to be the class

Q "sz(x) in H,(EX), where Qj(x) is the standard Dyer-Lashof

i1’
operation Qn+j(x), where the dimension of x is n.

Example 4. This final example is an attempt to show that
the results that have been proved can be applied to examples that
are different from the ones above, which are the types of examples
which I had in mind when I pursued this work.

Let G be a simplicial group, then there is a theory
given by G(n) = GxN(n), with the proper composition. It is immediate
that the G-algebras are just the G-spaces, in the ordinary sense.
Let H be another simplicial group, and ¢:G -+ H a homomorphism of
groups, then ¢ induces a morpism of theories ¢:G - H. It is easily
verified that Lanw(X) = XxGH, and that LAN¢(X) = (XXWG)XGH, where
WG is a contractible space on which G acts freely.

A cofibrant G-space is just a free G-space, since any
equivariant retract of a space on which G acts freely, must also

have free G action. If we let H = {e}, the trivial group, in the

above example, then the content of Theorem III is the standard



43

result that X/G is homotopically equivalent to XxGWG.
Homologically this example is more complicated than the

previous ones. I believe it is the case that the groups H*(XXGWG)

do not depend in any nice way on H*(X) and the action of H*(G)

on H (X). Thus, no result as nice as Theorem V is likely to exist

in all of the cases'covered by Theorem III. However, Theorem V

does show that results about the homology in certain situations

are available.

As concluding remarks I would like to discuss some immediate
areas of pursuit on these problems. First, Theorem V should be
expanded to describe the complete structure on H*(AX;k), where
k is a field. This would presumably include results giving the
coalgebra structure and the Steenrod Algebra structure in terms
of these structures on H*(X;k). This should also include a
description of the structure that the homology of any algebra
over A has, and possibly describe a convenient category of algebraic
structures on graded groups where the homology of an algebra lies.

A second area would be a description of the properties
that a theory must have in order for a result like Theorem V
to be true ip that case. This would hopefully allow a direct
discussion of objects like H*(Rns“(x)), for non-connected spaces
X, which cannot directly arise from a prop, because of the inverses,
but which do arise indirectly from props, e.g. by group completion,
as is the case for ann(x).

A last possible area of research, which is tangential

to the results of this paper, would be a description of what an
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infinite homotopy differential graded coalgebra structure is. (C,(X;Z/p)
clearly should be one.) This would be designed to allow one to

make the statement that H*(Lanw(X)) depends only on the infinite
homotopy S—-algebra structure on C*(X). This might even include a

model category structure on the homotopy coalgebras (or homotopy
S-algebras), and also a theorem that the chains on a space constitute

a good functor between these model categories. However, it is
unfortunate that no result as nice as Quillen's(RH) is likely to

be available here, since non-~trivial higher operations do exist

in the mod p homology of a space.
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