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Introduction TT 

This survey is devoted to the theory of non-commutative L?-spaces. This theory (in the 

tracial case) was laid out in the early 50’s by Segal [181] and Dixmier [47] (see also [110, 

183]). Since then the theory has been extensively studied, extended and applied, and by 

now the strong parallelism between non-commutative and classical Lebesgue integration 

is well-known. 

We will see that on the one hand, non-commutative L?-spaces share many properties 

with the usual L”-spaces (to which we will refer as commutative LP-spaces), and on the 

other, they are very different from the latter. They provide interesting (often “pathologi- 

cal”) examples which cannot exist among the usual function or sequence spaces. They are 

also used as fundamental tools in some other directions of mathematics (such as operator 

algebra theory, non-commutative geometry and non-commutative probability), as well as 

in mathematical physics. 

Some tools in the study of the usual commutative L”-spaces still work in the non- 

commutative setting. However, most of the time, new techniques must be invented. To 

illustrate the difficulties one may encounter when studying non-commutative L?”-spaces, 

we mention here three well-known facts. Let H be a complex Hilbert space, and let B(H) 

denote the algebra of all bounded operators on H. The first fact states that the usual trian- 

gle inequality for the modulus of complex numbers is no longer valid for the modulus of 

operators, namely, in general, we do not have |x + y| < |x| + |y| for x, y € B(H), where 

|x| = (x*x)'/? is the modulus of x. However, there is a useful substitute, obtained in [1], 

which reads as follows. For any x, y € B(H) there are two isometries © and v in B(H) 

such that 

Ix + | <ulxlu® + vlylv*. 

The second fact is about operator monotone functions. Let « be a positive real number. 

In general, the condition that 0 <x < y (x,y € B(H)) does not imply x* < y®. This 

implication holds only in the case of « < 1. The last fact concerns the convexity of the 

map x > x* on the positive part B(H).. of B(H). For o < 1 this map is concave (actually, 

the function (x, y) — x® ® y'~% is concave on B(H)y x B(H)., [112]), but for & > 1 

convexity holds only if 1 < « < 2. The reader can find more results of this nature in [17]. 

Some even worse phenomena may happen. It is well known that composed with the 

usual trace Tr on B(H), all the preceding maps have the usual desired properties. For 

instance, the function x > Tr(x*) becomes convex for all « > 1, as one can expect. Now 

consider the function 

(X1se.ns Xn) > Te[ (xf +... +x2)'] 

on B(H)?. In the commutative setting, the convexity of this function for all o > 1 and 

n >= 1 is extremely useful in many situations. Again, in the non-commutative case, this 

convexity is not guaranteed, at least for « > 2 (cf: [36]; see also [10] for some. related ‘ 

results).



1462 G. Pisier and Q. Xu 

Despite the difficulty caused by the lack of these elementary properties, we feel the the- 

ory has now matured enough for us to be able to present the reader with a rather satisfactory 

picture. Of course much remains to be done, as shown by the many open problems which 

we will encounter. 

We now briefly describe the organization of this survey. After a preliminary section, 

we discuss the interpolation of non-commutative L”-spaces (associated with a trace) in 

Section 2. This is one of the oldest subjects in the field. The main result there allows 

to reduce all interpolation problems on non-commutative L?-spaces to the corresponding 

ones on commutative LP-spaces. 
Section 3 can be still considered as a preliminary one. There we introduce the non- 

commutative L?-spaces associated with a state or weight. This section also contains two 

useful results. The first one says that the non-commutative LP -spaces over the hyperfinite 

II; factor are the smallest ones among all those over von Neumann algebras not of type I. 

The second one is Haagerup’s approximation theorem. 

In the short Section 4 we discuss very briefly some similarities and differences between 

the commutative L?-spaces and their non-commutative counterparts. One remarkable re- 

sult in the early stage of the non-commutative L”-space theory is the Gordon-Lewis the- 

orem on local unconditional structure of the Schatten classes. This (negative) result shows 

that compared with the usual function spaces, the Schatten classes (and so the general 

non-commutative L?-spaces) are, in a certain sense, “very non-commutative”. 

Section 5 discusses the uniform convexities and smoothness, and the related type and 

cotype properties. Although the problem on the uniform (real) convexity of the non- 

commutative LP-spaces goes back to the 50’s, the best constant for the modulus of con- 

vexity was found only at the beginning of the 90s. Two uniform complex convexities (the 

uniform PL-convexity and Hardy convexity) are also discussed in this section. 

The central object in Section 6 is the non-commutative Khintchine inequalities, of para- 

mount importance in this theory. Like in the commutative case, they are the key to a large 

part of non-commutative analysis, including of course the type and cotype properties of 

non-commutative LP” -spaces, and closely linked to the non-commutative Grothendieck the- 

orem. 
Section 7 presents some very recent results on non-commutative martingale inequalities. 

In view of its close relations with quantum (= non-commutative) probability, this direction, 

which is still at an early stage of development, is likely to get more attention in the near 

future. : 
Section 8 deals with the non-commutative Hardy spaces. We present there some non- 

commutative analogues of the classical theorems on the Hardy spaces in the unit disc, such 

as the boundedness of the Hilbert transformation, Szegé and Riesz factorizations. 

The first result in Section 9 is Peller’s characterization of the membership of a Hankel 

operator in a Schatten class. This result is related to Schur multipliers. The rest of this 

section gives an outline of the recent works by Harcharras on Schur multipliers and non- 

commutative A(p)-sets. : 

The last section: concerns: the embedding and isomorphism - of non-commutative 

L?P-spaces. Almost all results given there were obtained just in the last few years. This 

is still a very active direction. i
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We end this introductory section by pointing out that we will freely use standard notation 

and notions from operator algebra theory, for which we refer to [48,104,178,184,185,190]. 

1. Preliminaries 

In this section we give some necessary preliminaries on non-commutative LP-spaces as- 

sociated with a trace. This requires that the underlying von Neumann algebra be semifinite 

(see below the definition). In Section 3, we will consider the non-tracial case. 

M will always denote a von Neumann algebra, and M. its positive part. We recall that 

a trace on M is a map t: M. — [0, oc] satisfying 

@ tx +y)=1(x)+71(), Vx, y e My; 
(ii) T(Ax) = AT (x), VA €[0, 00), x € M; 
(ii) t(*u) =t@u™), Vu e M. 

7 is said to be normal if sup, t(xy) = t(sup, x) for any betinded increasing net (xy) in 
M.., semifinite if for any non-zero x € M there is a zero ye Mysuchthaty <x 

and t(y) < oo, and faithful if T(x) = 0 implies x —=0.1f 7(1) < oo (1 denoting the identity 

of M), t is said to be finite. If 7 is finite, we will assume almost systematically that © 

is normalized, that is, 7(1) = 1. We often think of © as a non-commutative (= quantum) 

probability. . 

A von Neumann algebra M is called semifinite if it admits a normal semifinite faithful 

(abbreviated as n.s.f.) trace 7, which we assume in the remainder of this section. Then let 

8S. be the set of all x € M. such that T(suppx) < oo, where supp x denotes the support 

of x (defined as the least projection p in M such that px = x or equivalently xp = x). Let 

8 be the linear span of Sy. It is easy to check that S is a #-subalgebra of AM which is 

w*-dense in M, moreover for any 0 < p < oo, x € § implies |x|? € S; (and so 

7(|x|P) < 00), where |x| = (x*x)!/? is the modulus of x. Now we define 

_ py1Y/P Ixllp, =[z(x1?)]"", xe&. 

One can show that || - ||, is anorm on S if 1 < p < oo, and a quasi-norm (more precisely;: 

a p-norm) if 0 < p < 1. The completion of (S, || - ||») is denoted by L? (M, 7). This is the 

non-commutative L?-space associated with (M, 7). For converence, we set L°(M, 7) = 

M equipped with the operator norm. The trace t can be extended to a linear functional 

on &, which will be still denoted by 7. Then 
~~ 

| r@| <x, Vxes. 

Thus * extends to a continuous functional on L!(M, 7). 

The elements in L? (M, 1) can be viewed as closed densely defined operators on H (H 

being the Hilbert space on which M acts). We recall this briefly. A closed densely defined 

operator x on H is said to be affiliated with M if xu = ux for any unitary u in the commu- ‘ 

tant M’ of M. An affiliated operator x is said to be t-measurable or simply measurable if
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7(ex(|x])) < oo for some A > 0, where e; (|x|) denotes the spectral resolution of |x| (cor- 

responding to the indicator function of (A, 00)). For any measurable operator x we define 

the generalized singular numbers by 

pe (x) =inf{r > 0: T(ex(Ix])) <t}, ¢>0. 

It will be convenient to denote simply by w(x) the function t — i; (x). 

Note that w(x) is a non-increasing function on (0, 00). This notion is the generalization 
of the usual singular numbers for compact operators on a Hilbert space (see [72]). It was 
first introduced in a Bourbaki seminar note by Grothendieck [77]. It was studied in details 
in [132,62] and [64]. 

Let LO(M, 1) denote the space of all measurable operators in M. Then LO(M, 7) is a 
x-algebra, which can be made into a topological %-algebra as follows. Let 

V(e, 8) ={x € L%M, 1): pe(x) <8}. 

Then {V (¢, 8): ¢,8 > 0} is a system of neighbourhoods at 0 for which LO(M, ©) becomes 
a metrizable topological *-algebra. The convergence with respect to this topology is called . 
the convergence in measure. Then M is depse in LYM, ©). We refer to [131] and [191] 
for more information. ~~ 

The trace 7 is extended to a positive tracial functional on the positive part Lo (M, 1) of 
LO(M, 7), still denoted by , satisfying g 

- < 

= [mean xem. 0 : 

Then for 0 < p < oo, . 

LPM, 7) = [x € L%WM, 7): t(|x|”) < 00} and [x], = (z(1xI?))"/". 

Also note that x € LP (M, 1) iff u(x) € LP(0, 00), and || x lp = ll) Lr (0,00)- Recall that 
w(x) = pu(x*) = u(lx|); sox € LP(M, 7) iff x* € LP (M, 1), and we have xl, = lx*p. 

The usual Holder inequality extends to the non-commutative setting. Let 0 < 7, p,q < 
oo be such that 1/r=1/p + 1/q. Then 

x€ LPM, 7), ye LIM, 7) => xy € L"(M, 7) and xy» < lixll p17 llq- ) 

In particular, if r = 1, 

[ee < lxylls < Ixllpllyly, x €LP(M,7),y€ LI(M, 7). 

This defines a natural duality between L? (M, 7) and LY (M, 1): (x, y) = T(xy). Then for 
any 1 < p< oo we have : 

(LPM, D) = LIM, 7) (isometrically). ETE
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Thus, L'WM, 7) is the predual of M, and LP (M, 7) is reflexive for 1 < p < co. Note 

that the classical theorem of Day on the dual of L? for 0 <:p < 1 was extended to the 

non-commutative setting by Saito [176]: the dual of LP (M, 7), 0.< p <1, is trivial iff M 

has no minimal projection. 

REMARK. [114] contains a different construction. of non-commutative L? -spaces via a 

non-commutative upper integral. : 

Although we will concentrate ON non comutative. L=-spaceq in this survey, the more 

general so-called “symmetric operator spaces” are worth mentioning: let E be a rearrange- 

ment invariant (in short #4.) function space on (0, co), the symmetric operator space asso- 

ciated with (M, t) and E is defined by 

EM, 7) = {xe LOM, 7): ux) € E} and |xlgomo = |r| g- 

In particular, if E = LP (0, co), we recover L? (M, 7). These symmetric operator spaces 

have been extensively studied, see, e.g., [51,53,54,133,134] and [203] for more informa- 

tion. 

We end this section by some examples. 
(i) Commutative LP-spaces. Let M be an Abelian von Neumann algebra. Then M = 

L*®(£2, u) for a measure space (£2, uu), integration with respect to the measure yu gives us 

an n.s.f. trace, and L? (M, 7) is just the commutative L?-space LP (£2, un). 

(it) Schatten classes. Let M = B(H), the algebra of all bounded operators on H, and 

7 = Tr, the usual trace on B(H). Then the associated L?-space L?(M, 7) is the Schatten 

class SP(H). If H is separable and dim H = oo (resp. dim H = n), we denote SP.(H) 

by SP (resp. SP). Note that in our notation $% (H) is not the ideal of all compact operators 

on H but B(H) itself. [72,128] and [182] contain elementary properties of S? (H). 

(iii) The hyperfinite II] factor. Let M, denote the full algebra of all complex rn xX n 

matrices, equipped with the normalized trace o,,. Let 

(R, 7) = QR (An, Ta) (An, Ta) = (M2,02), neN, 
nzl Cn 

be the von Neumann algebra tensor product. Then R-is the hyperfinite IT; factor and 7 is the 

(unique) normalized trace on R. There is another useful description of R. Let (&,),>1 be 

a sequence of self-adjoint unitaries on a Hilbert space, satisfying the following canonical 

anticommutation relations 

sigj + &j&; = 2845, i,jeN. . (CAR) 

Let Ry be the C*-algebra generated by the &;’s. Then Ry admits a unique faithful tracial 

state, denoted by 7, which is defined as follows. For any finite subset A = {i1,..., i} CN 

with i; <--- <i, we put wy = g; ---¢&;,, and wg = 1. Then the trace 7 is uniquely de- 

termined by its action on the wa’s: T(wa) =1 (resp. =0) if A = 0 (resp. # ©). Consider 

Ro as a C*-algebra acting on L?(t) by left multiplication. Then the von Neumann algebra



1466 G. Pisier and Q. Xu 

generated by Rg in B(L?(t)) can be (isomorphically) regarded as the hyperfinite II; fac- 

tor R. Note that the family of all linear combinations of the w4’s are w*-dense in R and 

dense in L?(R) for all 0 < p < 00; also note that {w4: A C N} is an orthonormal basis 

of L2(R) (= L%(1)). Finally, we mention that the von Neumann subalgebra generated by 

{e1,...,&2,} is isomorphic to Mo», and then the restriction of t to this subalgebra is just 

the normalized trace of M»». We refer to [25] and [158] for more information. 

(iv) Group algebras. Consider a discrete group I". Let uN (I") C B(£5(I™)) be the associ- 

ated von Neumann algebra generated by the left translations. Let tr be the canonical trace 

on vN(I"), defined as follows: 7, (x) = (x(8.), 8.) for any x € yN(I"), where (8g)ger 

denotes the canonical basis of (J), and where e is the identity of I". This is a normal 

faithful normalized finite trace on vN(I"). A particularly interesting case is when I" = F,,, 

the free group on n generators. We refer to [67] and [196] for more on this theme. 

2. Interpolation 

This section is devoted to the interpolation of non-commutative LP -spaces. It is well known 

that the non-commutative L”-spaces associated with a semifinite von Neumann algebra = 

form an interpolation scale with respect to both the real and complex interpolation meth- 

ods (see (2.1) and (2.2) below). This result not only is useful in applications but also can 

be taken as a starting point to define non-commutative L? -spaces associated to a von Neu- 
mann algebra of type III (which admits no n.s.f. trace). This is indeed the viewpoint taken ~~ 

by Kosaki [106] (see also [192]). We will discuss this point in the next section. Here we 

restrict ourselves only to semifinite von Neumann algebras. Thus throughout this section, 

M will always denote a semifinite von Neumann algebra equipped with a faithful normal 
semifinite trace T. We refer to [15] for all notions and notation from interpolation theory 

used below. Let 1 < pg, p1 < oo and 0 <6 < 1. It is well known that 

LP(M, 7) = (LP°(M, 7), LP{(M, 7)), (with equal norms), 2. 

LPM, 7) = (LPM, 7), LP'(M, Dg.» (with equivalent norms), 2.2) 

where 1/p = (1—6)/po+6/p1, and where (-, -)g, (-, -)g, , denote respectively the complex 

and real interpolation methods. It is not easy to retrace the origin of these interpolation 

results. Some weaker or particular forms go back to the 50’s (cf, e.g., [47,110,172]). The 

results in the full generality were achieved by Ovchinikov [133,134] (see also [135] for the 

real interpolation, and [141] in the case of Schatten classes). : 

(2.1) and (2.2) easily follow from the following result. Recall that u(x) denotes the 

generalized singular number of x (see Section 1) and that a map T : X — ¥ is called con- 

tractive (or a contraction) if || T|| < 1. 

THEOREM 2.1. For any fixed x € L\(M, ©) + L™®(M, 1) there are linear maps T and S 

(which may depend on x) satisfying the following properties: - 

GA) T:LY(M,1) + L®°M, 1) — L'(0, 00) + L*®(0, 00), Tis contractive from 
L?(M, 7) to LP(0, 00) for p-=1and p = 00, and Tx = u(x);
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(i) S:L1(0, 00) + L®(0, 00) — LYM, 7) + L®WM,x), S is contractive from 

L?(0, 00) to LP(M, 7) for p=1 and p = 00, and Spu(x =x. 

Although not explicitly stated, Theorem 2.1 is implicit in the literature. It is essentially 

contained in [4] for Schatten classes, and in some different (weaker) form in [53] for the 

general case. We will include a proof at the end of the section. 

REMARK. In interpolation language, Theorem 2.1 implies that the pair (LYM, 1), 

L®(M, 1)) is a (contractive) partial retract of (L1(0, 0), L°°(0, c0)). We should 

emphasize the usefulness of such a result: it reduces all interpolation problems on 

(LYM, 1), L°(M, 1)) to those on (L!(0, 00), L®(0, 00)). Recall that (L!(0, co), 
L°(0, c0)) is one of the best understood pairs in interpolation theory. We now illustrate 

this by some examples. More applications can be found in [4,53,54] and [133,134]. 

First let us show how to get (2.1) and 3.2) from their commutative counterparts. 

PROOF OF (2.1) AND (2.2). Let x € LP(M, t) (noting that L?(M, 1) Cc L'(M, 7) + 
L%®(M, 1)). Let S be the map associated to x given by Theorem 2. 1. Then by interpolation 

S$: (L1(0, 00), L™(0, 00), = (L'(M, 7), L®(M, T)), 

is a contraction. However, it is classical that : 

(Lt (0, 00), L=(0, 00), =L?(0, 00) (with equal norms): 

Thus we deduce 

Ixlle = |Su@)|, < [e®|, =x; 

whence 

LPM, 1) C (! WM, 1), L®(M, 2) a contractive inclusion. . 

The inverse inclusion is proved similarly by means of the map T'. Therefore, we have 

shown (2.1). In the same way, we get (2.2). 0 

The above argument works in a more general setting as well. 

COROLLARY 2.2. Let F be an interpolation functor. Then 

FLY WM, 1), LPM, 1) = F(L1(0, 00), L%(0, 00) (M, 1). 

More generally, for any ri. function spaces Ey, E1 on (0, 00) 

F(EoM, 1), Ex(M, 1)) = F(Eo, ED)(M, 7).
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This corollary is contained in [53] (and in [4,141] for Schatten classes). 

REMARK. As a consequence of Corollary 2.2, we have that for any ri. function space E 
the map T (resp. S) in Theorem 2.1 is contractive from E(M, 7) (resp. E) to E (resp. 
E(M, 7)). In particular, T and S are contractions between the L?-spaces in consideration 
forall 1 < p< oo. 

The following particular case of Corollary 2.2 is worth being mentioned explicitly. Here 
K; denotes the usual K-functional from interpolation theory. : 

COROLLARY 2.3. Let 1 < po, p1 < 00. Then for any x € LP*(M, ©) + LP1(M, 1) and 
anyt>0_— 

Ki (x; LP(M, 7), LPY(M, 1) = Ki (u(x); LPO(0, 00), LP1(0, 00). 
In particular, 

t 

Kos LOM, 2), L2(M, 0) = | Ws (x) ds. ~ 0 : 

REMARKS. (i) Using a factorization argument, one can easily extend Corollary 2.3 to the 
case of quasi-Banach spaces, so that po, p1 are now allowed to be in (0, oo]. Then the 
equality there has to be replaced by an equivalence with relevant constants depending only : 
on py, pi (see also [135]). 

(il) As a consequence of the preceding remark, the indices po, p; in (2.2) can vary in 
0, oo]. 

(iii) (2.1) also extends to the quasi-Banach space case (cf. [201]). 

PROOF OF THEOREM 2.1. Fix an x € L'(M, 7) + L®(M, 7). We may assume x > 0. 
Indeed, by polar decomposition, it is easy to reduce the proof to this case. 

First we suppose x is an elementary operator, i.e., of the form : 

n . 

x= > ake, 
k=1 | 

) ) 

where for all 1 < k <n, a; € (0,00), and where the e;’s are disjoint projections with 
(ex) € (0, 00). Then we define 

(yer) Py=) —e, yeL'(M,7)+L®WM,1). 
i= Tle) 

Note that P is the orthogonal projection of L*(M, 7) onto its subspace generated by 
{e1,..., en}. In particular, P is selfadjoint. Let y € L®(M, 7). Then 

jr (vey)| loot) _, yg | 1Pyloo < sup —2—=< sup = = |yloo. 
1<k<n Ter) ir Tler) :
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Therefore, P is a contraction on L>°(M, t). By duality, P is a contraction on L!(M, 1) 

as well. } 

Let \V be the subalgebra generated by {e,..., e,} (the identity of \ being e =e; + 

-+++ ep). Then NV is isomorphic to I and t induces a weighted counting measure v on 

IZ, namely, v({k}) = t(e) for all 1 < k < rn. Itis clear that for any p 

LPN, Tt |p) =1;(v)  isometrically. 

Thus we can identify (NV, T|xr) with (I, v). With this identification, u(x) is exactly the 

usual non-increasing rearrangement of x with respect to the measure v. On the other hand, 

it is classical (and easy to prove in our special case) that there are linear maps R and Q 

satisfying (cf. [33]) - 

@ R:I}W) + Iv) — L1(0, 00) + L°°(0,00), R is contractive from Lo to 

L?(0, 00) for p = 1, 00, and Rx = u(x); 

(ii) Q:L(0, 00) + L*®(0, 0) — Iv) +15,(v), Q is contractive from L?(0, 00) to 

Iw) for p=1,00,and Qu(x) =x. 

Then we set T = RP and § = iQ, where i is the natural inclusion of IT (v) + I3,(v) 

(= LYW, t|n) + LP WV, |p) into LY (M, ©) + L®(M, 7). One easily checks that T 
and § satisfy all requirements of Theorem 2.1. Therefore, Theorem 2.1 is proved for ele- 

mentary. operators. } 

Before passing to general (positive) operators, we note that 7" and S constructed above 

are positive in the sense that y > 0 (resp. f > 0) implies Ty > 0 (resp. Sf = 0). 

Now for a positive x € L'(M, t) + L*®(M, 7), using the spectral decomposition of 
x, we may choose an increasing sequence {x,} of elementary positive operators such 

that x, < x for all n > 1, lim,» oo ps (xy) = p(x) for all £ >)0 and lim,_—00 Xp = x in 

the topology o(LY(M, 7) + L®(M, ©), LM, 7). LP (M7). See [64], pp. 277- 

278. By the first part of the proof, for each rn there are T, ‘and S, associated with 

xp as in Theorem 2.1. Thus (7}) is a bounded sequence in B(L*°(M, t), L%(0, c0)). 

Since B(L*™(M, 7), L*(0, 00)) is a dual space with predual LR(M, t) ®" L(0, co), 

passing to a subsequence if necessary, we may assume that T,\converges to T’ in 

B(L*(M, 1), L*°(0, 00)) with respect to the w*-topology. Thus 7” is\a contraction from 
L®(M, 1) to L*®(0, 00). To show that T’ also defines a contraction from L'(M, 7) to 

L'(0,00) let y € LY(M, 7) N L®°(M, 7) and f € L'(0, 00) N L°°(0, c0).\Then 

oo , le) \ 

| ror= tim [nos 

| whence 

[o.¢] 

| ro] <limsup [T) [ 1f loo < M111 loo, 
0 n—oo : 

which implies that T7’y € L1(0, 00) and || T’ yll1 < llyll1. Hence T” extends to a contraction 

from L!(M, 1) into L'(0, 0). : oo
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On the other hand, by the positivity of T;,, we have p(x,) = Tx, < T,x. Taking limits, 

we find p(x) < T'x. Hence p(x) = wT’x for some w € L*°(0, 00) with ||w|leo < 1. Then 

one sees that the map 7" defined by Ty = wT"y has the property (i) of Theorem 2.1. 

Similarly, from the sequence (S,) we get the desired map S. O 

REMARK 2.4. The result of interpolation applied to a compatible pair (Xo, X1) of Banach 

spaces depends in general very much on the way in which we view this pair as compatible. 
There is however an elementary “invariance” property which we will invoke in the sequel, 

as follows: let (Xp, X1) be a compatible pair of Banach spaces. Now let (¥p, ¥1) be another 

compatible pair of Banach spaces and let ug: Yy — Xo and u;:Y; — X; be isometric 

isomorphisms, which coincide on Yp NY; (in that case it is customary in interpolation 

theory to think of uo and u; as the “same” map!). Equivalently, we have an isometric 

isomorphism u: Yo + ¥1 — Xo + X1 such that the restrictions ug = uy, and u; = uy, are 

isometric isomorphisms respectively from Yp to Xo and from ¥; to X1. Then u defines an 

isometric isomorphism from (¥p, ¥1)g to (Xo, X1)g, so that 

Jo, Te ~ Xo, X1)e (0<6 <1). oo 

This follows from the interpolation property applied separately to u and its inverse. If we 

assume that the pairs are made compatible with respect to continuous injections J : Xo — 

Xi and j:Yp — Yi. Then to say that ug and 1 are the “same” map means that uj = Jug. 

In particular, if Xo = Yy and if ug is the identity on Xo = Yj, then this reduces to uj = J. 

a: . 

3. General von Neumann algebras, including type ITI Co 

The construction of non-commutative L?-spaces based on n.s.f. traces outlined in Section 1 

does not apply to von Neumann algebras of type III, which do not admit 7.s.f traces. | 

However, it is known that any von Neumann algebra has an n.s.f weight (a weight is 

simply an additive and positively homogeneous functional on the positive cone with values 

in [0, oo]). This section is devoted to the non-commutative LP -spaces associated with a von 

Neumann algebra equipped with an n.s.f. weight. There are several ways to construct the 

latter spaces (cf., e.g., [3,78,87,106,113,192]). We will present two of them. The first one 

is to reduce von Neumann algebras of type III to semifinite von Neumann algebras with 

the help of crossed products, as proposed by Haagerup [78]. The second way is via the 

complex interpolation; so it can be considered as a continuation of the results established 

in the previous section for the semifinite case. This was developed by Kosaki [106] and 
Terp [192] (see also [88,89] for related results). ' 

We begin with the construction via interpolation. Let M be a von Neumann algebra. We 

know that M is a dual space with a unique predual, denoted by M,. We define, as usual, 

LYM) = M, and L®(M) = M. Now we are confronted with the problem of defining 
LP(M) for any 1 < p < co. For simplicity and clarity we will consider only the case 

where M is o finite, as in [106]. The reader is referred to [192] for the general case. Fix a
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distinguished normal faithful state ¢ on M. Then we embed M into M,, by the following 

left injection : 

JiM—=> My, jx)=x¢ (here xp(y)=¢(yx) Vy e M). 

It is clear that j is a contractive injection with dense range. Thus we obtain a “compati- 
bility” for the pair (M, M.) with respect to which we may consider interpolation spaces 

between M and M,.. Now let 1 < p.< oo. Following Kosaki, we introduce the corre- 

sponding non-commutative LP-space as 
N 

LPM, ¢) = (M, M:)1/p- 

To show the so-defined non-commutative L?-spaces possess all properties one can expect, 

one should first note the important fact that L>(M, ¢) is a Hilbert space, more precisely, 

L*(M, 9) = H,, where H, is the Hilbert space in the GNS construction induced by ¢ 
(obtained after completion of M equipped with the inner product (x, y} = ¢(y*x)). The 
proof of this fact given in [106] uses the modular theory. Here, we would like to point out 

that it directly follows from a general result in interpolation theory, that we describe as 

follows. 

Let X be a complex Banach space. Let X denote the conjugate space of X, i.e., X is just 

X itself but equipped with the conjugate complex multiplication: A - x = Ax for any A € C 

andxe X. Forx eX, x denotes the element x considered as an‘element in X. Given a 

linear map v:X — ¥, we denote by #: X — Y the same map acting\on the “conjugates”. 

Now suppose that there is a bounded linear map J : X* — X which is injective and of dense 

range. This allows us to consider (X*, X) as a compatible pair of Banach spaces. Suppose 

further that J is positive, i.e., £(J(§)) = 0 for any & € X*. Then (£, n) =&(J(n)) defines 

a scalar product on X*. (Note: for & € X* and x € X we write £(x) = £(x)\) Let H be the 

completion of X* with respect to the above scalar product. Note that H contains X* as a 
dense linear subspace. Thus we can define a bounded linear injection v: H — X by simply 

setting (on an element of X™) v(§) = J(&), and extending by density to the whole of H. 

Identifying H* with H as well as (X)* with X*, and denoting by ‘v: (X)* — H*\= H the 
adjoint of v (in the Banach space sense) we see that J = vv. These facts are well known 

(and easy to check). The general theorem referred to above is the following 

THEOREM 3.1. With the above assumptions, (X*, X); 72 = H with equal norms. 

REMARK. This is well-known ([116]) with the additional assumption that X is reflexive. 

The general form as above was observed in [153], p. 26 (see also [197] and [42] for related 

results). : 

COROLLARY 3.2. L2(M, 9) = H, with equal norms. NT 

PROOF. We let X = M,, X* = M. Recall that the involution on M, is defined by 

YH (x) = ¥ (x) ( € My, x € M). Let J : M — M, be the map taking x to j (x)* = px* 

and let u;: M, — M, be the (linear) isometry taking ¢ to ¥*. We have (£,7) =
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EJ) = E(pn®) = E(pn*) = (n*€), thus we find H = H,, with equal norms and we 
have J = uy j, so that the result follows by invoking Remark 2.4 (here ug is simply the 

identity of M). a 

Using this corollary and the reiteration theorem, we see that the dual space of L? (M, ¢) 

is (isometrically) equal to LP (M, ¢) forany 1 < p < 00 (1/p + 1/p’ = 1). The duality is 
induced by the scalar product of Hy, that is, (x, y) = ¢(y*x), x, y € M. Corollary 3.2 also 

yields the Clarkson inequalities in LP (M, ¢) forany 1 < p < oo (see Theorem 5.1 below). 
Thus, LP (M, ¢) (1 < p < 00) is uniformly convex. We will see more precise results on 

this in Section 5. 

REMARK. Instead of the left injection considered previously, one could equally take the 

right injection of M into M,, i.e., x => ¢x (here px(y) = p(xy) Yy € M). Then the 

resulting interpolation spaces are isometric to those obtained previously. 

In view of the results in the last section, one is naturally led to consider the real interpo- 

lation as well. Set, for 1 < p < © 

LPP (M, 9) = (M, Mi)1/p.p- 

The problem now is whether L?” (M, ¢) and LP(M, ¢) are isomorphic. For the special 

case of p == 2, the answer is affirmative. Indeed, Theorem 3.1 admits a counterpart for the 

real interpolation as well (see [116] in the case of reflexive spaces; [205], p. 519 for the 

general case; see also [42] for more related results). Thus L%%(M, ¢) = L%(M, ¢) with 

equivalent norms. However, this is no longer true for all other values of p, as shown by the 

following example, due to Junge and the second named author. 

EXAMPLE 3.3. Let ¢ be the state of B(I%) given by a diagonal operator D of trace 1 

and whose diagonal entries are all positive. Then, for any 1 < p #2 < oo, the two spaces 

(B®), BU*)+)1/p and (B(%), B(I%):)1,p, p do not coincide. Indeed, let R (resp. R,) be 
the subspace of B(I%) (resp. B ®),) consisting of matrices whose all rows but the first are 

zero. It is clear that R = 2 and R, =1%(d) isometrically, where d = (dn), is the sequence 

of the diagonal entries of D, and where [2(d) is the weighted [2-space with the norm 

s 1/2 
x = Xnd, . B 1% ll 2a) (= ndn| ) — | 

On the other hand, let P: BI?) — R be the natural projection. P is contractive on B(I%). 

It is easy to check that under the left injection associated with ¢, P is also a contractive 

projection from B(I%), onto R,. Now assume that for some 1 < p < oo the two interpola- 

~._tion spaces (B(I?), B(1*:)1/p and (B12), BU) 1p, p have equivalent norms. Then we 

deduce that (R, R)1/p and (R, Ry)1/p, p have equivalent norms too. However, it is well- 

known that the-first space is still a weighted /2-space (and hence a Hilbert space), while the 

second one is isomorphic to a Hilbert space only when p = 2. Thus we have proved our 

assertion. NU : ca
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This construction by interpolation has several disadvantages: there is no natural notion of 

positive cone, no reasonably handy bimodule action by multiplication of M on LP (M, ¢), 
and finally the case p < 1 is excluded. However, these difficulties disappear in Haagerup’s 

construction, to which we now turn. Our main reference for Haagerup’s L?-spaces is [191]. 

Let M be a von Neumann algebra equipped with a distinguished z.s.f weight ¢. Let oy = 

a), t €R, denote the one parameter modular automorphism group of R on M associated 

with ¢. We consider the crossed product R = M x, R. Recall briefly the definition of R. If 

M acts on a Hilbert space H, R is a von Neumann algebra acting on L%(R, H), generated 

by the operators w(x), x € M, and the operators A(s), s € R, defined by the following 

conditions: for any § € LR, H)andt eR 

n(x)E)O) =o (x)§@) and A()E)) =EF —5). SE 

Note that 7 is a normal faithful representation of AM on L*(R, H). Thus we may identify 

M with w(M). Then the modular automorphism group {oc };cr is given by 

NN xeM, teR. 

There is a dual action {6:};cr of R on R. This is a one parameter automorphism group 

of R on R, implemented by\the unitary representation {W (¢)};cr of R on L>(R, H): 

Gx) =WExWE), teR, xeR, 

where 

WDE) (5) =e 8s), Ee L’®R H), 1,5 €R. 

Note that the dual action 6; is also uniquely determined by the following conditions 

Gi(x)=x and G(r(s))=e"A(s), VxeM, s,t eR. 

Thus M is invariant under {6;};cr. In fact, M is exactly the space of the fixed points of 

{6¢}ser, namely, 

M={x eR: 6;(x) =x,Vt eR}. 

Recall that the crossed product R is semifinite. Let 7 be its n.s.f. trace satisfying 

Tob, =e, YteR. 

Also recall that any n.s.f weight ¥ on M induces a dual n.s.f. weight ¥ on R. Then ¥ 

admits a Radon~Nikodym derivative with respect to t. In particular, the dual weight ¢ of 

our distinguished weight ¢ has a Radon-Nikodym derivative D with respect to t. Then 

@(x) = (Dx), xR. :
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Recall that D is an invertible positive selfadjoint operator on L2(R, H), affiliated with R, 
and that the regular representation A(z) above is given by 

At) =D", teR. . 

Now we define the Haagerup non-commutative I” -spaces (0 < p < 00) by 

APM, 9) = {x e LOR, 7): Gr (x) =e H Py, Vt eR}. 

(Recall that LO(R, 7) denotes the topological x-algebra of all operators on L%(R, H) mea- 
surable with respect to (R, 7).) It is clear that A? (M, @) is a vector subspace of LO(R, 7), 
invariant under the *-operation. The algebraic structure of AP (M, p) is inherited from that 
of LOR, 7). Let x € AP(M, p) and x = u|x]| its polar decomposition. Then u € M and 
[x] € AP(M, 9). Recall that : 

APM, 9)=M and AM, ) = M,. 

The latter equality is understood as follows. As mentioned previously, for any » € MF, 
the dual weight & has a Radon—Nikodym derivative, denoted by hg, with respect to 7: - 

(x) =t(hyx), xeRy. 

Then 

ho € LR, 7) and & (hy) =e'h,, VicR. 

Thus he, € AY(M, @)... This correspondence between Mj and A'(M, 9), extends to 
a bijection between M, and Al (M, ©). Then for any we M,, if 0 = u|w| is its polar 
decomposition, the corresponding f,, € A! (M, @) admits the polar decomposition 

ho =ulhy| = uh. 

Thus we can define a norm on A! (M, gp) by 

Itolli = lol) = lola, © M,. 

In this way, A(M, ¢) = M, isometrically. Now let 0 < p < 00. Since x € AP (Msp) iff 
[x]? € ALM, @), we define 

1 : lp = 1x17], xe 4PM, 0). 
Thenif1< p < oo, | | » is a norm (cf. [78] and[191]),andif0< p < 1, || - Il» is a p-norm (cf. [108]). Equipped with || - || ,, AP (M, ¢) becomes a Banach space or a quasi-Banach 
space, according to 1 < p < 00 or 0 < p < 1! Clearly, : 

=] =i. Ei FU
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REMARKS. (i) Using [191] Lemma 115, one easily checks that AP (M, ¢) is isometric 
to a subspace of the non-commutative weak LP-space LP*®°(R, 1). Also note that in 
AP(M, p) the topology defined by || - ||, coincides with the topology induced by that 

of LO(R, ©) (cf. [191]). 
(ii) One weak point of the Haagerup non-commutative LP-spaces is the fact that for any 

p # q the intersection of AP(M, ¢) and A7(M, ¢) is trivial. In particular, these spaces 

do not form an interpolation scale. This causes some difficulties in applications (especially 

when interpolation is used). : 

As usual, for 1 < p < oo the dual space of AP (M, ¢) is A” (M, ©), 1/p+1/p'=1.To 
describe this duality, we need to introduce a distinguished linear functional on A'(M, ¢), 
called trace and denoted by tr, which is defined by 

r(x) = wx (1), xe A (M,p), 

where wy, € M, is the nike normal functional associated with x by the above identi- 

fication between M, and AM ,¢). Then tr is a continuous functional on Al(M, ¢) 
satisfying | : 

|r| <tw(lxl) = xl}, x € ATM, 9). : 

The usual Holder inequality also holds for these non-commutative LP?-spaces. Let 0 < 
p.q,r <oosuchthat1/r =1/p + 1/q. Then 

x € AP(M, p) and y € A7(M, 9) | oo 

= xy e A"(M, 9) and |lxy[l, <lxlipllylg- 

In particular, for any 1 < p < oo we have : 

ley) | < lxylls < xlpliyly, x € AP(M, 9), y € AZ (M, 9). 

Thus, (x,y) +> tr(xy) defines a duality between A” (M, ¢) and A?’ (M, ¢), with respect 
to which 

(APM, 9)" = AP (M, ¢) isometrically, 1 < p < 00. : 

This functional tr on A!(M, ¢) plays the role of a trace. Indeed, it satisfies the following 
tracial property 

u(xy) =tr(yx), x € AP(M, 9p), y € A” (M, 9). 

The reader is referred to [191] for more information. )
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THEOREM 3.4. Let M be a von Neumann algebra. 

(i) Let 0 < p < co. If T is an n.s.f. trace on M, then LP (M, 1) (the non-commutative 

L? space described in Section 1) is isometric to AP (M, @).- 

(ii) Let 0 < p < 00. Then AP (M, @) is independent of @, i.e., if ¢ and i are two n.s.f. 

weights on M, then AP (M, ¢) and AP (M, ) are isometric. 

(iii) Let ¢ be a normal faithful state on M and 1 < p < oo. Then LP (M, ¢) and 

AP (M, @) are isometric. : 

The first two parts of Theorem 3.4 are due to Haagerup [78] (see also [191]), and the 

third one to Kosaki [106]. As can be expected, the proof of Theorem 3.4 heavily depends 

on the modular theory. 

The preceding statement allows a considerable simplification of the notation, as follows: 

CONVENTION. From now on, given a von Neumann algebra M, LP (M) will denote 

any one of the non-commutative LP” -spaces associated with M appearing in‘ Theorem 3.4. 

(The latter shows that these spaces are all “the same”.) However, if M is semifinite, we will 

always assume that LP (M) is the LP-space constructed from an n.s.f. trace as in Section 1. 

The following basic result is very useful to reduce the failure of certain properties of 

LP-spaces to the special case of the hyperfinite factor L? (R). Recall that R denotes the - 
hyperfinite IT; factor (see Section 1). 

THEOREM 3.5. Let M be a von Neumann algebra not of type 1. Theh forany 0 < p< oo 

(resp. 1 < p < 00) LP (R) is isometric to a (resp. 1-complemented) subspace of L? (M). 

— 
The proof of Theorem 3.5 combines several more or less well-known facts. The key 

point is that if M is not of type I, then R is isomorphic, as von Neumann algebra, to a 

w*-closed x-subalgebra of AM which is the range of a normal conditional expectation 

on M. The reader is referred to [122] for more details and precise references. 

We end this section with Haagerup’s approximation theorem of an L?(M) associated 

with an algebra M of type III by those associated with semifinite von Neumann algebras 

(cf. [79D). 

THEOREM 3.6. Let M be a von Neumann algebra equipped with an n.s.f. weight ¢. Let 

AP (M, 9) be the associated Haagerup LP-space (0 < p < 00). Then there are a Banach 

space X (a p-Banach space if 0 < p < 1), a directed family {(M;, ©;))}icr of finite von 

Neumann algebras M; (with normal faithful finite traces t;), and a family {j;};er of iso- 

metric embeddings j; : LP? (M;, tj) — X such that 

@) ji(LP(M;, 17) C ju (LP (My, Tp) forall i,i’ € I with i <i’; oC 

(1) U;er (LPM, 1) is dense in X; : 

(iii) AP (M, @) is isometric to a (complemented for 1 < p < 00) subspace of X.
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4. From classic L? to non-commutative L”: similarities and differences 

A good part of the early theory consisted in extending commutative results over to the 

non-commutative case; this usually required specific new methods, but without too many 

surprises. For instance, we have already seen that a non-commutative L?-space LL” (M) 
is reflexive for any 1 < p < 00. Moreover, just like in the commutative case it is easy to 

check that L' (M) has the RNP iff M is atomic. Indeed, if M is not atomic, L1(M) con- 

tains a 1-complemented subspace isometric to L! (0, 1), hence fails the RNP. On the other 

hand, L!(M) is weakly sequentially complete for any M. Moreover, there are characteri- 

zations of weakly compact subsets in L!(M), analogous to those in the commutative set- 

ting (cf. [190, II1.5] and the references given there; see also [140] for more recent results). 

Moreover, we will see later in Section 5 that any non-commutative L?-space (0 < p <1) 

has the analytic RNP. oo 

However, the differentiability of\the norms of non-commutative 7” -spaces has not been 

well understood yet. This problem was considered only for the Schatten classes in [194]. Tt 

was announced there (with a sketch lof proof) that the norm of $7 had the same differentia- 

bility as that of I? (1 < p < oo). It seems unclear how to extend this to the general case (of, 

at least, to the semifinite case). In a different direction, the papers [55,56] are devoted to 

the problem of characterizing the symmetric spaces of measurable operators for which the 

absolute-value mapping x — |x| is Lipschitz continuous. In the case of non-commutative 

L!-spaces, Kosaki proves in [108] the following useful inequality: for any ¢ and ¥ in such 

a space, we have 

1/2 lel = wil, <v2(le + ¥lile — wi)". 

The passage from the Schatten classes to von Neumann algebras with semifinite traces, 

ie, from the discrete-to.the continuous case, can sometimes be quite substantial. See, for 
instafice, Brown's extension of-Weyl’s classical inequalities: (3 |A, (MPV? Ts 

(here A, (T') are the eigenvalues of T repeated according to multiplicity). Brown [26] had 

to invent a new kind of spectral measure (now called Brown’s measure) to extend this, 

together with Lidskii’s trace theorem, to the semifinite case. . co 

The study of non-commutative L?-spaces, or more generally, of symmetric operator 

spaces, goes mainly in two closely related directions: lift topological or geometrical prop- 
erties from the commutative setting to the non-commutative one, and reduce problems in 

the non-commutative case to those in the commutative one. We have already seen several 

examples in both directions. 

To discuss more illustrations, it is better to place ourselves in the context of symmet- 

ric operator spaces. Let M be a semifinite von Neumann algebra equipped with an n.s.f 

trace 7, and let E be an ri. function space on (0, 0co).-One naturally expects that properties 

of E(M, 7) should be reflected by those of E. Works already done in this direction are 

too numerous to enumerate. Here we content ourselves with only three examples. The first 

one concerns the (uniform) Kadets—Klee properties. The lifting of these properties from E 

to E(M, 7) has been extensively studied (cf., e.g., [6,37,38,41,50,57]). The second exam- 

ple is about the reduction of weakly compact subsets in E(M, 1) to those in E. This was
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achieved in [52] and [58] (see also the references there for previous works on this prob- 

lem). Finally, the geometry of the unit ball of E(M, t) was studied in [5] and [40]. More 

examples and references of this kind will be given in appropriate places in the subsequent 

sections (see also [49]). 

Despite the strong analogy between the commutative and non-commutative settings, 

non-commutative L?-spaces behave, in some aspects, very differently from their commu- 

tative counterparts. 

One of the most spectacular differences concerns unconditional bases or “unconditional 

structures”. Already in [111], it was proved that S! cannot be embedded into any space 

with an unconditional basis, in sharp contrast with £1. But the big surprise came when 

Gordon and Lewis [74] proved that the Schatten class SP fails to have any unconditional 

basis when p # 2 in sharp contrast with £7 or L?. More generally they proved that SP? 

fails “local unconditional structure” in their sense (abbreviated as GL-Lu.st.; see [94] for 

the precise definition). This was the first example of a reflexive Banach space which was 

not isomorphic to any complemented subspace of a Banach lattice. More precisely, let 

lu(X) denote the GL-Lu.st. constant of a Banach space X (lu(X) is equal to the norm of 

factorization through a Banach lattice of the identity of X**). The following theorem was 

proved by Gordon and Lewis [74] using a criterion (necessary but not sufficient) for the: 

GL-Lu.st. of a space X: any 1-absolutely summing operator on X must factor through L! 

(this is now called the GL-property). More precisely, they obtained the first part of the 

next statement (the second part comes from [143], see also [180] and [146], 8.d for related 

results): - 

THEOREM 4.1. There is a constant C > Q such that for any 1 < p< ooandanyn > 1 

Cnll/P=1/21 lu (SP) <nll/p-172, 

— 
Consequently, SP does not have the GL-Lu.st. for p # 2. More generally, let X be any 

Banach lattice of finite cotype (resp. of type > 1), then there is a constant C > 0 such 

that, if E is any n*-dimensional subspace (resp. subspace of a quotient) of X, we have 

d(S?, E) > cnlt/P-1/72, oo : : 

Combining Theorem 3.5 and Theorem 4.1, we immediately obtain 

COROLLARY 4.2. A non-commutative LP (M), 1 < p < 00 and p # 2, has the GL-Lu.st. 
iff M is isomorphic, as Banach space, to L*° (82, i) for some measure space (£2, jv). 

Moreover, this happens iff LP (M) is isomorphic to a subspace of a commutative LP -space. 

Note that M is isomorphic, as Banach space, to a commutative L*® iff M is the direct 

sum (£o sense) of finitely many algebras of the form L® (uw; B(H)) (= L® (1) ® B(H)) 

with dim(H) < oo. iw : 

Another striking divergence from the classical case is provided by the uniform approx- 

imation property (UAP in short): by an extremely complicated construction, Szankowski 
proved that B(£>) fails the approximation property (AP in short), and moreover ([189])
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that SP (or S”') fails the UAP for p > 80. It remains a challenging open problem to prove 
this for any p # 2. 

We will describe another striking difference in Section 7, that is, a non-commutative 

LP-space LP(M), 0 < p <1, is never an analytic UMD space except when M is isomor- 
phic, as Banach space, to a commutative L°°-space. 

Surprisingly, by [122], “stability” provides us with one more sharp contrast. Recall that 

a Banach space X is stable (in Krivine-Maurey’s sense) if for any bounded sequences 

{xm}m>1, {¥n}nx1 in X and any ultrafilters U, V on N 

Jim Hm [ly + ynll = Hm Hm fxn + yall. 

It is well known that any commutative LP-space (1 < p = 00) is stable (cf. [109]). This is 

no longer true in the non-commutative setting. In fact, we have the following characteriza- ; 

tion of stable non-commutative L? wn 

THEOREM 4.3. Let 1 < p < 00, p 5 2. Then LP (M) is stable iff M is of type’ 1. 

The “if” part of Theorem 4.3 was independently proved by Arazy [8] and Raynaud [166]. 

The “only if” part is due to Marcolino [122]. Marcolino’s proof is divided into two steps. 

The first one (the proof of which is relatively\easy) is that L?(R), p # 2, is not stable 

(recalling that R is the hyperfinite II; factor). The second step is the above Theorem 3.5. 

5. Uniform convexity (real and complex) and uniform smoothness 

The fact that ZP (M), 1 < p < oo, is uniforinty.convex and smooth immediately follows 

from the following Clarkson type inequalities. 

THEOREM 5.1. Let 1 < p, p' <oco with 1/p+1/p' = 1. Then 

0 #1<p<2 | co | | 

1 y NEL a. 
[50 +ylp +llx—ylp )] 

uv 

< (IB +1y15) 77, x,y € LPM); (5.1 

(i) f2< p< oo, 

1 » » 1/p 

HC +ylp+lx— o15)| 

a / 1 / 

<(Ixlp + ys) Px, yeLP(M). (5.2) 

Inequalities (5.1) and (5.2), of course, have their origin in the classical Clarkson inequal- 

ities for commutative L?-spaces. In the non-commutative setting, some partial or particular
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cases of (5.1) and (5.2) were obtained in [47,128] (see also [49] for additional references). 

(5.1) and (5.2), as stated above were proved in [78] and [106] (see also [191] and [64]). 

PROOF OF THEOREM 5.1. The proof is almost obvious via the complex interpolation. 

Indeed, (5.1) (resp. (5.2)) is trivially true for p = 1,2 (resp. p = 2, oo). Then the complex 

interpolation yields (5.1) and (5.2). We also note that (5.1) and (5.2) are dual to each 

other. a 

Let §x (resp. px) denote the modulus of convexity (resp. smoothness) of a Banach 

space X. Theorem 5.1 implies the following 

COROLLARY 5.2. Let 1 < p < 00. Then LP (M) is uniformly convex and smooth; more 

precisely, we have 

@) fori<p<2 

S 1 1, i 
Soa (e) 2 Por , O0<e<2, and pron) < > , t>0; 

(ii) for2<p<oo 

1 1, 
Spe (8) = —gP, O<e<2, and prem (@) < —tP , t>0. 

p2r p_ 

The reader can find some applications of the uniform convexity of L?(M), eg. : 

in [107,108]. 

Let us comment on the estimate for the modulus of convexity given by Corollary 5.2 (the 

same comment, of course, applies to the modulus of smoothness as well). This estimate is 

best possible only in the case of 2 < p < 00. We should also point out that in this case 

the relevant constant 1/(p2”) is optimal (for it is already so in the commutative case; 

see [115], p. 63). Keeping in mind the well-known result on the modulus of convexity-of 

commutative L”-spaces, one would expect that the order of §7r(a1)(e) for 1 < p <2 be 

O(g?). This is indeed the case (cf. [193]). In fact, we have a more precise result as follows. 

THEOREM 5.3. Ler 1 < p < oo. Then 
(i) fori<pg2 

1/2 (1x12 + (= DIY) 
: 1 » 1/p 

< [50 +1541 507) | , Vx,yeLP(M); (5.3) 

(i) for2<p<oo, : 

1 1/p » 

[30 +05 +1 51) 
172. ; < (112 + (2 = DIyI2) 7%, va, y e LPM). BREE) 

Moreover, the constant p-— 1 is optimal in both (5.3) and (5.4). cio



Non-commutative LP -spaces 1481 

This theorem was proved in [14] for Schatten classes. As pointed out by the authors, the 

arguments there work for semifinite von Neumann algebras as well. Then the general case 

follows by Theorem 3.6. We should emphasize that the optimality of the constant p — 1 

in (5.3) and (5.4) has important applications to hypercontractivity. We will later illustrate 

this by discussing the Fermionic hypercontractivity. 

Note that if one does not care about the best constants, one can deduce Theorem 5.3 from 

the optimal order of 8.,(A1y(¢) and ppp aq) (2) obtained in [193] (at least, for Schatten 

classes). Note also that (5.3) and (5.4) are equivalent by duality. We will include a very 

simple proof of (5.4) for p = 2" (n € N), and so by interpolation for all 2 <p < oo with 

some constant C, instead of p — 1. 
Theorem 5.3 gives the optimal estimates fox § Len(® (I< p <2) and prea) 

2 <p < 00). \ 

COROLLARY 5.4. We have, forany 0 <e <2 ny 0 . 

Spray (e) 2 Poe, 1<p<2, and 

pLrmy(®) < Pe, 2< p<oo. 

REMARK. The constants (p — 1)/8 and (p—=T1)72 in the above estimates are optimal 
(see [115], p. 63 for the-commutative case). 

Corollaries 5.2 and 5.4 yield the type and cotype of L? (M) for 1 < p < co. eT 

COROLLARY 5.5. Let 1 < p < oo. Then LP(M) is of type min(2, p) and cotype 

max (2, p): oe - 

The type and cotype of L?(M) were determined in [193] for Schatten classes, and 

in [63] for the general case. We will see later that 7 (M) is of cotype 2 forO0 < p < 1. 

Now we turn to the application of the optimality of the constant p — 1 in (5.3) and (5.4) 

to the Fermionic hypercontractivity. Before starting our discussion, we should point out, 

however, that in the scalar case (i.e., in the case where M = C) Theorem 5.3 is exactly Nel- 

son’s celebrated hypercontractivity inequality for the two point space (cf. [20] and [130]). 

This two point hypercontractivity inequality easily yields the optimal hypercontractivity 

for the classical Ornstein—Uhlenbeck semigroup. Carlen and Lieb used Theorem 5.3 (in 

the case of Schatten classes) to obtain the optimal Fermionic hypercontractivity, thus solv- 

ing a problem left open since Gross’ pioneer works in the domain (cf. [75]). 

Let R be the hyperfinite II; factor. We recall that R is generated by a sequence 

(én)n>1 of self-adjoint unitaries satisfying (CAR) (see Section 1). We also recall that 

{wa: ACN, A finite} is an orthonormal basis of L?(R). We define the number opera- 

tor N by Nwy = |Alwa (|]A| denoting the cardinality of A). N is an unbounded positive 

self-adjoint operator on L?(R). It generates the Fermionic Omstein—Uhlenbeck semigroup 

PsP, =e Nt > 0. One can show that P; is a contraction on LP(R) forall 1 € p < oc. 

The optimal Fermionic hypercontractivity is contained in the following ~ :
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THEOREM 5.6. Let 1 < p < gq < oo. Then P; is a contraction from LP (R) to LY(R) iff 

e 2 <(p—1)/(q— 1). 

Let us briefly comment on the proof of Theorem 5.6. First, since linear combinations 

of the w4’s are dense in L?(R), it suffices to prove Theorem 5.6 in the finite-dimensional 

case, that is, when P; is restricted to the L”-spaces based on the von Neumann algebra 

generated by {€1,...,&,} (n € N). Second, by standard arguments as for the classical 

Ornstein—~Uhlenbeck semigroup, one can reduce Theorem 5.6 to the special case where 

2 = p < q. Assuming these reductions, one can use (5.4) to prove Theorem 5.6 by induc- 

tion on x (noting that the case n = 1 corresponds to Nelson's two point hypercontractivity). 

We refer to [35] for the details. 

REMARKS. (i) Theorem 5.6 implies, and in fact, is equivalent to the optimal Fermionic 

logarithmic Sobolev inequality, see [76] and [35]. 

(ii) Biane [18] obtained the analogue of Theorem 5.6 for the free Ornstein—Uhlenbeck 

semigroup. Note that this latter semigroup is also ultracontractive (cf. [23,24]). 

We end the discussion on the uniform convexity and smoothness by providing a simple 

proof for Theorem 5.3 (except for the best constant). We need only to consider (5.4). We are: 

going to show that for 2 < p < oq there is a constant Cp, depending only on p; such that 

aE p p 1p Co [301 +0519) | | 
1/2 . 

<(Ix12 + Collyl2)' 2, va, y e LPM). (54) 

To that end, by Theorem 3.6, we can assume that M is semifinite and equipped with 

a faithful normal semifinite trace t. The key step in the proof of (5.4,) is the implica- 

tion “(5.4,) = (5.42). Let us show this. Assume (5.4,). Let x,y € L?*P(M), and set—" 

a=x*x+y*y,b=x*y + y*x. Thena, b € L?(M) and 

1 2p apy _ 1 pI? pI? 5 (lx +ylh + lx = yliah) = 5 (la +bllp + lla — blip) 
2 < (lal? + Cpllp12)"? (by (5.4) 

2 2 : <[(1%13, + Iy13,)* +4C, x3, Iy13,17% 
co < (1x13, + @Cp + DIyI3,) 

whence (5.42) with C2, < 2C), + 1. Therefore, starting with the trivial case p = 2 (noting 

that Cp = 1), and by iteration, we get Co» < 2" — 1 (in fact, Con == 2" — 1). Thus for these 

special values of p we obtain the best constant in (5.4). Then for any other value of p, say, 

2" < p <2" by complex interpolation, we deduce (5.4) with RR 

cp< (2-1) — 1), IE 

where 1/p = (1—8)/2" +6/2*+1. ati | Oo
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Now we pass on to the uniform PL-convexity and Hardy convexity of non-commutative 

LP-spaces. This time, we admit quasi-normed spaces (so p < 1 is allowed). 

Let X be a (complex) quasi-Banach space. Let T be the unit circle equipped with nor- 

malized Lebesgue measure. For 0 < p < co we denote by L?(T, X) the usual L?-space of 
Bochner measurable functions with values in X. Note that LP (T, L? (M)) is just the non- 

commutative L?-space based on the von Neumann algebra tensor product L®(T) ® M. 
Let P(X) denote the family of all complex polynomials with coefficients in X: 

» ; 

P00 ={ Sond mex 0<kn nen . : 

k=0 

DEFINITION. Let X be a quasi-Banach space. Let 0 < p < oe & > 0. We define 

Hx(e) =inf{lix + 2ylipim pn — 1: Ix =1, yl 25, x, yeX} 

and \ 

hs @) =mf{ll flier) — 1: [FO] =1, | f — FO) I Zeer. =e, : 

fePX}. | 

X is said to be uniformly a H?-convex)if Hx (g) > 0 (resp. nb (e) > 0) for 

alle > 0. Hx (g) (resp. nk (e)) is called the modulus of PL-convexity (resp. H?-convexity) | 

of X. ON 

The uniform PL-convexity was introduced and studied Lin [45]. It was shown there that 

in the definition of Hx(s) above, if the Ll-norm is replaced by an L?-norm, then the 

resulting modulus is equivalent to Hy (¢). The uniform H?-convexity was explicitly intro- 

duced in [199]; however, it is already implicit in [80]. It was proved in [202] that if X is 

uniformly H?-convex for one p € (0, 00), then so is it for all p € (0, 00). Thus we say 

that X is uniformly H-convex if it is uniformly H?-convex for some p. The uniform PL-" 

convexity (resp. H-convexity) is closely related to inequalities satisfied by analytic (resp. 

Hardy) martingales with values in X. The Enflo~Pisier renorming theorem about the uni- 

form (real) convexity admits analogues for these uniform complex convexities. We refer 

to [45,199,201,202] and [149] for more information. 

REMARKS. (i) For any given 0 < p < oo there is a constant «,, > 0 such that for all quasi- 

Banach spaces X 

Hx (e) 2 aphl(ape), 0<e<l. 

Consequently, the uniform H-convexity implies the uniform PL-convexity. 

(ii) If a Banach space X is uniformly convex, it is uniformly H-convex.
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THEOREM 5.7. Assume 0 < p,q < 00. Let M be a von Neumann algebra. Then 

haan (© >a’, O0<e<l, 

where r = max(2, p,q) and a > 0 is a constant depending only on p,q. 

REMARKS. (i) Inthe case g > 1, Theorem 5.7 easily follows from Corollaries 5.2 and 5.4. 

Thus the non-trivial part of Theorem 5.7 lies in the case g < 1. 

(ii) Theorem 5.7 implies, of course, that the same estimate holds for the modulus of 

PL-convexity. : 

(iii) In the case of ¢ = 1, Theorem 5.7 is contained in [80]. In fact, it is this result which 

motivated the introduction of the umform H-convexity. 

Theorem 5.7, as stated above, was proved in [201]. The ingredient of the proof is 

the Riesz type factorization for Hardy spaces of analytic functions with values in Tion- 

commutative L?-spaces. In Section 8 below we will discuss such a factorization in a more 

general context. 

The following corollary completes Corollary 5.5. Thus the non-commutative L”-spaces 

have the same type and cotype as the commutative L?-spaces. 

COROLLARY 5.8. L?(M) is of cotype 2 for any 0 < p < 1 and any von Neumann alge- 

bra M. 

This corollary was proved in [193] for p=1 and in [201] for 0 < p < 1. ol 

We recall that a quasi-Banach space X has the analytic Radon-Nikodym property (ab- 

breviated as analytic RNP) if any bounded analytic function ¥:D — X has a.e. radial 

limits in X, where D denotes the unit disc (cf. [30,59], and also [32] for additional refer- 

ences). It is known that the uniform H-convexity implies the analytic RNP. Thus we get” 

the 

COROLLARY 5.9. LP(M) has the analytic RNP for any 0 < p < 1 and any von Neumann 

algebra M. 

The results discussed in this section have all been extended to symmetric operator 

spaces. We refer to [70,195] for the cotype, uniform convexity, PL-convexity and smooth- 

ness in the unitary ideals, and in the general case, to [200] for the uniform convexity 

and smoothness, to [203,204] for the uniform H-convexity, RNP and analytic RNP (see. 

also [129]). Finally, we mention that [39] contains related results, especially thqse on the 

local uniform convexity for symmetric operator spaces. ) ce 

6. Non-commutative Khintchine inequalities : 

This section is devoted to the non-commutative Khintchine inequalities and the closely 

related Grothendieck-type factorization theorems. Although all results in this section hold
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for the general non-commutative LP-spaces, we will restrict ourselves to the semifinite 

ones, i.e., those constructed from an n.s.f. trace. Letters 4, Bp, ..., will denote positive 

constants depending only on p. 

Let (en)s>1 be a Rademacher (or Bernoulli) sequence, i.e., a sequence of indepen- 

dent random variables on some probability space (£2, F, P) such that P(g, = 1) = 

P(e, =—1)=1/2 forall n > 1. We first recall the classical Khintchine inequalities. Let 

0 < p < oo. Then for all finite sequences (a) of complex numbers 

43!) > aren ~ < > anon < Bp | > anen (6.1) 
n>l LP(2,P) n=l L2(£2,P) n>1 LP(2,P) 

(Note that obviously || Dons 1anénllL2g, py = Qn lan |?)1/2.) These inequalities remain 

valid (suitably modified) when the eoefficients a,,’s are vectors froma Banach space X. In 

that case they are due to Kahane, and are usually called “Khintchine—Kahane inequalities”: 

for all finite sequences (a,) in X 

8 DICER BE D3 n>1 LP(2,P;X) n>1 L%(2,P;X) 

< B, | > angen | : (6.2) 
n>1 LP(2,P;X) 

In particular, if X is a commutative L?-space, say X = L? over (0, 1), (6.2) implies that 

for all finite sequences (a,) in LP (0, 1) 

1/2 

Ser) 1, «| Zee] nzl Lr n>t L2(2,P;LP) 

1/2 wlge)], oe 
nzl Le PRES 

It is (6.3) that we will extend to the non-commutative setting. 

Now let M be a semifinite von Neumann algebra equipped with an n.s.f. trace 7. Let 
a = (a) be a finite sequence in L?(M) (recalling that by our convention, L”(M) = 

LP (M, 1)). Define 

: N12 1/2 toms l(Z) | =| (5), nz0 14 nz=0 p 

This gives two norms (or quasi-norms if p < 1) on the family of all finite sequences in 

LP(M). The corresponding completions (relative to the w*-topology for p = 00) are de- 

noted by L?(M; 12) and LP (M; 1%), respectively. The reader is referred to. [156] for a 

discussion of these norms. : : . :
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Now we can state the non-commutative Khintchine inequalities. 

THEOREM 6.1. Let 1 < p < oo, and let M be a semifinite von Neumann algebra. Let 
a = (an)nz0 be a finite sequence in LP (M). 

1) If2 < p < 00, there is a constant B, (depending only on p) such that 

llall 2 12) € Endy, 

ErOnLICMit) = py Lo(2,P;LP(MY)) 

< B, lall Lo (pts2ynee msi): (6.4) 

(1) If 1 < p <2, there is an absolute constant A > 0 (independent of p and a) such 
that 

Allall 2 2 S | Ena | 
LPMGIE+LP (MIR) 2 mr LP(82,P;LP (MD) 

Sal Lot 2yr Looms) ©5). 
/ 

For the convenience of the reader we recall the norms in LP (M; 12) NLP(M; 12) and 

LP(M; 12) + LP(M; 13): 

hall Lrrtznze vez) = max{lali ou), lal ou, ) 

and 

NallLoatszy+romi2) = inf {151 Lp rt:i2) + elertz) }, ya 

where the infimum runs over all decompositions a = b + ¢ with b € LP? WM; 12) and c € 
LP (M; 13). 

This result was first proved in [117] for 1 < p < oo in the case of the Schatten classes. 
The general statement as above (including p = 1) is contained in [121]. Modulo the clas- 
sical fact that in all preceding inequalities the sequence (¢,,) can be replaced by a lacunary 
sequence, say, by @*H n3>1 on the unit circle T, the main ingredient of the proof in [121] is 
a Riesz type factorization theorem (see Theorem 8.3 below). 

REMARKS. (i) Like in the classical Khintchine inequalities (6.1), the constant B, in (6.4) 
is of order ,/p (the best possible) as p — oo (cf. [154, p. 106]). . 

(ii) We have already mentioned that in Theorem 6.1, the sequence (&,) can be replaced 
by a lacunary sequence. It is also classical that (g,) can be replaced by a sequence of 
independent standard Gaussian variables. 

(iii) More generally, Theorem 6.1 holds when (g,) is replaced by certain sequences in a 
non-commutative L”-space L?(N) and ya, is replaced by ¢, ® a, in LP? WN ® M), for 
instance, this holds for the generators of a free group, for a free semi-circular system. (in
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Voiculescu’s sense [196]) and for a sequence of CAR operators (as in Section 1). Note that 

in the free cases, (6.4) even holds for p = oo! The reader is referred to [81,154] for more 

information, and also to [27,29] for some related results and for the best constants in these 

inequalities. 
(iv) Theorem 6.1 also holds for non-commutative L”-spaces associated with a general 

von Neumann algebra (cf. [100,101]). Note that [100,101] contains more inequalities re- . 

lated to (6.4) and (6.5). 

COROLLARY 6.2. Let (;;) be an independent collection (indexed by N x N) of mean zero 

+1-valued random variables on (£2, F, P). For any 2 < p < 00, there is a constant Cp, 

such that for any finitely supported function x : N? — C, we have 

xl, < > ex, hes) <Cplixllp, (6.6) 
ij WLE($2,P,SP) : 

where 

p/2\1/p p/2\ 1/p 
LN 2 . a2 

xl» —max{ (3 ( Shei) ) ) (xz |x, 7) ) ) I 
i j j i 

6.7) 
A fortiori this implies 

| > eijx(i, jeij | LP(2. PP) < Cp om > ed, Hx(, Deij | oF (6.8) 

PROOF. Take LP(M) = SP. Let a;; = x(i, /)ej. Then (3; afa;j)'/* = 3; A jej; and 

Caai)'/? = 3 pies where hj = (3; |x, HIHY? and pi = (2; 1x, HI»). Thus 
(6.6) is a special case of (6.4). (| 

REMARK 6.3. The preceding result remains valid with the same proof when 1 < p <2 

provided one changes the definition of [|x], to the following one (dual to the other): 

lll = inf{ ly lle, ep) + 12], ep} 

where the infimum runs over all possible decompositions of the form x = y +z. 

REMARK. [101] contains more inequalities of type (6.6). Here we just mention one of 

them, which is an extension of (6.6). Let (f;;) be an independent collection of mean zero 

random variables in LP (£2, F, P) (2 < p < o0). Then 

1/p p/2\1/p 
Pu ~~ 1 P 112 [52 ei] pry me] (002) (= (z 18) ) 

ij 

) pI2\1/p 

(Z(Zw)) 7) 
i i 

where the equivalence constants depend only on p. Do



1488 G. Pisier and Q. Xu 

Inthe case of 0 < p < 1, itis easy to check that the second inequality of (6.5) still holds. 

However, this is not clear for the first one. : 

PROBLEM 6.4. Does the first inequality of (6.5) hold for 0 < p < 1 (with some constant 

depending on p)? Does Remark 6.3 extend to p < 1? 

Like in the commutative setting, the non-commutative Khintchine inequalities are 

closely related to non-commutative Grothendieck type factorization theorems. Indeed, it 

was shown in [121] that (6.5) in the case of p = 1 is equivalent to the non-commutative 

little Grothendieck theorem. To go further, we need one more definition. 

DEFINITION. Let 1 < p< 00, 0 <g <r < 00. Let Y be a Banach space, and let 

u:LP(M) — Y be an operator (M being a semifinite von Neumann algebra). u is said to 
be (r, g)-concave if there is a constant C such that for all finite sequences (a,) in LP (M) 

t/r 1/q 

(Duan) <c] (rant) | 

where |a|; = ((@*a+aa*)/2) 172 denotes the symmetric modulus of an operatora. If g =r, p 

u is simply said to be g-concave. 

In the case of p = co (then M can be any C*-algebra), the above notion reduces to that : 

of (r, g)-C*-summing operators introduced in [144] and [147]. The following is an easy | 

consequence of the Hahn-Banach theorem (cf. [144] for a proof). 

PROPOSITION 6.5. Let M be a semifinite von Neumann algebra. Let 1 < gq < p < 00 and 

s = p/q. Then for any operator u: LP (M) — Y the following assertions are equivalent - } 

(1) u is g-concave; vd 
(ii) there are a constant C and f € (LS(M))*, f = 0, such that 

luall < C(f (lal), Va e LPM). | } 

The following Grothendieck-type factorization theorem (when Y is a Hilbert space) is 

equivalent to (6.5) with p’ in place of p. 

THEOREM 6.6. Let2 < p < 00, and let Y be a Banach space of cotype 2. Then any oper- 

ator u: LP (M) — Y is 2-concave, equivalently (via Proposition 6.5), there are a constant 

C and f € (LP/?(M))* with f > 0 such that Co 

20\1/2 » 
ual < Clull(f(lal2))’", YaeLP(M). 

Moreover, C can be chosen to depend. only on the cotype 2 constant of Y. 

REMARK. The basic case p = oo (=non-commutative Grothendieck theorem), is proved 

in [147] (see also [144,146]). In this case, M can actually be any C*-algebra. In the case of
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p < oo, Theorem 6.6 is essentially the main result in [118]. More generally, [118] proves 

this for operators u: E(M, 7) — H, where H is a Hilbert space and E is a 2-convex 

ri. space with an additional mild condition. This, together with [121], implies that Theo- 

rem 6.1 can be extended to some symmetric operator spaces. The main difficulty in [118] 

is to obtain Theorem 6.6 with a constant C independent of p, or equivalently which re- 

mains bounded when p — co. If we ignore this important point, it is very easy to deduce 

Theorem 6.6 from (6.4), as follows. : : 

PROOF OF THEOREM 6.6 FOR p < 00 WITH C = C,. Since LP (M) is of type 2, by 

Kwapieri’s theorem (cf. [146], Theorem 3.2), u factors through a Hilbert space. Thus we 

may assume Y itself is a Hilbert space. Let (ay) be a finite sequence in L? (M). Then 
a 

(x [tan] ) = 2_u@n)en earn 

< | el] nen] oi eocnny 
1/2 

2 <G|(Zimk) 7] byte) 

Therefore, u is 2-concave. Te 

Unfortunately, the preceding proof does not work for p = oo. The main difficulty in 

this case is to show that an operator #4 from M into a space of cotype 2 factors through 

a Hilbert space. This was done in [147]. The proof given there relies on another result of 

independent interest, that we state as follows. . 

THEOREM 6.7. Let 1 <q < 00. Let u: A — Y be an operator from a C*-algebra A into 

a Banach space Y. Then the following assertions are equivalent 

@@) u is (g, 1)-C*-summing; : : 

(ii) there are a constant C and a state f on A such that 

i 

ual < Cllull(£ (als) lal! =4, Vae 4; . 

(iii) for any 1 <r < q there are a constant C and a state f on A such that 

1 _ ual < Clull(£(al})) lal! =, Va e a; | 

Gv) u is (gq, r)-C*-summing for any 1 <r <q. 

Thus Theorem 6.7 gives a characterization of (gq, r)-C*-summing operators defined on 

a C*-algebra. (ii) and (iii) above can be reformulated as a Pietsch-type factorization of u 

through a non-commutative Lorentz space L?'!, constructed from the state f via the real 

interpolation in the spirit of Kosaki’s construction presented in Section 3. The resulting 

spaces, denoted by L?-1(f), possess properties similar to the usual Lorentz spaces. The 

reader is referred to [147] for more information.
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REMARK. There does not seem to be a known characterization similar to that in Theo- 
rem 6.7 for (gq, r)-concave operators defined on LP (M) (p < 00). 

Let us close this section by an application of Theorem 6.7. 

THEOREM 6.8. Let M be any von Neumann algebra and X C M, a reflexive subspace. 

Then there are a normal state f of M and p > 1 such that X embeds isomorphically into 

LPP(f), where LPP (f) is the non-commutative LP -space referred to above. 

This theorem, proved in [147], is a non-commutative version of a classical theorem due 
to Rosenthal in the commutative setting. Its proof uses Theorem 6.7 and a previous result 
in [92] that any reflexive subspace of M, is superreflexive. Note that the real interpolation 

space LP-P(f) can be replaced by the corresponding complex interpolation space. 

REMARK. Let A be a C*-algebra, and let T : A — £; be absolutely summing (in the usual 
sense). If A is commutative, it is well known that T factors as T = TT», where Th: A — V2) 
is bounded and 7; € $2. In [161] it is shown that for a general C*-algebra A, one can get 
a factorization T = T1T», where T>: A — £; is bounded and 7}: £, — £5 belongs to the . 
Schatten class S4 (the exponent 4 is optimal). A fortiori T is compact. In particular, there 
is no embedding of £; into a non-commutative L;-space with absolutely summing adjoint. 
See [146, p. 68] for background on embeddings of this kind. u 

7. Non-commutative martingale inequalities | : 

This section deals with non-commutative martingale inequalities. The reader is referred 
to [71] for the classical (= commutative) martingale inequalities. In what follows, M will 
be a von Neumann algebra equipped with a normal faithful finite normalized trace ©. We ya 
begin with some necessary definitions. Let A C M be a von Neumann subalgebra. The 
non-commutative L?-space associated with (NV, t|xr) is naturally identified with a sub- 
space of L”(M). There is a unique normal faithful conditional expectation £ : M — A 
preserving the trace 7, i.e., T(€(x)) = v(x) for all x € M. For any 1 < p < 00, £ is ex- 
tended to a contractive projection from L” (M) onto L? (A), still denoted by £. 

Now let (Mp),0 be an increasing sequence of von Neumann subalgebras of M such 
that the union of all the M,,’s is w*-dense in M. Let &£, be the conditional expectation 
from M onto M,,. Then as usual, we define a non-commutative martingale (with respect 
to (Mn)n30) as a sequence x = (X,),>0 in LY(M) such that 

En xn) =%0, Yn20. . 

If additionally all x,’s are in L? (M), x is called an L? -martingale. Then we set 

xl p = sup [xx] p- E 
nz0 AN 

If Ix||p < 00, x is called 2 bounded L?-martingale. The difference sequence of x is defined 
as dx = (dxp)n30 With dxg = xo and dx, = x, — x, _1 foralln > 1. :
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REMARK. Let xo € LP(M). Set x, = E,(x00) for all n > 0. Then x = (x) is a bounded 

LP-martingale and ||x||, = [|xco|l p; moreover, x, converges to Xoo in LP (M) (relative 

to the w*-topology in the case p = 00). Conversely, if 1 < p < oo, every bounded 

LP-martingale converges in L? (M), and so is given by some xo € L? (M) as previously. 

Thus one can identify the space of all bounded LP-martingales with" L? (M) itself in the 

case | < p <0. 

The main result of [156] can be stated as follows. Recall that Ap, Bp, ..., denote con- 

stants depending only on p. 

THEOREM 7.1. Let M and (M,)n>0 be as above. Let 1 < p < 00, and let x = (Xp)n 0 

be a finite LP -martingale with respect to (My) 0. Then 

ALS, (0) < lIxllp < BpSy (x), ¢AY 

where for 2 < p < 00, 

Spx) = dx ll Lo pui2ynLe iid) 

andforl <p <2, 

Sp (0) =inf{ dy lopez) + 1420 Loan 

the infimum being taken over all decompositions x =y +2 with LP -martingales y and z. 

This is the non-commutative Burkholder-Gundy inequalities. Note that in the commu- 

tative case, Sp (x) is the LP-norm of the usual square function of x (so that the above 

difference between the cases 2 < p < oo and 1 < p < 2 disappears). The proof of Theo- 

rem 7.1 in [156] is rather tortuous, due to the fact that the usual techniques from classical 

martingale theory, such as maximal functions, stopping times, etc., are no longer available 

in the non-commutative setting. See [156] and [19] for applications to non-commutative 

stochastic integrals. For Clifford martingales, some particular cases of Theorem 7.1 also 

appear in [34]. 

REMARK 7.2. The second inequality in (7.1) holds for p = 1 too. This follows from the 

duality between +! and BMO, proved in [156]. 

Like in the commutative case, Theorem 7.1 implies the unconditionality of non- 

commutative martingale differences. Let us record this explicitly as follows. 

COROLLARY 7.3. With the same assumptions as in Theorem 1.1, we have 

] > endxy | <C, | > dx, | , Ven, ==%1. (7.2) 
nz=0 P n=0 r
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Some rather particular cases of (7.2) also appear in [65,66]. Note that in the case of 2 < 

p < 00, (7.2) is equivalent to (7.1), modulo the non-commutative Khintchine inequalities. 

However, in the case of 1 < p < 2, to prove that (7.2) implies (7.1), one needs a non- 

commutative version of a classical inequality due to Stein. We refer to [156] for more 

details. 

REMARK. If p is an even integer, the second inequality of (7.1) was extended in [155] to 

sequences more general than martingale difference sequences (the so-called p-orthogonal 

sequences); moreover, for these values of p, the method of [155] yields that the order of 

the constant B,, in (7.1) is O(p) (for even integers p), which is optimal as p — oo. 

For the convenience of the reader, we recall the optimal order of the constants A p and 

B, in the commutative case (cf., €.g., [31]): B), is bounded as p — 1 and O(p) as p — oo; 

Apis O((p — D1 as p— 1 and O(p'/?) as p — co. The constants Ap, and Bp in (7.1) 

obtained in [156] are not satisfactory at all (they are of exponential type as p —> 0). Thus 

finding the optimal order of A, and B, in Theorem 7.1 seemed a very interesting question. 

Very recently, major progress on this was achieved by Randrianantoanina [165], as follows. 

THEOREM 7.4 ([165]). There is a constant C such that for any finite non-commutative 

martingale x in L' (M) and any sequence (g,) of signs 

[on], el Se, on n320 1,00 n320 1 : 

By interpolation, this implies the optimal order of the constant Cp in (7.2), namely, 

Cp =0(p) as p —> oo. This, in turn, combined with Theorem 6.1, yields better estimates 

for Ay, Bp in (7.1), namely A, is O((p — 1)~2) when p — 1 and both Ap and B, are 

O(p) when p — oo (which for Bj, is optimal). It was also shown in [102] that O(p) is 

the optimal order of A, as p — co. Note that this order is the square of what it is in the 

commutative case. On the other hand, it was proved in [100] that B,, remains bounded as 
p—> 1 

We will now discuss two other inequalities: the Burkholder and Doob inequalities." 

THEOREM 7.5. With the same assumptions as in Theorem 7.1, we have 

CAs @) < xl < Bpsp (a), | 3) 

where for 2 < p <.00, : oo Ce 

1/p 1/2 

sp(x) = max] ( > Ia) , | ( > En (4x) Co 
n=0 n>0 hp - 

50) 1/2 : (gear) ER n>=0 p ’
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and for 1 <p <2, 

1/p 1/2 

5px) = nt] (xz dw, 1?) + (xz Eni (aus?) 
n=0 n=0 4 

1/2 

| <|(Zemtents) | } | nz0 : P ‘ : : 

where the infimum runs over all decompositions x = w + u + v with LP -martingales w, u 

and v. 

This theorem comes from [100]. It is the non-commutative analogue of the classical 

Burkholder inequality. Note that in the commutative case (3 &,—1(|dx,[?))'/2 is the con- 
ditioned square function of x. Like in the commutative case, Theorem 7.5 implies a non- 
commutative analogue of Rosenthal’s inequality concerning independent mean zero ran- 

dom variables; see [100,101] for more details and some applications. 

THEOREM 7.6 ([97]). Let M and (M,,) be as in Theorem 7.1. Let 1 < p < 00. Let (ay) 

be a finite sequence of positive elements in LP (M).-Then 

I FE — 
n>=0 P n=0 r : 

Note that in the commutative case, (7.4) is the dual reformulation of Doob’s classical 

maximal inequality. Although it is clearly impossible to define the maximal function of a 

non-commutative martingale as in the commutative setting, Junge found in [97] a substi- 

tute, consistent with [154], which enables him to formulate a non-commutative analogue 

of Doob’s inequality itself, which is dual to (7.4). Note that the latter result immediately 

implies the almost everywhere convergence of bounded non-commutative martingales in 

LP(M) for all p > 1. Results of this kind on the almost everywhere convergence of non- 

commutative martingales go back to Cuculescu [43]. The reader is referred to [44] and 

[90,91] for more information. 

REMARKS. (i) Like the constants in (7.1) the constants in (7.3) and (7.4) obtained in [100, 

97] are not satisfactory at all. In fact, they depend on those in (7.1) since the proofs of (7.3) 

and (7.4) in [97] and [100] use (7.1). The more recent results of [165] imply better estimates 

for these constants. 

(ii) It was proved in [102] that the optimal order of the constant C), in (7.4) is O( p?) as 

p —> oo. This is in strong contrast with the commutative case for, in the commutative case, 

the optimal order of the corresponding constant is O(p) as p — oo. The same phenomenon 

occurs for the optimal order of the best constant in the non-commutative Stein inequality 

proved in [156], namely, this optimal order is O(p) as p — oo; again it is the square of 

what it is in the commutative case. We refer to [102] for more information. 

~ (iii) All the preceding results hold in the non-tracial case as well (cf. [100,101,97]).
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In the rest of this section, we briefly discuss the UMD property and the analytic UMD 
property of non-commutative LP-spaces, a subject closely related to inequality (7.2). Ap- 
plying Corollary 7.3 to commutative martingales with values in LP (M), 1 < p < 00, we 
get the unconditionality of commutative martingale differences with values in LP” (M), 
that is, L? (M) is a UMD space in Burkholder’s sense (cf. [32] for information on UMD 
spaces). This is a well-known fact, proved in [21] and [16]. In fact, these authors proved that 
the Hilbert transform extends to a bounded map on LP (T; LP (M)) for any 1 < p < 00; 
but this property (called “HT” in short) is equivalent to UMD. We also refer to the next 
section for discussions on Hilbert type transforms. Together with Theorem 3.6 we obtain 
the 

COROLLARY 7.7. LP(M) is a UMD space for any 1 < p < oo and any von Neumann 
algebra M. 

We mention an open problem circulated in the non-commutative world for almost two 
decades on the UMD property for symmetric operator spaces. Co 

PROBLEM 7.8. Let M be a semifinite von Neumann algebra equipped with an n.s.f. trace - 
7, and let E be a UMD ri. space on (0, 00). Is E(M, 7) a UMD space? ) 

We now turn to the analytic UMD property. Let TN be the infinite torus equipped with 
the product measure, denoted by dm oo. Let £2, be the o-field generated by the coordinates - 
(20, ..-, 2s), n 2 0. Let X be a quasi-Banach space. By a Hardy martingale in L? (TY; X) 
(0 < p < 00), we mean any sequence f = (f,) satisfying the following: for any n > 0, 
fo € LP(TN, 2,: X) and Jn is analytic in the last variable z,, i.e., f, admits an expansion 
as follows ~ 

Ja@0s os 201,20) =) Oni (Zo, , Zn-1)2E, - 

c k=l : 

where @, 1 € LP(TN, £2,_1; X) forn 2 0,k > 0. If in addition, on =0forallk >2, f is 
called an analytic martingale. Note that if X is a Banach space and 1 < Pp < 00, any Hardy 
martingale in LP (TN; X) is a martingale in the usual sense. 

DEFINITION. X is called an analytic UMD space if for some 0 < p < 00 (or equiva- 
Iently for all 0 < p < 00) there is a constant C such that all finite Hardy martingales +f in 
LP (TN; X) satisfy 

> endfy < | > dfs , Vep,=+1. 
’ nz0 2 Tu>0 p } 

This notion was introduced in [69]. The apparent weakening obtained by requiring the 
above inequality be verified only for analytic martingales, is actually an equivalent de- 
finition of analytic UMD spaces (cf. [69]). Typical examples of Banach spaces which 
are analytic UMD but not UMD are commutative L!-spaces. In fact, all commutative
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LP-spaces, 0 < p < 1, are analytic UMD spaces. We refer to [69] for more information 

(see also [32]). 

However, this no longer holds in the non-commutative setting: 

PROPOSITION 7.9. Let M be a von Neumann algebra and 0 < p < 1. Then LP (M) is an 

analytic UMD space iff M is isomorphic, as Banach space, to a commutative L™-space. 

It was proved in [80] that the trace class 1 is not an analytic UMD space. The ingredient 

of the proof there is the unboundedness of the triangular projection on § 1 (cf. [111]). (This 

projection is in fact a non-commutative Riesz projection in the context of the next section.) 
The same idea also shows that S? is not an analytic UMD space for 0 < p < 1. Noting that 

the analytic UMD property is “local”, we then deduce the general case from Theorem 3.5. 

8. Non-commutative Hardy spaces 

A classical theorem of Szegd says that if w is a positive function on the unit circle T such 

that log w € L!(T), there is an outer function ¢ such that |¢| = w a.e. on T. A lot of effort 

has been made to extend this theorem to operator valued functions, not only for its intrinsic 

interest, but also because it is the gateway to many useful applications (cf., e.g., [85,86, 

46,179,198]). This problem makes sense in the broader context of subdiagonal algebras, 

introduced by Arveson in the 60’s in order to unify several frequently used non-selfadjoint 

algebras such as triangular matrices and bounded analytic operator valued functions. In this 

section we will present the extension to this general context of some elassical results for 

analytic functions in the unit disc, including Szeg6’s theorem, boundedness of the Hilbert 

transform and the Riesz factorization theorem. 

Throughout this section, unless explicitly indicated otherwise, M will denote a finite 

von Neumann algebra equipped with a normal fait finite normalized trace 7. Let D 

be a von Neumann subalgebra of M. Let £ be the (unique) normal faithful conditional 

expectation of M with respect to D which leaves 7 invariant. 

DEFINITION. A w*-closed subalgebra H* (M) of M is called a finite subdiagonal alge- 

bra of M with respect to £ (or to Dy if 

@) {x +y* x,y € H®(M)} is w*-dense in M; : : 

(1) E(xy) =EX)E®D), Yx,y € HOM); 
(iii) {x: x,x* € H®(M)} =D. 

D is then called the diagonal of H®°(M). 

This notion can be generalized further (see [12]). However, the theory we will give below 

is, on one hand, satisfactory only for finite subdiagonal algebras as above, and on the other, 

interesting enough to cover many important cases. 

REMARKS. (i) If H®(M) is a finite subdiagonal algebra of M, it is automatically max- 
imal in the sense that it is contained in no proper subdiagonal algebra with respect to £ 

other than itself (see [61]).
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+ (ii) Consequently, H*°(M) admits the following useful characterization (cf. [12]) 

H®(M) = {x e M: t(xy) =0, Vy € HP (M)}, 

where 

HFM) = {x € HP (M): E(x) =0}. 

Here are some examples (see [12] for more). 

(1) Triangular matrices. Let M, be the full algebra of all complex n x n matrices 
equipped with the normalized trace. Let 7, be the algebra of all upper triangular matri- 
ces in Mj. Then 7, is a finite subdiagonal algebra of M,,. In this case, the theory we will 
give below is partly contained in [73]. 

(i1) Nest algebras. Let P be a totally ordered family of projections in M containing 0 
and 1. Let oo i 

N(P)={x € M: xe =exe, Yee P}. ’ 

Then NV (P) is a finite subdiagonal algebra of AM. The above example on triangular matri- 
ces is a special case of nest algebras. 

(iii) Analytic operator valued functions. Let (M, 1) be a finite von Neumann algebra.’ 
Let (L°°(T), dm) ® (M, 7) be the von Neumann algebra tensor product (recalling that T 
is the unit circle equipped with normalized Lebesgue measure dm). Let H™ (T, M) be the 
subalgebra of (L*®(T), dm) ® (M, 1) consisting of all functions f such that 

p= 

[trop dm(z) =0, VxeL'(M), VneZ, n<0. 

Then H*(T, M) is a finite subdiagonal algebra of (L®(T), dm) ® (M, t). This is the 
algebra of “analytic” functions with values in M. More precisely, each element f in 
H%(T, M) can be extended, using Poisson integrals, to an AM-valued function, analytic 
and bounded in the unit disc admitting f as its (radial or non-tangential) weak-* bound- 
ary values. The particularly interesting case H°(T, M,,) or H*®(T, B(l2)) was extensively 
studied (cf., e.g., [85,461). Note that B(l2) does not fit into our setting; however, for almost 
all problems we are concerned with, it can be recovered from M,, by approximation. 

In the remainder of this section, unless specified otherwise, H%(M) will denote a fi- 
nite subdiagonal algebra of AM with diagonal D. For 0 < p < co the corresponding Hardy 
space HF (M) is defined as the closure of H*°(AM) in LP (M). Many results on the clas- 
sical Hardy spaces in the unit disc have been extended to the present setting. We refer, 
for instance, to [13,93,127,123,124,126,159,173,175] and [177] for more information-and 

references. We now give some of these extensions. The first one is the Szegd type theorem. 

THEOREM 8.1. Suppose w € M and w=! € L2(M). Then there are a unitary u € M and 
© € H®(M) with ole HH(M) such that w = up. : : in
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This theorem, proved by Saito [175], improves a previous factorization theorem due 

to Arveson [12], in which both w and w™! are supposed to belong to M. Saito’s proof 

essentially follows the same fashion set out by Arveson, although some extra technical 

difficulties appear. 

REMARKS. (i) The above theorem can be still improved as follows: let 0 <p, g < 00 and 

w € LP(M) with w™! € L9(M). Then there are a unitary u € M and ¢ € H? (M) with 

¢~! € H1(M) such that w = ug. - 

(ii) In the classical case of analytic functions in the unit disc, for a positive function 

w on T, the condition logw € L!(T) is necessary and sufficient for the existence of a 

factorization w = ue, with # € L°°(T) unimodular and ¢ an outer function. It is an open 

problem to extend this to the non-commutative setting. Some partial results can be found 

in [46,86] and [198]. 

The following is an immediate consequence of Theorem 8.1 (and also of the remark (i) 

above). 

COROLLARY 8.2. Let w € LY(M) such that w > 0 and w=" € LP(M) for some 
0 < p < 00. Then there is ¢ € H*(M) such that w = ¢*¢. 

By a rather standard argument, one can deduce from Theorem 8.1 the following Riesz 

factorization theorem, which was proved in [124] (see also [177] for the case where p = 

q=2). 

THEOREM 8.3. Let 1 < p,q, r <oo with 1/r =1/p + 1/q. Then any x € H" (M) can 
be factored as x = yz with y € HP? (M) and z € HY (M); moreover, 

: Ix ll, =inf{ yl, lzllg: x =yz, y € HP(M), z€ HI(M)}. : 

REMARKS. (i) It seems unclear whether the infimum above is attained. 

(ii) With the notations in Theorem 8.3, one has the following more ptecise statement: 

for any ¢ > 0 there are y € HP (M) and z € H7(M) such that x = yz dnd . 

we < (e@ +e)", pl) < (ux) +e)", Ve >0. | 

In particular, if x € H®(M), then y, z € H*(M) and 

I¥llpllzllg = xl; +o(1) ase —0. BRE 

This allows to partially extend Theorem 8.3 to the case of indices less than 1 (at least, for 

elements x € H®(M) CH" (M)). However, it is unknown whether Theorem 8.3, in its 

full generality, still holds for indices less than 1. ~~ 

The reader can find applications of Theorem 8.3 to Hankel operators in [179,123], to 

invariant subspaces of L? (AM) in [175], and to the uniform H-convexity in [201] and [203]:
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We will now describe the Hilbert transform and Riesz projection. Let x € {a+b*: a,b € 
H>®(M)}. It is easy to see that x admits a unique decomposition 

x=a+d+b*, witha,be H°M), deD. 

Then we define the Hilbert transform H by 

Hx =—i(a — b*). 

Clearly, x +iHx € H®(M); moreover if x is self-adjoint, Hx is the unique self-adjoint 
element in {a + b*: a,b € H*(M)} such that x + iHx € H®(M) and £(Hx) = 0. Note 
that 

il LAM) = Hy (M) @ L*(D) & (H*(M)) | 

where HEM) = {x € H*(M): £(x) = 0}. One easily checks that HZ (M) (resp... 
(H*(M))1) is the closure of HS(M) (resp. {x*: x € H§O(M)}) in L?(M). This de- 
composition of L2(M) shows that H extends to a contraction on L*(M), still denoted . 
by H. 

Now let P be the orthogonal projection of L?(M) onto H2(M) (i.e., P is the “Riesz 
projection”). Like in the classical case, H and P are linked together as follows 

1. 1 

Thus, as far as boundedness is concerned, it suffices to consider one of them. - 

THEOREM 8.4. (i) H extends to a bounded map on LP (M) for any 1 < p < 00; more 
precisely, one has 

I1Hxllp < Cplixllp, Vx=a+b* a,be HM), 

where Cp, < C p?/(p — 1) with C a universal constant. 
(ii) H also extends to a bounded map from L' (M) into L1-%°(M) (the non-commutative 

weak L!-space). 

This result was proved in [160]. Of course, (i) above (for the case 1 < p < 2) fol- 
lows by interpolation from (ii) and the L?-boundedness of H (and by duality for the case 
2 < p < 00). However, (i) admits a much simpler separate proof (see the discussion be- 
low). : 

In the case of triangular matrices, (i) above is often referred to as Matsaev’s theorem 
(cf. [73]). In this case, the corresponding Riesz projection is the usual triangular pro- 
jection (see [111] for more results on this projection; see also [208] for related results). 
Let us discuss another particularly interesting case, that of analytic operator valued func- 
tions. Then Theorem 8.4(i) is equivalent to the UMD property of L? (M) that we already
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saw in the last section. Indeed, considering the finite subdiagonal algebra H°(T, M) of 

L>°(T) ® M, one sees that H =H ® dpa My where H is the usual Hilbert transform 

on T. Thus the boundedness of H on L?(L*(T) ® M) is equivalent to the fact that 

H ® id 2( rq) extends to a bounded map on LP (T; LP (M)) (noting that LP(L*°(T) ® 

M) = LP(T; LP? (M))). In other words, L? (M) has the “HT property”, which is equiva- 

lent to the UMD property, as already mentioned in the last section. The main idea of the 

proof is an old trick due to Cotlar, which still works in the general setting as in Theo- 

rem 8.4. The ingredient is the following formula, whose proof is straightforward. 

LEMMA 8.5. For any x =a + b* with a,b € Hi°(M) 

(Hx)*Hx =x"x + H(x*Hx + (Hx)*x). : 

Using Lemma 8.5, we easily check that the boundedness of H on L” (M) implies that on 

L?P(M) (see also the proof of Theorem 5.3 above). Then starting from p = 2 and iterating, 
we deduce that H is bounded on L?" (M) for all integers n > 1. Finally, interpolation and 

duality yield Theorem 8.4(i). We also point out that this argument gives the optimal order 

of the constant C), as stated in Theorem 8.4. 

REMARKS. (i) It was shown in [150] that in the case of triangular matrices or analytic 

operator valued functions, the non-commutative Hardy spaces form an interpolation scale 

with respect to the real and complex methods. The same arguments work in the general 

case as well. Thus forany 0 < pp, p1 <o0and0 <6 < 1 

(HP (M), HPY(M)), = (HP (M), HP'(M)), = HP(M), 

where 1/p=(1—6)/po+6/p1. 
(ii) The Hilbert transform H enables us to identify the dual of H'(M) with the/non- 

commutative analog of the space BMO (for bounded mean oscillation) as in Fefferman’s 

classical result, namely the space BMO(M) defined as follows: 

BMO(M) = {x + Hy: x,y € L®(M)} [I 
- [ 

equipped with the norm | 

[ 

lzll = inf{llxllco + ly loo: =x + Hy, x,y € L°(M)}. ] 

‘We refer to [124,125] for more information. 

‘We end this section by an open problem. A famous theorem due to Bourgain states that 

the quotient space L!(T)/H(T) is a GT space of cotype 2 (cf., e.g., [146)). It is not clear 

at all how to extend this theorem to the non-commutative case. 

PROBLEM 8.6. Let H*(M) be a finite subdiagonal algebra in M. Is L1(M)/H(M) of 

cotype 2? or merely of finite cotype?
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In the case of triangular matrices or vector-valued analytic functions, this problem has 

been circulated in Banach space theory almost since Bourgain’s theorem. By the way, 

note that any quotient of L1(M) by a reflexive subspace is of cotype 2. This is the 

non-commutative version of a theorem due to Kisliakov.and Pisier (cf. [146]). It follows 

from [92] and [145]. : 

9. Hankel operators and Schur multipliers 

In general it is not so easy to compute (up to equivalence) the S?-norm of an operator x in 

SP, except when x = (x;;) is a column (or row) matrix and when it is a diagonal one, as 

follows: 

1/2 Snel, =| Seed, = (ed) | 
and 

PE 

1/p . 

| Xmen], = (ber?) 
In view of their importance and ubiquity in Analysis, it was natural to wonder about the 

case when x = (x;;) is a Hankel matrix, i.e., there is a (complex) sequence y in £7 such 

that 

Xij =Yi+j, Vi, j=0. 9.1, — 

This case was solved in Peller’s remarkable paper [136] as follows. 

THEOREM 9.1. Let x = (x;j) be given by (9.1) and let 1 < p < 00. Let 2) =) ;50 2; 
be “its symbol” and let 

Aop(x) =%00,  Awp(@= Dy, Ynz1@eD. 
. n=1 Lj<2n : 

Then x € SP iffy, 2" Ang llh < oo (here || - ||, denotes the LP-norm on the unit circle . 

with normalized Lebesgue measure). Moreover, |x || sr is equivalent to . 

1/p 

( > an0l) : ©2) 
n0 : 

Actually, Peller also solved the cases p =1 and 0 < p < 1 but the solution is then a bit 

more complicated to state (cf. [136] and [138]). The case 0 < p < 1 was obtained inde- 

pendently by Semmes (see [139] for this and for additional references). More generally,
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Peller [137] proved an extension of this result for Hankel matrices x = (x;;) with entries 

xij = Yi+j in SP (H). In that case, Peller proved that |x [sre my) is equivalent to 

1/p . 

(x 2 1450 psy ) : ) ©.3) 
n=0 N 

Unfortunately, while (9.2) is very easy to use, in general the norm of A, in LP (SP) 

seems as untractable as that of x in S$? (£2(H)). However, when the spectrum of the symbol 

p= 7 y; is restricted to be in a suitably “thin” set of integers A (meaning that the 

Fourier coefficients y; € S” are zero when j ¢ A), then (9.3) can effectively be used, as 

shown in the recent paper [83] (see (9.10) below). 

To explain this, we will work in a (possibly non-commutative) discrete group I" but the 

case of I' = Z is the most interesting one. 

DEFINITION 9.2. Let p > 2 be an integer and let A C I" be a subset. Let ¢ = +1 if p is 

even and & = —1 otherwise. 

(i) A is called a B(p)-set if whenever two p-tuples (s;) and (#) in A satisfy 

sit; Loot, .- ~spty! = e we have necessarily {s1,...,sp} = {t1, ..., 7p} with multi- 

plicity (meaning that if an element is repeated, it appears the same number of times 

in both sets). ' 

(ii) For any ¢ in I", we denote by R(t, A) the number of p-tuples t;,1,...,7p in I" 

with t; #¢; for all i # j such that tine! : tp = t; moreover we let Z(p, A) = 

sup{R,(t, A) | t #e}. We say that A is a Z(p)-setif Z(p, A) < co. 

"The above is inspired by Zygmund’s study of the sets (called here Z(2)-sets) A C Z¢ 

such that Z(2, A) = sup, card{(n, m) € A? | n—m=t} < oo. As observed by Zyg- 

mund, the finite subsets Ay = {(n, m) € Z? | n* + m? = N} are uniformly Z(2)-sets, more 

precisely we have . 

sup Z(2, Ay) <2. ©4 
N21 

Actually, the same is true if, replacing Z? by R?, we consider the circle of radius ~/N 

instead of Ay. A mere look at the picture of such a circle then establishes (9.4). 

The paper [83] also shows that (generic) random subsets of [1,..., N] with cardinal- 

ity N1/2 are Z(2)-sets with constants uniformly bounded over N. On the other hand, as 

pointed out in [83], B(p)-sets are a fortiori Z(p)-sets and this provides examples of a 

different kind: for instance free sets as well as any subset A C I" which does not sat- 

isfy any non-trivial relation of length < 2p. More generally, the generators of the free 

Abelian groups such as Z¢ or ZN are B(p)-sets. On the other hand, because of torsion, the 

Rademacher functions (= coordinates on {—1, 1}Y), identified to a subset R C {—1, 1M; 

do not form a B(p)-set, but it is easy to see that they form a Z{p)-set for any p = 2 (with 

Z(p,R) =p). i g
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Thus, the following result in [83] can be viewed as an extension of Theorem 6.1 (=the 

non-commutative Khintchine inequalities). Recall that vN (I™) is equipped with its normal- 

ized trace 7 (see Section 1). 

THEOREM 9.3. Let I' be any discrete group. Let p > 4 be an even integer and let A = {t, | 

n 20} CI" be a Z(p/2)-subset. Then there is a constant C such that for any semifinite 

M and for any finite sequence a = (an)n30 in LP (M) we have 

all Le ass2ynLe mz) < | > Mt) Ray 
oY) LP(uN(MHQM) 

< ClallLs avizynreivzy- 9.5) 

Moreover, the left side of (9.5) is actually valid for A=T. To 

REMARK 9.4. When I" is commutative and dim(M) = 1, the sets satisfying (9.5) are B 
exactly the A(p)-sets in Rudin’s sense (see [171] and [22]). Because of this, the sets satis- 
fying (9.5) when LP (M) = SP? are called A(p).p-sets and are studied in [83]. . 

DEFINITION 9.5. Consider two (commutative) LP-spaces LP(u), LP(v) (1 < p <o00) = - 

and (closed) subspaces E C L? (i), F C L?(v). A linear mapping u: E — F is called 

completely bounded (in short c.b.) if there is a constant C such that 

YAR < (2) v; . : Pp DITEOIORY NNEC DETR sss V3 EE Vriese. 

We denote by |u|.» the smallest C for which this holds. : 

This definition is coherent with the one used in the theory of operator spaces (cf. [154]). 

REMARK 9.6. More generally if L”(u), LP (v) are non-commutative L?-spaces associ- 
ated to semifinite traces u, v the preceding definition still makes sense using L p(n ® Tr) 
and L? (v @ Tr) instead of L? (i; SP) and L? (v; SP). te 

COROLLARY 9.7. Let A and p be as in Theorem 9.3 (more generally, what follows is 
valid for any p > 2 if A is assumed A(p)cp). Let (5) denote the Rademacher functions 
on (£2, F, P), as in Section 6. Let Eg (resp. E 5) be the closed subspace of LP($2, F, P) 
(resp: LP(vN(I'))) generated by {e,, | n > 0} (resp. {A (t,) | n > 0}). Then the linear map- 
pings u and u~! defined on the linear spans by u(en) = A(t) and u= (A (t,)) =e, ex- 
tend to c.b. maps u: Er — Ex and u™': Ey — Eg with ules < C and ues < Bj, 
Moreover, the (orthogonal) projection P: LP (uN (I")) — E ,, defined by P(A(1)) = A(t) 
ifte A, and=0ift & A, is c.b. on LP (uN(I")).
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The preceding results provide non-trivial new examples of c.b. Fourier multipliers on 

LP(T). We now turn to Schur multipliers. A linear map 7": S? — SP (resp. T : B(£3) — 
B(£2)) is called a Schur multiplier if it is of the form 

T(x) = [¢(, xij] 

for some function ¢:N x N — C. In this case, we write T= M,,. The case p = 2 is of 

course trivial: we have then ||M,|| = sup; ; lo@, 7)|. In the case p = o0, it is well known 

(due essentially to Grothendieck) that bounded Schur multipliers T' = Mj, : B(£2) — B(£2) 

are all of the following special form: there are bounded sequences (x;) and (y;) in £; such 

that : 

0, J) = (xi, 3) (9.6) 

Moreover, we have 

1M] = inf{sup [i] sup I;1} 
14 J . 

where the infimum runs over all possible (x;) and (y;) satisfying (9.6). This implies in 

particular (due to Haagerup) that bounded Schur multipliers on B(£3) (or on § 1y are “au- 

tomatically” c.b. (see [152]). However, the following remains open (we conjecture that the 

answer is negative): 

PROBLEM 9.8. Is every bounded Schur multiplier on S? (1 < p #2 < oo) c.b.? 

Note that it is rather easy to give examples of bounded Fourier multipliers on L?(G) 

which are not ¢.b. when G is any compact infinite commutative groupand 1 < p #2 < 0 

(see [83] or [152], p. 91). 

PROBLEM 9.9. Is there a description of c.b. Schur multipliers on S$” extending (9.6) to 

l<ps#2<o00? 

It is known ([83], see also [206]) that the space of bounded (or ¢.b.) Schur multipliers of 

SP (2 < p < 00) does not coincide with any interpolation space between the cases p =2 

and p = oo. 

DEFINITION 9.10. A subset A C N x Nis called a o(p)-set (p = 2) if {e;j | (i, j) € A} is 

an unconditional basic sequence in S?. 

A simple application of Corollary 6.2 shows that this holds iff there is a constant C such 

that for any finitely supported function x : A — C we have 

xl, < | > x6 fei | <Clixllp, 9.7) 
(i. )eA se
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where [|x|| ;-is as defined in (6.7) above. It is easy to see by interpolation that, if 2 < p < 

oo, we have [|x |||, < [lx|lsr for all x in $7. Hence (9.7) implies that the idempotent Schur 

multiplier corresponding to the indicator function of A is bounded on S? with norm < C. 

For example, any set A for which either one of the two coordinate projections is one to 
one when restricted to A, is obviously a o (p)-set. The following result provides much less 

trivial examples. 

PROPOSITION 9.11 ([83]). Let p > 2. Let A C Z be a Z(p/2)-set, or more generally a 

A(p)cp-set. Then the set Ay = {(i, j) e N* |i + j € A} is a o(p)-set. 

PROOF. This follows from (6.4), applied to the series ¢(z) =}, 4 2" (3; 1 jn X05 Fei). 

Indeed for any z we have 

le@]s, = | D>. x pei) = > ay 
(.))eAs sr Wpea NSP 

where a, = > jn x(, He; ’ . By the A(p)qp-property of A (see Remark 9.4) there is a 

constant C such that: 

1 " : « \1/2 N12 

ol Zea], <mad| (Lean) | | (Cena) 7.) 
nn 

< | DIE: Gn A. ©-8) 

But as we just observed we have ||} z"axl|Lr(spy = || 3_ anlls» and 

NY) RN) 
Doanan=2_0 x Nley  Yanai=3"3 |x pl ei 

ii ij 

Hence (9.8) implies (9.7) with A = A 4. O 

REMARK. In the situation of Proposition 9.11, the same argument shows that if A = A 4 

then for any finitely supported function x : A — S$? we have 

Q(x) < | > ej ®x(.))| <CO), 9.9) 
(i, /)eA SP (L245) 

where 

1721p \ 1p 
0x) — max] (| (Zs x.) ) co 

. ; ; g KYZ ; i. 
. j i 

1/29p \1/p 

(Zl(zeenen) 7} i j sp
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A set A C N? satisfying (9.9) for some constant C is called a o'(p)p-set. Equivalently, this 

means, by (6.4), that {e;; | (i, j) € A} is “completely unconditional” (sce Remark 9.6), i.e., 

for any choice of signs ¢;; = =1, the transformations 

>. x(, j)eij = > axl, fei) 
@i,j)eA @,j/)eh : 

are c.b. on the closure in S? of {e;; | (i, j) € A}. Since the left side of (9.9) remains valid 

for A =NZ, (9.9) implies that the indicator function of A is a c.b. Schur multiplier on S?. 
In particular, if x = (x(i, j)) is Hankelian, i.e., x(i, j) = y (i + j) for some finitely 

supported function y : A — S$”, then (9.9) implies 

SRRCIARS PRICE > | < Ce), C910) 
ned itj=n  NS7(L®Db) 

where | 

2p \1/p 

gy) = max (x (xz yoy) | ) 
jeg 57 

2p \Upy 

(ZI(Zremwer) 0) 7} FRY §° : 

Thus we can “compute” (up to C) the norm of a Hanke! operator with “spectrum” in A: 

COROLLARY 9.12 ([83]). Let p > 2 be an even integer. 

(i) There are §:> 0 and C such that, for any n, there is a subset A, C[1,..., nl? with / 

|A] = Sn t2/P such that {eij | GG, j) € An} is C-unconditional in §?; i.e., a o (p)- | 

set. SH 
(ii) There is an idempotent Schur multiplier T (idempotent means here T? = T) which | 

is bounded on SP but unbounded on S$? for any q > p. a. \ 

PROOF. The proof combines Theorem 9.3 with Rudin’s (combinatorial and number theo- \ 

retic) construction of a B(p/2) set A C Z such that 

limsup sup N~%?|AN[a,a+bN]| > 0. 
N—oo a,beN 0 

REMARKS. (i) It is shown in [84] that, for any p > 2, n!+?/P is the maximal possible 

order of growth in the first part of Corollary 9.12. 

(ii) The preceding corollary almost surely remains valid when p > 2 is not an even 

integer, but no proof is known at the time of this writing. 

(iii) It is proved in [136] (see also [105] for related estimates on the case p = co) that the 

orthogonal projection from $2 onto the subspace of all Hankel matrices (i.e., the averaging



1506 G. Pisier and Q. Xu 

projection) is bounded on S? iff 1 < p < 0, and for p = 1, it is bounded from S$! to §1:2 

(a fortiori it is of “weak” type (1, 1)). See [2] for more recent results on (Hankel and 

Toeplitz) Schur multipliers, in particular for the case SP with p < 1. 

10. Isomorphism and embedding 

In this section we discuss isomorphism and embedding of non-commutative L?-spaces. 
Unless explicitly stated otherwise, we will assume all LP -spaces considered in this sec- 

tion are separable and infinite-dimensional, or equivalently, the underlying von Neumann 

algebras are infinite-dimensional and act on separable Hilbert spaces. 

Throughout this section, LP denotes the classical commutative LP-space on [0, 1]. 

The isomorphic classification of commutative LP-spaces is extremely simple, for there 

are only two non-isomorphic commutative L”-spaces: [P and LP. However, in the non- 

commutative setting, the situation is far from simple. In fact, it is impossible to list all 

non-commutative L?-spaces up to isomorphism. It even seems very hard to classify them 

according to the different types of the underlying von Neumann algebras. Despite these 

difficulties, considerable progress has been achieved in the last few years. 

Let K7 denote the direct sum in the [”-sense of the Ss, i.e., 

k= (st) | 
nl ro : 

Note that K'* is the non-commutative L”-space associated with the von Neumann algebra 

M =D,>| Mn, the direct sum of the matrix algebras M,,, n > 1. We also recall that if X is 
a Banach space, L” (X) stands for the usual L?-space of Bochner measurable p-integrable 

functions on [0, 1] with values in X. If X = L?(M), LP(X) is just the non-commutative 

L?-space associated with L°°(0, 1) ® M. We should call the reader’s attention to the two 

different notations for the Schatten classes, equally often used in the literature: S$? in our 

notation is sometimes denoted by C?, and K? by SP! Recall that R denotes the hyperfinite 

II; factor. 

THEOREM 10.1. Let M be a hyperfinite semifinite von Neumann algebra. Let 1 < p < 00, 

p # 2. Then LP (M) is isomorphic to precisely one of the following thirteen spaces: 

17, LP, K?, SP, LP? ® KP, LP ® SP, LP(KP), SP ® LP(KP), ’ 

LP(SP), LP(R), S” ® LP(R), L?(S”) ® L”(R), L?(R ® B(1?)). 

REMARKS. (i) The first nine spaces in the above list give precisely all non-commutative 
LP-spaces, up to isomorphism, associated with von Neumann algebras of type I. ~~ 

(ii) Theorem 10.1 is proved in [82]. Prior to that, the case of type I was studied in [187]. 

[82] also contains results on non-commutative L?-spaces associated with hyperfinite 
factors of type III and free group von Neumann algebras. More precisely, it is shown there
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that the non-commutative L?-spaces associated with hyperfinite factors of type III, for all 

A € (0, 1] are isomorphic, and the non-commytative L?-space associated with a free group 
von Neumann algebra is independent, up to isomorphism, of the number of generators as 

soon as this number is not less than 2. We refer the interested reader to [82] for more 

information. 
The proof of Theorem 10.1 can be reduced to the non-embedding of one non- 

commutative LP -space into another. The main general result on this is the following 

THEOREM 10.2. Let 0 < p < 00, p # 2. Let M be a finite von Neumann algebra. Then 

SP does not embed (isomorphically) into LP (M). 

We get immediately the following corollary. 

COROLLARY 10.3. LetO <p < 00, p + 2. Let M be a finite von Neumann algebra and 

N an infinite von Neumann algebra. Then LP(N) does not embed into LP{M). 

Theorem 10.2 was proved in [186] for p > 2, in [82] for 1 £ p < 2, and in [188] for 

p < 1. Note that in the special case where M = L%°(0, 1), Theorem 10.2 was established 

by McCarthy in the pioneering paper [128]. His result was considerably improved in [74]. 

In particular, Theorem 4.1 implies that KX” does not embed into L?. In the converse direc- 
tion, it was proved in [11] that L? does not embed into S7. 

In the case of 0 < p < 2, we have the following result, much stronger than Theorem 10.2. 

THEOREM 10.4. Let 0 < p <2. Let M be a finite von Neumann algebra. Let (u;,7)i, j>1 

be an infinite matrix of elements in LP (M) such that sup; ; lu, ll p < 00. Suppose that all 

rows, columns and generalized diagonals of (u; ;)i,j>1 are unconditional. Then one of the 

following three alternatives holds RE : 
(i) Some row or column has a subsequence equivalent to the canonical basis of 17; 

(ii) There is a constant A > 0 such that for every integer n some row and some column 

contain n elements h-equivalent to the canonical basis of 11; 

(iii) There is a generalized diagonal (u;y, j, )k>1 such that : 

I | mE] 
k=1 p 

Here by a generalized diagonal of (u;,;);, j>>1 We mean a sequence (u;,, j )k>1 With i} < 

ip. <---and ji < jy <---, Theorem 10.4 was proved in [82] for 1 < p <2 and in [188] 

for p < 1. Using Theorem 10.4, we can deduce the following refinement of Theorem 10.1, 

which comes from [82] for I £ p < 2, and from [188] for p < 1. : : 

THEOREM 10.5. Let M be as in Theorem 10.1, and let 0 < p < 2. If X #£ Y are listed in 

the tree in the following figure, then X embeds into Y iff X can be joined to Y through a 

descending branch : :
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yd 

OK? Ir 

5° KP, LP 

SP @, LP LP(K?) 

SP @, LP(K?) LP(R) 

(57) SP @, LP(R) 

LP(SP) @, LP(R) 

LP(RSB(£2)) 

Several non-embeddings in Theorem 10.5 are already contained in Corollary 10.3 and : 

the discussion just after it. On the other hand, the non-embedding of L? (KP) into L? & SP 

was established in [187], and that of LP(R) into L?(S”) in [157]. The proof for the first 

non-embedding in [187] uses-the classical result that L” contains a subspace isomorphic 

to [7 forall 0 < p < q < 2. This classical result admits a non-commutative version, which 

is a remarkable result recently obtained by Junge (see Corollary 10.12 below), and which 

is the main ingredient for the non-embedding of L?(R) into LP” (SP). The remaining non- 

embeddings in Theorem 10.5 can be reduced to the following 

THEOREM 10.6. Let 0 < p <2, and let M and N be finite von Neumann algebras. Let 

X C LP(M) be a closed subspace which contains no subspace isomorphic to IP, and let 

Y be a quasi-Banach space which contains no subspace isomorphic to X. Then X ® , SP 

does not embed into Y & LP (N), where X ®,, SP denotes the closure of the algebraic i 

tensor product X ® SP in LP (M @ B(?)). 

Theorem 10.6 was proved in [188]. It extends some results in [82]. Like in [82], its proof 

heavily relies upon Theorem 10.4. Using this theorem and Corollary 10.12 below (and its 

commutative counterpart, cited above), we deduce that L? (S?) (resp. L? (R ® B(I?))) does 

not embed in SP? @ LP(R) (resp. L? (SP) & LP (R)). : 

Subspaces of L?(M), which have no copy isomorphic to I”, can be characterized as . 

follows. . 

THEOREM 10.7. Let 0 < p <.00, p #2. Let M be a finite von Neumann algebra and 

X C LP(M) a closed subspace. Then the following assertions are equivalent: .
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(i) X contains a subspace isomorphic to IP. 

(ii) Forany A > 1, X contains a subspace A-isomorphic to IP. 

(iii) X contains Ij} ’s uniformly. : 
(iv) Forany q suchthat0 <q < p the norms || - |; and || - ||, are not equivalent on X. 

REMARK. If one of the preceding assertions holds, then X contains a perturbation of a 

normalized sequence formed of operators with disjoint support; consequently, if p > 1, X 

contains, for any A > 1, a subspace A-isomorphic to [” and A-complemented in LP (M). 

The above theorem is the extension to the non-commutative setting of the classi- 

cal Kadets—Pelczyiniski results for commutative LP-spaces (cf. [103,170]). It was proved 

in [186] for p > 2, in [82] for 1 < p < 2, and in [163] and [188] for 0 < p < 1. In the 

case p > 2, Theorem 10.7 yields the non-commutative analogue of the following striking 

dichotomy: ( 

COROLLARY 10.8. Let M and X be as in Theorem 10.7 with 2 < p < 00. Then either X 

is isomorphic to a Hilbert space or X contains a subspace isomorphic to 17. 

REMARKS. (i) The above corollary is easier for subspaces of $7, and there it holds for all 

0 < p < oo (cf. [68]). 

(ii) More generally, Theorem 10.7 was extended in [169] to non-commutative L?-spaces 

associated with any von Neumann algebra. : 

(iil) [162,164] and [169] contain more results closely related to Theorem 10.7 and Corol- 

lary 10.8. 

There are many open problems on the subject discussed above. Below we give two of 

them. Let M and NA be two von Neumann algebras of type A and u, respectively, where 

A, we {1 II, Heo, II}. Combining Corollary 10.3, Theorem 10.5 and Theorem 3.5, we see 

that if A < p and (A, pu) # (oo, ID), then LP? (M) and LP (N) are not isomorphic for all 

0 < p < oo, p # 2. It is unknown whether this is still valid for (A, ©) = (Il, ITI). 

PROBLEM 10.9. Let M and NV be two von Neumann algebras of type Il, and III, respec- 

tively. Are LP (M) and L? (AN) isomorphic for p # 2? _. 

Theorem 10.5 solves the embedding problem for all spaces listed there in the case of 

Pp <2. On the other hand, Corollary 10.3 provides some partial solutions in the case of 
p > 2. However, we do not know whether Theorem 10.5 holds in full generality for p > 2. 

Below we state three of the most important cases left unsolved in Theorem 10.5. 

PROBLEM 10.10. Let p > 2, and let (X, Y) be one of the three couples (L?(K?), S? ® 

LP), (LP(8P), SP @ LP(KP)) and (LP(R), L?(S?)). Does X embed into ¥? 

All previous non-embedding results deal with a couple of non-commutative LP” -spaces 

with the same index p. However, Junge’s theorem already mentioned above says that $9 

does embed into L? (R) for p < gq < 2. In fact, Junge [96] proved the following striking 

result, much stronger than the embedding of $7 into L”(R). ~
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THEOREM 10.11. Let 0 < p < q < 2. Then LY(R @ B(I?)) embeds isometrically into 

LP(R). 

As an immediate consequence, we get the 

COROLLARY 10.12. Let 0 < p < g < 2. Then both S? and L1(R) embed isometrically 

into LP (R). 

In the commutative case, it is well-known that any IZ embeds (uniformly over rn) into 

some / a. Junge also obtained the non-commutative version of this in [95]. 

THEOREM 10.13. Let 0 <p <q <2,6>0,neN. Then thereis N = N(p, q, &,n) such 

that Sk contains a subspace (1 + &)-isomorphic to Sg. 

Like in the commutative case, Junge’s arguments for the preceding results are probabilis- 

tic. They use non-commutative analogues of p-stable or Poisson processes. The reader is 

referred to [95,96] for more details and more embedding results. 

We conclude this section by a few words about the local theory of the non-commutative 

LP-spaces, very recently developed in [99], in analogy with the classical £,-space the- 

ory. Actually, it is better (and more convenient in some sense) to develop this theory in 

the operator space framework. Then the corresponding £-spaces are called OL ,-spaces 

in [60]. Many classical results concerning £,-spaces have been transferred to this non- 

commutative setting. In particular, any separable (JL ,-space (with an additional assump- 

tion) has a basis. It was also proved that L? (M) (1 < p < 00) is an OL ,-space when M 

is injective or the von Neumann algebra of a free group (in the former case, p can be equal 

to 1). Consequently, these non-commutative LP-spaces have bases. In the case of p = oo, 

it was shown that any separable nuclear C*-algebra has a basis. The interested reader is 

referred to [99] for more information. 
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