\def\Cl{\mathop{\rm Cl}} \def\CL{\mathop{{\bf C\/}l}} \def\R{{\bf R}} \def\SO{\mathop{\rm SO}} \def\Spin{\mathop{\rm Spin}} \def\Z{{\bf Z}} \def\C{{\bf C}} \def\so{{\rm so}} \def\spin{{\rm spin}} \def\GL{{\rm GL}} Konrad Waldorf. Classical Gauge Theory and Matter Fields II. No elementary particle can be described in the framework of the previous lecture. Some non-elementary particles, like $\pi^-$-meson, can be described in these terms. Dirac's starting point was that Schr\"odinger's equation is first order, whereas Klein-Gordon's equation $(\Delta^\omega+m^2)\phi=0$ is second order. We consider Clifford algebra $\Cl(p,q)$ of $\R^{p,q}$. This algebra has two involutive anti-automorphisms: $\alpha$ is induced by $v\mapsto-v$ on~$\R^{p,q}$ and $\cdot^t\colon v_1\otimes\cdots\otimes v_r\to v_r\otimes\cdots\otimes v_1$. The Clifford algebra has a real valued metric $H(v,w)=(v^tw)_0$. Spin. We have $\SO(p,q)$ and $\Spin(p,q)=\{v_1\cdots v_{2r}\mid v_i\in\R^{p,q}\land\|v_i\|=1\}$. $\Lambda\colon\Spin(p,q)\to\SO(p,q)$ is given by $\Lambda(\phi)(v)=\alpha(\phi)v\phi^{-1}$. We have an exact sequence $1\to\Z/(2)\to\Spin(p,q)\to\SO(p,q)\to1$. $\Cl(p,q)\otimes_\R\C$ decomposes into $k$ copies of a subrepresentation~$\Sigma$. If $p+q$ is odd, then $\Sigma$ is irreducible, $k=2^{(p+q-1)/2}$, if $p+q$ is even, then $k=2^{(p+q)/2}$ and $\Sigma$ decomposes into sum of two irreducible representations $\Sigma^+\oplus\Sigma^-$. For example, if $p+q=4$, then $\dim\Sigma^\pm=2$. Spin structure. Suppose $M$ is a spacetime with signature~$(p,q)$. $FM$ (frame bundle of~$M$) is an $\SO(p,q)$-bundle. A spin structure on~$M$ is a $\Spin(p,q)$-bundle~$SM$ with $\lambda\colon SM\to FM$ such that $\lambda(X\phi)=\lambda(X)\Lambda(\phi)$. If $\theta\in\Omega^1(FM,\so(p,q))$ is the Levi-Civita connection on~$FM$, then $\Theta=d\Lambda^{-1}(\lambda^*\theta)\in\Omega^1(SM,\spin(p,q))$. Dirac operator. Let $\rho\colon\Spin(p,q)\to\GL(V)$ be a representation of Spin-group on a subrepresentation $V\subset\CL(p,q)$ of~$\CL(p,q)$. The spinor bundle $\Sigma M$ is defined as $SM\times_\rho V$. We have Clifford multiplication $TM\otimes\Sigma M\to\Sigma M$. Now we can define the Dirac operator $D\colon\Gamma(M,\Sigma M)\to\Gamma(M,\Sigma M)$: $\psi\mapsto\sum_ie_i\cdot D^\Theta\psi(e_i)$. Spinors. A spinor is a field for~$SM$ of matter type~$(V,h,\rho,f)$ where $V$ is the same as above, $\rho$ is the restruction of Clifford multiplication to~$\Spin(p,q)$, $h(v,w)=(H(v,w)+H(w,v))/2$. Fields are sections of $\Sigma M$ as usual, but we have a different action functional $S(\psi)=\int_M D\psi\wedge_h*\psi+*(f\psi)$. Example. (Weyl spinor.) $f=0$. $V=\Sigma^\pm$. $\dim_\C V=2$. In the standard model we have ``neutrinos''. Example. (Dirac spinor.) $V=\Sigma$, $f(v)=mh(v,v)/2$. $\dim_\C V=4$. Standard model: ``electrons''. Euler-Lagrange equations: $D\psi+im\psi=0$. (Dirac equation.) Particles that satisfy Dirac equation also satisfy Klein-Gordon equation. \bye