\def\R{{\bf R}} \def\vol{{\rm vol}} \def\colim{\mathop{\rm colim}} Peter Teichner. Hamiltonian approach to classical field theory. Data for a classical Lagrangian field theory: (1)~Smooth (oriented) manifold~$M$ (spacetime); (2)~A smooth fiber bundle $E\to M$ (fields on~$M$ are $\Gamma(M,E)$); (3)~Lagrangian density~$\lambda\in\Omega^{n,0}(JE)$. Note: Get an action $S\colon\Phi\to\R$: $M\times\Phi\to JE$ is the jet map. We have $\Omega^{n,0}(JE)\supset\Omega^n(JE)\to\Omega^n(M\times\Phi)\to C^\infty(\Phi)\ni S$. Goal for today: Filtration on the space of jets, Euler-Lagrange equations, derive a Hamiltonian field theory picture. Example: (Riemannian sigma-model.) $M$~and~$N$ are Riemannian, $E=M\times N\to M$, $\Phi=C^\infty(M,N)$, $\lambda(\phi)=\|T\phi(x)\|^2d\vol_M$. Definition: $J^\infty E=\{(x,\phi)\mid x\in M\land\hbox{$\phi$ is a local section of~$E$ near~$x$}\}/\sim$. Here $(x,\phi_1)\sim(x,\phi_2)$ iff $\phi_1$ has $k$-contact with~$\phi_2$ at~$x$ for all~$k$. Lemma: In coordinates this means that derivatives of $\phi_i$ coincide at point~$x$. So we have a sequence of bundles $M\gets J^0E=E\gets J^1E=TE\gets J^2E\gets\cdots$. $JE=\lim_kJ^kE$. Define $C^\infty(JE):=\colim C^\infty(J^kE)$ and $\Omega^*(JE):=\colim\Omega^*(J^kE)$. For any bundle $J\to M$ we have sub-dga of $\Omega^*(J)$ constructed as follows. $\Omega^*_H(J)=C^\infty(J)\otimes_{C^\infty M}\pi^*\Omega^*M$. This leads to the Serre spectral sequence for de Rham cohomology. Key geometric fact about JE: it is the differential ideal of ``contact form''. Jet bundle has a canonical flat connection: $\Omega^1(JE)=\Omega_H(JE)\oplus C^1(JE)$. Here $C^*(JE)=\{\omega\in\Omega^*JE\mid j^*(\omega)(\phi_u)=0\ \hbox{for all local sections~$\phi_u$}\}$. Note that this works only for infinite jets. %Introduction to the variational bicomplex %Anderson \bye