Functorial Field Theory: Homework 1

Notation.

- Cart: the cartesian site. Objects: \mathbf{R}^n , morphisms: smooth maps, covering families: good open covers.
- L: the site of smooth loci. Objects: finitely generated C^{∞} -rings, i.e., $C^{\infty}(\mathbf{R}^n)/I$. Morphisms: C^{∞} homomorphisms in the opposite direction. Covering families are induced by open covers of \mathbf{R}^n .
- Ω^n , Ω^n_{closed} : the presheaves of sets of Cart that send an object S to the set of differential *n*-forms (respectively closed *n*-forms) on S and send a map $f: S \to S'$ to the pullback map on forms.
- BG (G is a Lie group): the presheaf of groupoids on Cart that sends an object S to the groupoid with one object whose automorphism group is C[∞](S, G); a map f: S → S' is sent to the induced functor of groupoids given by precomposition with f on morphisms.
- $B_{\nabla}G$: same as BG, but S is sent to the groupoid of trivial G-bundles with connection on S.
- **T**: an object of **L** corresponding to the C^{∞} -ring $\mathbf{R}[x]/(x^2)$.
- Hom(-, -): internal hom in sheaves of sets or sheaves of groupoids.
- $\mathsf{RHom}(-,-)$: derived internal hom in simplicial presheaves.
- Facts about RHom: it preserves homotopy limits in the second argument and maps homotopy colimits in the first argument to homotopy limits. If the target is a sheaf of sets, RHom can be computed as the ordinary Hom. If the target is a

Problems. (Questions about the statements are welcome.) (Partial solutions and attempts at partial solutions are welcome.)

- 1. Compute $\mathbf{L}(\mathbf{T}, M)$ for a smooth manifold M and show that it is isomorphic to the set of tangent vectors of M. Working in sheaves of sets on \mathbf{L} , compute $\mathsf{Hom}(\mathbf{T}, M)$ and show that it is isomorphic to the total space of the tangent bundle of M as a smooth manifold. Explain how to recover the algebraic operations (e.g., addition and multiplication by a scalar) on the tangent bundle. Reference: Nestruev, Smooth manifolds and observables, Second Edition, Chapter 9.
- 2. Working in sheaves of sets on L, compute $Hom(\mathbf{T}, Hom(M, N))$, where M and N are smooth manifolds. Express your answer in terms of vector fields along smooth maps.
- 3. Working in sheaves of groupoids on the site **L**, compute $Hom(\mathbf{T}, BG)$, where G is a Lie group.
- 4. Using the algebraic description of smooth vector fields on a smooth manifold as derivations, explain how to define a sheaf of sets Ω^n (respectively Ω^n_{closed}) on the site **L**. (Look up the notion of a C^{∞}-derivation.)
- 5. Working in sheaves of sets on **L**, compute $\mathsf{Hom}(\mathbf{T}, \Omega^n)$ and $\mathsf{Hom}(\mathbf{T}, \Omega^n_{\mathsf{closed}})$.
- 6. Look up homotopy pullbacks of chain complexes. Working in presheaves of chain complexes on Cart, use de Rham's theorem to show that $\mathsf{B}^{n-1}_{\nabla}\mathsf{U}(1)$ is the homotopy pullback of $\Omega^n_{\mathsf{closed}}[0] \to \mathbf{R}[n] \leftarrow \mathbf{Z}[n]$. (You can concentrate on the case n = 2, where $\mathsf{B}^{n-1}_{\nabla}\mathsf{U}(1) = \mathsf{B}_{\nabla}\mathsf{U}(1)$ is the chain complex $\Omega^1 \leftarrow \mathsf{C}^{\infty}(-, \mathsf{U}(1))$. More generally, for n > 2, we have $\Omega^{n-1} \leftarrow \cdots \leftarrow \Omega^1 \leftarrow \mathsf{C}^{\infty}(-, \mathsf{U}(1))$.)
- 7. Look up Palais's theorem on natural operations on differential forms. Working in sheaves of groupoids on Cart, use the previous problem to compute $\mathsf{RHom}(\Omega^1, \mathsf{B}G)$ and $\mathsf{RHom}(\Omega^1, \mathsf{B}_{\nabla}G)$, assuming $G = \mathrm{U}(1)$ for simplicity. What if Ω^1 is replaced by $\Omega^1_{\mathsf{closed}}$? How about Ω^n or $\Omega^n_{\mathsf{closed}}$? Bonus points for figuring out the case of nonabelian G.
- 8. Look up action groupoids (alias homotopy quotients). Working in sheaves of groupoids on Cart, show that $B_{\nabla}G$ is the action groupoid of G (i.e., its representable presheaf) on the presheaf $\Omega^1 \otimes \mathbf{g}$, where \mathbf{g} is the Lie algebra of G and \otimes denotes the objectwise tensor product over real numbers. (Look up the description of connections on trivial principal G-bundles, e.g., in the book of Kobayashi–Nomizu.)
- Working in sheaves of groupoids on Cart, use the previous problem and Palais's theorem to compute RHom(B_∇G, Ωⁿ).