- 1. Which sets of data given below define categories? Warning: some sets of data are incomplete, e.g., do not specify composition. You must reconstruct all missing data (this is a creative process and can have more than one answer). Some items below have negative answers. Some are purposefully nonsensical. If some set of data cannot be made into a category, you have to provide a proof.
 - Topological spaces and proper maps. (A map $f: X \to Y$ is *proper* if it is continuous and for any compact subset $T \subset Y$ the subset $f^{-1}(T) \subset X$ is also compact.)
 - Sets and relations. (More precisely, given two sets X and Y, morphisms $X \to Y$ are relations from X to Y, i.e., subsets of $X \times Y$. Two relations $R \subset X \times Y$ and $S \subset Y \times Z$ are composed as follows: $R \circ S = \{(x, z) \mid \exists y \in Y : (x, y) \in R \land (y, z) \in Z\}.$
 - Sets and surjective functions.
 - Sets and partially defined functions. (A partially defined function $X \to Y$ is a function $A \to Y$, where $A \subset X$. If $x \in X$, we say that f is defined on x (or: f(x) is defined) if $x \in A$. Partially defined functions are composed as follows: if $f: X \to Y$ and $g: Y \to Z$ are partially defined function, then the composition gf is defined on $x \in X$ if f is defined on $x \in X$ and $x \in X$ if $x \in X$ if $x \in X$ is defined on $x \in X$ if $x \in X$ if $x \in X$ is defined on $x \in X$ if $x \in X$ if $x \in X$ is defined on $x \in X$ if $x \in X$ is defined on $x \in X$ if $x \in X$ is defined on $x \in X$ if $x \in X$ if $x \in X$ is defined on $x \in X$ if $x \in X$ is defined on $x \in X$ if $x \in X$ if $x \in X$ is defined on $x \in X$ if $x \in X$ if $x \in X$ is defined on $x \in X$ if $x \in X$ if $x \in X$ is defined on $x \in X$ if $x \in X$ if $x \in X$ is defined on $x \in X$ if $x \in X$ is defined on $x \in X$ if $x \in X$ if $x \in X$ is defined on $x \in X$ if $x \in X$ if $x \in X$ if $x \in X$ is defined on $x \in X$ if $x \in X$ if x
 - Fix a topological space X and define a category as follows. Objects are continuous functions with codomain X, i.e., $f: Y \to X$ (Y is arbitrary). (Here *morphisms* in Top play the role of *objects* in the category that we are constructing.) Morphisms from an object $f: Y \to X$ to an object $f': Y' \to X$ are continuous maps $g: Y \to Y'$ such that f'g = f.
 - The category Open. Objects are open subsets of \mathbb{R}^n , where n is arbitrary (not fixed). Morphisms $U \to V$ are infinitely differentiable maps $U \to V$.
 - The category Open_* . Objects are pairs (U, x), where $U \subset \mathbf{R}^n$ is an open subset and $x \in U$. Morphisms $(U, x) \to (V, y)$ are infinitely differentiable maps $U \to V$ that map x to y.
 - $\mathsf{Mat}_{\mathbf{R}}$: objects are natural numbers $n \geq 0$ and morphisms $m \to n$ are matrices of size $n \times m$. Composition is multiplication of matrices.
 - BR: there is only one object *. Morphisms * → * are real numbers. Composition of morphisms is given
 by multiplication of real numbers.
 - There is only one object *. Morphisms * \rightarrow * are compactly supported continuous functions $\mathbf{R} \rightarrow \mathbf{R}$. Composition of morphisms is given by multiplication of functions.
 - Poset: objects are partially ordered sets (i.e., a set X with a relation R that is reflexive $(x \le x)$, transitive $(x \le y \text{ and } y \le z \text{ implies } x \le z)$, and antisymmetric $(x \le y \text{ and } y \le x \text{ implies } x = y)$. Morphisms are functions that preserve the order: if $x \le y$, then $f(x) \le f(y)$.
- 2. Which sets of data below define functors? (Same warning as above.)
 - Open_{*} \to Vect_{**R**}. Send $U \subset \mathbf{R}^m$ to \mathbf{R}^m . Send $f:(U,x) \to (V,y)$ to the linear map $\mathbf{R}^m \to \mathbf{R}^n$ given by the Jacobian matrix of f at x, i.e., the entry in ith row and jth column is the value of the ith partial derivative of the jth coordinate of f at point x. In symbols: $a_{i,j} = \frac{\partial f_j}{\partial x_i}(x)$. (The jth coordinate of f is the composition $U \to V \subset \mathbf{R}^n \to \mathbf{R}$, where $\mathbf{R}^n \to \mathbf{R}$ is the projection to the jth component.)
 - $\mathsf{Mat}_{\mathbf{R}} \to \mathsf{BR}$: send any object $n \ge 0$ of $\mathsf{Mat}_{\mathbf{R}}$ to the only object of BR . Send a matrix of size $m \times n$ to its determinant (a morphism in BR) if m = n. Otherwise send it to zero.
 - OpenSet: Top \to Poset: send any topological space X to the poset OpenSet(X) whose elements are open subsets of X and the ordering is given by inclusion. Send any continuous map $f: X \to Y$ of topological spaces to the map of posets $g: \mathsf{OpenSet}(X) \to \mathsf{OpenSet}(Y)$ defined as follows: $g(U) = \bigcup_{V \subset f(U)} V$, where V runs over open subsets of Y.
- **3.** Define a functor $\mathsf{Mat_R^{op}} \to \mathsf{Mat_R}$. Define a functor $\mathsf{Mat_R} \to \mathsf{Vect_R}$. Define a functor $\mathsf{BR} \to \mathsf{Mat_R}$. Define a functor $\mathsf{Mat_R} \to \mathsf{Open_*}$. Define a functor $\mathsf{Top^{op}} \to \mathsf{Poset}$.
- **4.** This problem investigates how categories work with measure theory. A novel feature is that measurable maps that differ on a set of measure 0 must be identified.
 - Define a measurable space as a pair (X, Σ) , where X is a set and Σ is a σ -algebra on X, i.e., a collection of subsets of X that is closed under complements and countable unions. Define a measurable map $(X, \Sigma) \to (X', \Sigma')$ as a map of sets $f: X \to X'$ such that the f-preimage of any element of Σ' is an element of Σ . Do measurable sets and measurable maps form a category?
 - Define an enhanced measurable space as a triple (X, Σ, N) , where (X, Σ) is a measurable space and N is a σ -ideal of Σ , i.e., a collection of elements of Σ that is closed under passage to subsets (if $A \in \Sigma$,

- $B \in N$, and $A \subset B$, then $A \in N$) and countable unions. A negligible set is defined as a subset of some element of N. Define a measurable map $(X, \Sigma, N) \to (X', \Sigma', N')$ as a map of sets $f: X_f \to X'$ (where $X_f \subset X$ is some subset) with the following properties: (1) The set $X \setminus X_f$ is negligible. (2) For any $m' \in \Sigma'$ there is $m \in \Sigma$ such that the set $f^*m' \oplus m$ is negligible. (3) For any $n' \in \Sigma'$ the set f^*n' is negligible. Do enhanced measurable sets and measurable maps form a category?
- Two mesurable maps $f, g: (X, \Sigma, N) \to (X', \Sigma', N')$ are equal almost everywhere $(f \sim g)$ if $\{x \in X_f \cap X_g \mid f(x) \neq g(x)\}$ is negligible. Show that equality almost everywhere defines an equivalence relation that is compatible with composition: if $f \sim f'$ and $g \sim g'$, then $fg \sim f'g'$.
- Suppose C is a category and for every pair of objects $X, Y \in C$ we are given an equivalence relation $R_{X,Y}$ on C(X,Y) that is compatible with composition: if $f \sim f'$ and $g \sim g'$, then $fg \sim f'g'$. Show that taking quotients of C(X,Y) with respect to these equivalence relations produces a category.
- 5. Fix a category C. A section of a morphism $f: X \to Y$ in C is a morphism $g: Y \to X$ such that $fg = \mathrm{id}_Y$. Give an example of a category C such that all epimorphisms have sections. Give an example of a category C and an epimorphism f in C that does not have a section. Hint: it suffices to use the examples that we studied in class.
- **6.** Fix a category C . A bimorphism in C is a morphism f that is simultaneously a monomorphism and an epimorphism. Is any isomorphism a bimorphism? Give an example of a category C and a bimorphism f in C that is not an isomorphism.
- 7. Construct two functors $D: \mathsf{Set} \to \mathsf{Set}$ and $I: \mathsf{Set}^{\mathsf{op}} \to \mathsf{Set}$ such that for any set X we have $D(X) = I(X) = 2^X$, where 2^X denotes the set of all subsets of X. (In other words, you must define D and I on morphisms and prove that composition and identity maps are respected.)
- **8.** Construct a functor $L^1: \mathsf{Set} \to \mathsf{Ban}_1$ such that for any set S the Banach space $L^1(S)$ is the space of functions $f: S \to \mathbf{R}$ such that the sum $\sum_{s \in S} f(s)$ exists (and is finite). Construct a functor $L^\infty: \mathsf{Set}^{\mathsf{op}} \to \mathsf{Ban}_1$ such that $L^\infty(S)$ is the space of all bounded functions $S \to \mathbf{R}$.
- **9.** Show that the class of epimorphisms in the category of Hausdorff topological spaces coincides with the class of continuous maps whose image is dense.
- 10. Describe concretely all monomorphisms and epimorphisms in BR. Same question for Open and Open_* . Same question for Poset .
- 11. A idempotent ring is a ring R such that $x^2 = x$ for any $x \in R$. (Rings are assumed to be associative and unital, homomorphisms of rings preserve units.)
 - Show that any idempotent ring is commutative: xy = yx for all x and y.
 - Show that the relation $x \leq y := (x = xy)$ defines a partial order on R.
 - Show that given a set X, equipping 2^X (the set of subsets of X) with the following operations: $0:=\emptyset$, $x+y:=(x\setminus y)\cup (y\setminus x), \ -x:=X\setminus x, \ 1:=X, \ xy:=x\cap y$ produces an idempotent ring.
 - Recall that the supremum of a subset $A \subset R$, if it exists, is the unique element $s \in R$ such that for all $a \in A$ we have $a \le s$ and if s' is another element with the same property, then $s \le s'$. Show that in the idempotent ring 2^X every subset has a supremum.
 - An atom in an idempotent ring is an element $a \in R$ such that $a \neq 0$ and if $0 \leq b \leq a$ for some $b \in R$, then b = 0 or b = a. Show that in the idempotent ring 2^X every element can be represented as the supremum of a set of atoms.
 - Show that the assignment $X \mapsto 2^X$ can be extended to a contravariant functor $2^{(-)}$ from the category of sets to the category whose objects are idempotent rings in which every subset has a supremum and every element is the supremum of a set of atoms, and morphisms are homomorphisms of rings that preserve suprema $(f: R \to R')$ preserves suprema if for any $S \subset R$ we have sup $f(S) = f(\sup S)$.
 - Construct a contravariant functor going in the opposite direction. (Hint: it is useful to keep the example of the idempotent ring 2^X when constructing this functor.)
 - Prove that the two functors together form an equivalence of categories.