8-24

MATH 6330 Notes

Resources:

An Introduction to Manifolds - Tu

Differential Geometry - Tu

Manifolds and Differential Geometry - Lee

Gauge Fields, Knots, and Gravity - Baez, Munian
Introduction to Smooth Manifolds - Lee
Differential Topoloy - Guillemin, Pollack

Smooth Manifolds and Observables - Nestruev
Mathematical Gauge Theory - Hamilton
Principal Bundles the Classical Case - Sontz

Mathematical Aspects of Classical Mechanics - Arnold

Recall:

DEFINITION: A Real Vector Space is a module V' over the ring R. A canonical example of a real vector space

is R™ where n € N.

DEFINITION: A real vector space V is finitely generated if there exists vq,...,vq4 € V such that given any

u € V, there exists real numbers 71, ..., 74 € R such that

note that the dimension of the vector space V is defined to be the smallest such d that the above condition

d
U= E TiVi,
i=1

holds.

The appropriate morphisms between vector spaces are linear maps.

DEFINITION: Given two vector spaces Vi and Vb, a linear map f : Vi — V5 is a map of underlying sets

that preserves all operations, i.e. such that

flo+w)=f(v)
f(0)=0
flr-v)=r-f(v)
f(=v) = =f(v)
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PROPOSITION: A d dimensional vector space is isomorphic to RY.
Proof: Look in any linear algebra book.

Given a d-dimensional vector space V, a specific choice of isomorphism R? — V is referred to as a basis.

ProposITION: If f : V — V' is a linear map, we can use the previous propsition to obtain from
the diagram below, a bijection VECT(V, V') = VECT(R?, R?) = {matrices of size d’' x d} given by f —
hW=lofoh

DEFINITION: Insert definition of a topological space here.

ExAMPLE: Blah blah blah metric spaces blah blah blah

DEFINITION: Insert definition of continuity here.

ExXAMPLE: If V is a finite dimensional vector space, then we can define its underlying topological space

(V,U) where U is defined as follows:

o Option 1: Pick a metric (norm induced by an inner product)(inner product: a bilinear, symmetric,
and positive definite map) on V, and do the usual open ball business.

» Option 2: Let A € U iff A =], ; W, such that W, CV and W, = ﬂ?zl Z; for every o € J and each
Z; is the form f~1((—o0,a)) for some a € R, f is assumed to be a linear map f:V — R, and n € N

HW Problem: I(a)Prove the above are equivalent, (b) any linear map is continuous using Option 2
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DEFINITION: Given finite dimensional K vector spaces V and V', open subsets U C V and U’ C V’, and a
map f: U — U’, we can define two "types of derivatives” on these sets.

e The directional derivative of f, if it exists, is a map V x U — V' which maps a vector v € V and a
point © € U to the vector denoted by (0, f)(x) = (Dyf)(z) = (Vo f)(x) = f/(x) where each of these
denotes limtﬁow = ¢'(0) where g(t) = f(z+t-v) — f(z) and t € K.

o The differential of f, if it exists, is a map U — HoM(V,V’) denoted by either Df or T'f. Given
x € U, we define Df by asserting that Df(xz) : V. — V' is the unique linear map with the property

that: given h: u— f(u) — f(z) — (Df)(z)(u — ), we have limuﬁwl‘hﬂ = 0. We can generalize this

u—zl||
definition (no mention of inner product/norm) by taking h =", s; - r; where s; : V.— V' are linear,
and r; are continuous at u and r;(u) = 0, and we only have finite i.

LEMMA: If V, V' U, U’, f are as in the definition, D f exists, and (9, f)(z) exists for all z,v then
Df(v) = (9uf)(x)

forallveVand z € U.
REMARK: If we only assume that (9, f)(z) exists for all z,v we cannot recover the above equality.
NoTE: If V =V’ =R, then we recover the usual notion of the derivative, Df : U — HoM(R,R) = R.

HW: Compute the differentials of the following maps (the V; are real vector spaces)



o Howm(Vs, V3) x HoM(V;, Vo) — HowMm(V4, V3) which is defined by (B, A) — Bo A
o Howm(Vp,V3) x HoM(Vi, Vo) — HoMm(Vi, Va) which is defined by (Aj, As) — Ay + Ay

o Consider GL(V) == {f : V — V| f isiso.} = {invertible square matrices} C HoM(V, V) which is
defined by A — A~L.

e Bonus: Prove the equivalence of the second part of the above definitions of the differential.
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The symmetry of higher differentials
Recall our setup from last time with V, V', U, U’ and f : U — U’. We defined the differential
Df:U — Hom(V, V')

If the differential exists and we evaluate it for some u € U, and evaluate the linear map D f(u) at some
v € V, then we obtain (D f)(u)(v) = (0, f)(u). Suppose we take the differential of the differential, then we
obtain a map
D(Df) = D*f : U — Hom(V, Hom(V, V"))

Evaluating on some u € U and subsequently on some v; € V', and after this some other v, € V', we obtain

(D?f)(u)(v1(v2)) = (v, 00, f) (u)

A natural question is "what happens if you swap v; and v2?” We know that nothing happens:
PROPOSITION(Schwarz, Clairaut): (D?f)(u)(v1)(v2) = (D?f)(w)(v2)(v1)
Proof sketch: Apply the mean value theorem twice.

"Recall” the following proposition:
ProrosiTION: Let Vi, Vs, V3 be real vector spaces, then we have canonical isomorphisms

Hom(Vy, HoM(Va, V3)) = HoMm(Va, HoMm(V7, V3)) = BILIN(V, Va; Vs) =2 HoM (V) ® Va, V)

DEFINITION: Insert the definition of a bilinear map here.
DEFINITION: Insert definition of tensor product here.
Insert proof that the tensor product exists here.
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PROPOSITION: If {e;}], is a basis for V and {€}}¥_, is a basis for V', then B := {e; ® €} }ien_,, jen., is a
basis for V & V’

PROOF: The proof proceeds in two steps

1. We would like to show that {e; ® € }ien_,, jen., spans V @ V'. It suffices to show that for v € V and
v/ € V, we can express v ® v’ as a linear combination of elements of B. Since both V and V' have
bases, we can express either vector in terms of their respective basis elements:

n k

/ /N,

v = E vie; N v o= E V€5,
i=1 j=1



therefore we recover that:

n k
’U®U’=(Z’U¢€i)®(zv; sz (e; ®ej),
i=1 j=1

as desired.

2. We would like to show that the elements of B are linearly independent. To show this recall that
{fi}ien., CV are linearly independent if and only if {g; }ien_, € HOM(V,R) such that

) Li=y
gi(fi) = {O, i 4

Take the dual bases {f;}ien., € V* and {f]}ien., € V™. Consider the map h;; which we define as
the composition:

VeV’ 1eh g QR —— R
Observe that h; ; € (V ® V')*. Now one can see that

hijlew @ €)= (fi @ fj)(ex @ €}) = fileir) - fj(e)) (here we use the isomorphism)

where
L, (4,4") = (4,5")
0, otherwise

filew) - fileh) = {
This completes the proof.

Now that that’s over, let’s see how tensors behave under “change of coordinates”. Suppose ey, ..., e, is a
basis for V and e, ...,e., is a basis for V’'. Then

/
e; = E Qi 1€},
k
where the a; ; assemble into the “change of basis” matrix. Then

t= Ztiﬂ. : (67; & ej) = Zti,j : (Z ai,ke;c) ® (Z alykeg) =
ij i, k !

= Z tij - aik - aj- (e, ®ep)

2,5k,

So if our old coordinates are ¢; ; (this is our coefficient before e; ® e;) then our new coordinates (coefficients)
are y jlig - Gik gy This should satisfy the question “how do physical tensors correspond to mathematical
tensors?” Physical tensors are simply mathematical tensors expressed in coordinates.

HW: V and W are arbitrary real vector spaces (a) Construct a canonical map V* @ W — Hom(V, W).
(b) prove that the image of this map coincides with finite rank maps from V to W (rank(f : V — W) =

n

dim(Im(f))). (c) Prove that rank = tensor rank where tensor rank(t) == min{n e N |t =>"" , a; ® b;}

DEFINITION: Let V € VECTR and let k € N
¢ VO =V ®.®V (k-times)
e SymfF =VO /(L 2ver®. —.2Vve..)

e NPV =V @0V @ .0V Qv®...)
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DEFINITION: A chart on a set X is given by the following data:
e UCX
e W a finite dim R vector space
e V C W open subset
e f:U — V a bijection

DEFINITION: The transition map ¢ from a chart (U, V,W, f) to a chart (U', V', W', f’) is defined as the
composition
fUnUy—=unu' — f(UNU),

which we can write succinctly as t = f’ o =1, where it is understood we are (co)restricting to U N U’ where
necessary.

DEFINITION: Two charts C; and C5 on a set X are said to be compatible if the transition maps ¢; 2 and 2 ;
are smooth (C°) maps between open subsets of W and W', note that as maps of sets tl_é =t21.

DEFINITION: An Atlas on a set X is a collection of cahrts {Cy}aecs on X such that for any o, 8 € J, C,
and Cg are compatible. Moreover, we require that if given a chart D on X such that D is compatible with
C,, for all @ € J, then D € {C, }qe, this is equivalently stated: we require that A be maximal.

DEFINITION: A Smooth Manifold is a set X together with an atlas A = {Cy}aecy.

DEFINITION: The underlying topological space of a smooth manifold (X, .4) is the topological space (X, 1)

where U € 7 if
-1
U= U fi (Vi)
acJ
where every V; C W; is open and each W; is some finite dim vector space over R.
In practice, we can construct an atlas on a set X as follows:

1. Take a collection of charts {Cy = (Un, Wa, Va, fi) }acs on X such that the collection {U,} covers X
and Cy, C3 are compatible for any o, 3 € J.

2. Define A:={D | D is a chart A D is compatible with C,, for every o € J}
3. A is the unique atlas containing {Cy, }acs
EXAMPLES:
e Every finite dimensional vector space V is a smooth manifold with a single trivial chart.

e If M is a smooth manifold and G C M is open, then G is itself a smooth manifold. To see this, select
those charts C, on M for which U, C G.

o Any open subset of R” is a smooth manifold using the above two examples.

The following example gets its own subheading:
ExXaMPLE: THE SPHERE

Take a finite dimensional real vector space V with inner product (-,-) : Sym?(V) — R. We define
SV ={veV|(vuv) =1},

and claim that SV is a smooth manifold. Charts on SV can be constructed using the stereographic projection.
Details on this next time!
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EXAMPLE: THE SPHERE

Take p € SV where SV is defined as last time, we define the stereographic projection as

Sy : SV \{p} — (p)= where S} (q) > (¢ —{a.p) D),

C1—{gp

recall that (p)= is the orthogonal complement of p. We can then interpret the above formula as the projection
of g onto the orthogonal complement of p. We have an inverse

) B 2 —].+ w,w
Y71 ()t — 8V \ {p} where SV 1<W>=1+<m'w+1+<<w>>'p'

Recall the reason we're interested in this map: it defines a chart. For any p € SV we have a chart Cp, we
need only verify (to obtain a smooth structure) that p,p’ € SV, the charts C, and C, are compatible. To
do this we write down the transition map

t @ \{SY ()} — @)\ {Sy ()},

which is simple enough granted that we can make the definition ¢ = S} 05}’ !, and observe that ¢ is smooth
because it is defined as the composition of smooth functions. Thus given any two p,p’ € SV, we obtain
compatible charts Ci,, Cpy which can be combined to provide a smooth structure on the sphere S v,

DEFINITION: Given a smooth manifold M, we define it’s dimension as a map of sets dimps : mo(M) — N
where 7o(M) is the set of connected components of M. For any z € my(M) (any open/closed connected
subset of M), we define dimps(x) = dim(W) where W is a vector subspace in some chart C = (U, W, V, f),
such that x € U.

DEFINITION: Insert the definition of connectedness, local connectedness, and connected components.

EXAMPLE:
o If V is a real vector space, then dimy; (V) = dim(V)
o If U CV is open then dimp, (U) = dimy (V)
o If V is a real vector space, then dimys(S") = dim({p)*) = dim(V') — dim({p)*) = dim(V) — 1

EXAMPLE: ORIENTABLE SURFACE OF GENUS G

We discussed in detail the smooth structure on an orientable surface of genus g, charts were drawn and
I didn’t know how to typeset them!

HW: Prove that the non-orientable surface with ¢ > 0 cross-caps is a smooth manifold.

DEFINITION: Let X, X’ € MAN, then a smooth map g : X — X' is a map of underlying sets such that for
any charts Cx and Cx/ and elements of these charts U € Cx and U’ € Cx/, we require that the composition

FUNg U) — L Ung ) ——— vt s p)

is C*°, where f, f’ are the usual bijections in a chart. That is, we require that the map f' o go f~! :
fUNg Y U")) — f'(U") is C*°, and that its domain is an open subset of W (W here is the understood



vector space on which we model Cx).

PROPOSITION(S):

e Smooth maps are continuous
e The identity map is smooth

e The composition of smooth maps between smooth manifolds is a smooth map

DEFINITION: Given X, X’ € MAN, we can define their product in MAN denoted X x X’ as follows: We take
the product of underlying sets X and X', and construct charts on X x X’ by taking the product of charts
Cx x Cxs, which are defined by taking products of all of their data (including the pairing of the canonical
bijections).

HW: Prove that the elements of Cx x Cx+ are compatible so that X x X’ is actually a manifold. Secondly,
prove that the projection maps 7x : X x X’ — X and wxs : X x X’ — X' are C*°. Finally, prove that if
given smooth maps h: Y — X and ' : Y — X', then (h, /) : Y — X x X’ defined by y — (h(y), R (y))
is a smooth map.

Preview for Thursday’s class:
DEFINITION: A Lie group is a group object in the category of smooth manifolds.
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HADAMARD’S LEMMA: Given a smooth function f : R” — R such that f(0) = 0, there exists ¢g; : R* — R
such that f =", z;9;

PROOF: Observe that )
f(z) — £(0) = / fi(t- ),
0

we can then write h(t) = f(t - x), and further note that

h(1) — h(0) = /01 B (t)dt,

from which it follows that )
of
fla) = [ D iyt

we can “pull the z;’s out” and let
gi(z) = 1 (t-x;)dt
3 9 ; ? )

from which the result follows.
DEFINITION: Recall here the definition of a group.

EXAMPLES: (OF LIE GROUPS)

o Fix a finite dimensional real vector space V, then GL(V) is a Lie group. The reason this is a group
should be clear, why is it a Lie group? First observe that GL(V) C End(V) and End(V) has the
structure of a real vector space. We claim that GL(V) is an open subset of End(V), from which it
follows that GL(V') is a smooth manifold. To see that GL(V') is open, consider the map

det : End(V) — R



observe that GL(V) = det ' (R \ {0}), and since we can express det as a horrible polynomial function,
in particular it is continuous. Thus, GL(V) is the continuous pre-image of an open subset of R, so it is
an open subset of End(V'), and in particular it is a manifold. This is not sufficient to show that GL(V)
is a Lie group, as we must still be certain that the operations are smooth. Well, one can easily realize
the coordinates of the multiplication/composition map as polynomials:

(B,A) ad (BA)U = ZBi,kAk,j
k

which are smooth, moreover it was proven in the homework that this multiplication/composition map
has a differential, one could argue by induction that this map is C'°°. An entirely analogous argument
follows for the inverse and identity maps (it is an important point that a point realized as a map from
a point is a smooth map).

o The special linear group: SL(V) < GL(V) is the subset of all invertible matrices A with det(A4) = 1.

o We can fix an inner product (-,-) on V' and define the orthogonal linear group: O(V) = {4 € GL(V) |
(Av, Aw) = (v, w)}

o The special orthogonal linear group: SO(V) < O(V) is the subset of all orthogonal matrices of deter-
minant one.

o Define the Hermitian inner product on a complex vector space V as («,3) = @ - . This inner
product is a real bilinear map V,V — C that is complex linear in the second variable and complex
anti-linear in the first variable, anti-symmetric, and positive definite. We define the unitary group:
U(V)={A4 e GLc(V) | (Av, Aw) = (v, w)} where (-, -) is the Hermitian inner product on V'

o There’s of course a special version SU(V)

DEFINITION: A tangent vector to a point x € U C M, where M € MAN, is an equivalence class of trajectories
which we require to be smooth maps p : R — M such that p(0) = z, under the following identification:

p~¢q <= in some, and hence all charts, containing = we have :

(fop)'(0) = (f2q)'(0)
where f: U — f(U) is the chart mentioned.

HW: Show that if the above equality holds in a single chart, it must hold in all charts.
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Recall our definition of the tangent vector from last time:

DEFINITION: A tangent vector to a point x € U C M, where M € MAN, is an equivalence class of trajectories
which we require to be smooth maps p : R — M such that p(0) = z, under the following identification:

p~gq <= in some, and hence all charts, containing x we have :

(fop)'(0) = (f2q)'(0)
where f: U — f(U) is the chart mentioned.

This definition is functional, and motivated by physical intuition, but mathematically speaking a curve and
a vector should be different concepts. We introduce the following equivalent definition to ameliorate this:



DEFINITION: Given a smooth manifold M and point z € M, a tangent vector at x is a given by a family
(we)cece, where C,, is the sub-collection of the atlas on M consisting of all charts that contain z, and where
given a particular chart C = (U, V, W, f), wc € W and

wor = (Dic,cr)(f(2))(wo)

where tc ¢ is the transition map from C to C’.
PROOF OF EQUIVALENCE:
(1) =(2)

Suppose a manifold M, point x € U C M, and subset U are given together with an equivalence class of
curves v with v(0) = . To produce a family of vectors as in definition (2) we set

we = (f07)'(0)
where C' = (U, V, W, f). We must show that this is well defined, to this end let v ~ . By the definition of
~ we have
(foy) =(for) =wc
so our choice of w¢ is indeed well defined. The family (w¢)cee, is completely determined by a single choice
of vector w¢, as all other members of the family can be computed using the above formula.

2)= (1)

Suppose a manifold M, point x € U C M, and subset U are given together with a family (w¢)cec,. To
construct an equivalence class of curves, pick any chart C' = (U, V, W, f) and any smooth curve v : R — V
with v(0) = f(x) and 4/(0) = w¢, then pull this curve back onto the manifold using f. For example pick
y(t) = f(x) +t - we and take [f~! o4]. We must verify the result we have recovered is independent of
our choices of v and C’, to this end suppose we have another curve v : R — V with v(0) = f(z) and
V'(0) = we. We have that [f~1ov] = [f~ov] because (fo f~to~) (0) = (fo f~tor)(0). Now suppose we
pick a different chart C’ = (U, V', W', g), then we consider the class [¢g~! o 4]. By means of the transition
map tc,cr we obtain that
lg or] =1 o tge o))

so it suffices to verify that the curve n = ta,lc’ o v satisfies n(0) = f(z) and 1'(0) = we. Observe that

1(0) = (tgcr 0 1)(0) =t (9()) = f(),
and
1" = D(t5le)(1(0)7'(0) = (D(te.or) (toier (1(0))) H(7/(0) =

= (D®)(f(2)))" (wer) = we
HW: Complete the proof of equivalence of the above definitions by showing that, by starting with a tan-
gent vector as in definition one, then producing a tangent vector as in definition two using the above, then
producing a new tangent vector as in definition one using the above, we get the same tangent vector back.
Then do it starting with a tangent vector as in definition two.

DEFINITION: Given a smooth manifold M, a point € M, and a tangent vector v € T, M, we define the
directional derivative of a smooth function f : M — R in the direction of v as

(D f)(x) = (f 27)'(0)

where v = [y] and v : R — M. Note that, because the vector v is tangent to z, it is somewhat meaningless to
write any evaluation at x (where else would we evaluate?), so one could equivalently write (D, f) = (fov)(0).

HW: Show that a different choice of representative for v produces the same directional derivative
HW: Give a definition of D, f using definition (2) of a tangent vector and prove its equivalence to the
definition given above.



