$d=1$, Riemannian metrics

Daniel Grady, Dmitri Pavlov (Texas Tech University, Lubbock, TX)

These slides: https://dmitripavlov.org/lecture-5b.pdf

- We will apply the results of GCH in dimension $d=1$ to the sheaf \mathcal{R} of fiberwise Riemannian metrics.
- We will apply the results of GCH in dimension $d=1$ to the sheaf \mathcal{R} of fiberwise Riemannian metrics.
- The statement takes the form

$$
\operatorname{Fun}^{\otimes}\left(\mathfrak{B o r d}_{1}^{\mathcal{R}}, \mathrm{C}\right) \simeq \operatorname{Map}\left(\mathcal{R}, \mathrm{C}_{1}^{\times}\right)
$$

- We will apply the results of GCH in dimension $d=1$ to the sheaf \mathcal{R} of fiberwise Riemannian metrics.
- The statement takes the form

$$
\operatorname{Fun}^{\otimes}\left(\mathfrak{B o r d}_{1}^{\mathcal{R}}, \mathrm{C}\right) \simeq \operatorname{Map}\left(\mathcal{R}, \mathrm{C}_{1}^{\times}\right)
$$

where the RHS is the simplicial set of maps in FEmb_{d}.

- We will show the RHS is equivalent (in the oriented case) to
- We will apply the results of GCH in dimension $d=1$ to the sheaf \mathcal{R} of fiberwise Riemannian metrics.
- The statement takes the form

$$
\operatorname{Fun}^{\otimes}\left(\mathfrak{B o r d}_{1}^{\mathcal{R}}, \mathrm{C}\right) \simeq \operatorname{Map}\left(\mathcal{R}, \mathrm{C}_{1}^{\times}\right)
$$

where the RHS is the simplicial set of maps in FEmb_{d}.

- We will show the RHS is equivalent (in the oriented case) to

$$
\operatorname{Map}\left(\mathbf{B} \mathbb{R}, C^{\times}\right)
$$

where the mapping simplicial set is taken in PSh_{Δ} (Cart). Recall, C^{\times}is a simplicial presheaf on Cart.

- There is a homotopy cocontinuous functor

$$
\mathcal{C}_{1}: \mathrm{PSh}_{\Delta}\left(\mathrm{FEmb}_{1}\right) \rightarrow \mathrm{PSh}\left(\mathrm{Cart}^{2}, \mathrm{sSet}^{\mathrm{GL}(1)}\right)
$$

that descents to an equivalence on $\mathrm{PSh}_{\Delta}\left(\mathrm{FEmb}_{1}\right)_{\mathrm{flc}}$

- There is a homotopy cocontinuous functor

$$
\mathcal{C}_{1}: \mathrm{PSh}_{\Delta}\left(\mathrm{FEmb}_{1}\right) \rightarrow \mathrm{PSh}\left(\text { Cart }, \mathrm{sSet}^{\mathrm{GL}(1)}\right)
$$

that descents to an equivalence on $\mathrm{PSh}_{\Delta}\left(\mathrm{FEmb}_{1}\right)_{\mathrm{fl}}$
■ Since C_{1}^{\times}is fibrant in $\mathrm{PSh}_{\Delta}\left(\mathrm{FEmb}_{1}\right)_{\mathrm{ffc}}$, it follows that we have an equivalence

$$
\operatorname{Map}\left(\mathcal{R}, \mathrm{C}_{1}^{\times}\right) \simeq \operatorname{Map}^{\mathbb{Z} / 2}\left(\mathcal{C}_{1}(\mathcal{R}), \mathcal{C}_{1}\left(\mathrm{C}_{1}^{\times}\right)\right)
$$

- There is a homotopy cocontinuous functor

$$
\mathcal{C}_{1}: \mathrm{PSh}_{\Delta}\left(\mathrm{FEmb}_{1}\right) \rightarrow \mathrm{PSh}\left(\text { Cart }, \mathrm{sSet}^{\mathrm{GL}(1)}\right)
$$

that descents to an equivalence on $\mathrm{PSh}_{\Delta}\left(\mathrm{FEmb}_{1}\right)_{\mathrm{flc}}$
■ Since C_{1}^{\times}is fibrant in $\mathrm{PSh}_{\Delta}\left(\mathrm{FEmb}_{1}\right)_{\mathrm{ffc}}$, it follows that we have an equivalence

$$
\operatorname{Map}\left(\mathcal{R}, \mathrm{C}_{1}^{\times}\right) \simeq \operatorname{Map}^{\mathbb{Z} / 2}\left(\mathcal{C}_{1}(\mathcal{R}), \mathcal{C}_{1}\left(\mathrm{C}_{1}^{\times}\right)\right)
$$

- In the second argument, $\mathcal{C}_{1}\left(\mathrm{C}_{1}^{\times}\right) \simeq \mathrm{C}^{\times}$, by the cobordism hypothesis.
- There is a homotopy cocontinuous functor

$$
\mathcal{C}_{1}: \mathrm{PSh}_{\Delta}\left(\mathrm{FEmb}_{1}\right) \rightarrow \mathrm{PSh}\left(\text { Cart }, \mathrm{sSet}^{\mathrm{GL}(1)}\right)
$$

that descents to an equivalence on $\mathrm{PSh}_{\Delta}\left(\mathrm{FEmb}_{1}\right)_{\mathrm{flc}}$
■ Since C_{1}^{\times}is fibrant in $\mathrm{PSh}_{\Delta}\left(\mathrm{FEmb}_{1}\right)_{\text {fic }}$, it follows that we have an equivalence

$$
\operatorname{Map}\left(\mathcal{R}, \mathrm{C}_{1}^{\times}\right) \simeq \operatorname{Map}^{\mathbb{Z} / 2}\left(\mathcal{C}_{1}(\mathcal{R}), \mathcal{C}_{1}\left(\mathrm{C}_{1}^{\times}\right)\right)
$$

- In the second argument, $\mathcal{C}_{1}\left(\mathrm{C}_{1}^{\times}\right) \simeq \mathrm{C}^{\times}$, by the cobordism hypothesis.
■ So we need to compute $\mathcal{C}_{1}(\mathcal{R})$.
- Replace \mathcal{R} by \mathcal{R}^{\prime}, the preaheaf that assigns a submersion $M \rightarrow U$ to fiberwise metrics that have finite length in each fiber.
- Replace \mathcal{R} by \mathcal{R}^{\prime}, the preaheaf that assigns a submersion $M \rightarrow U$ to fiberwise metrics that have finite length in each fiber. \mathcal{R} is the sheafification of \mathcal{R}^{\prime}.
- Replace \mathcal{R} by \mathcal{R}^{\prime}, the preaheaf that assigns a submersion $M \rightarrow U$ to fiberwise metrics that have finite length in each fiber. \mathcal{R} is the sheafification of \mathcal{R}^{\prime}.
- Write

$$
\mathcal{R} \simeq \operatorname{hocolim}_{\mathbb{R} \times U \rightarrow \mathcal{R}^{\prime}}(\mathbb{R} \times U \rightarrow U)
$$

■ Replace \mathcal{R} by \mathcal{R}^{\prime}, the preaheaf that assigns a submersion $M \rightarrow U$ to fiberwise metrics that have finite length in each fiber. \mathcal{R} is the sheafification of \mathcal{R}^{\prime}.

- Write

$$
\mathcal{R} \simeq \operatorname{hocolim}_{\mathbb{R} \times U \rightarrow \mathcal{R}^{\prime}}(\mathbb{R} \times U \rightarrow U)
$$

- Colimit is taken over the category whose objects are fiberwise metric with finite length on $\mathbb{R} \times U$.
- Replace \mathcal{R} by \mathcal{R}^{\prime}, the preaheaf that assigns a submersion $M \rightarrow U$ to fiberwise metrics that have finite length in each fiber. \mathcal{R} is the sheafification of \mathcal{R}^{\prime}.
- Write

$$
\mathcal{R} \simeq \operatorname{hocolim}_{\mathbb{R} \times U \rightarrow \mathcal{R}^{\prime}}(\mathbb{R} \times U \rightarrow U)
$$

- Colimit is taken over the category whose objects are fiberwise metric with finite length on $\mathbb{R} \times U$. Morphisms are fiberwise isometric embeddings.
- Replace \mathcal{R} by \mathcal{R}^{\prime}, the preaheaf that assigns a submersion $M \rightarrow U$ to fiberwise metrics that have finite length in each fiber. \mathcal{R} is the sheafification of \mathcal{R}^{\prime}.
- Write

$$
\mathcal{R} \simeq \operatorname{hocolim}_{\mathbb{R} \times U \rightarrow \mathcal{R}^{\prime}}(\mathbb{R} \times U \rightarrow U)
$$

- Colimit is taken over the category whose objects are fiberwise metric with finite length on $\mathbb{R} \times U$. Morphisms are fiberwise isometric embeddings.
- This indexing category is equivalent to the following category:
- Replace \mathcal{R} by \mathcal{R}^{\prime}, the preaheaf that assigns a submersion $M \rightarrow U$ to fiberwise metrics that have finite length in each fiber. \mathcal{R} is the sheafification of \mathcal{R}^{\prime}.
- Write

$$
\mathcal{R} \simeq \operatorname{hocolim}_{\mathbb{R} \times U \rightarrow \mathcal{R}^{\prime}}(\mathbb{R} \times U \rightarrow U)
$$

- Colimit is taken over the category whose objects are fiberwise metric with finite length on $\mathbb{R} \times U$. Morphisms are fiberwise isometric embeddings.
- This indexing category is equivalent to the following category: Objects are smooth maps $\alpha: U \rightarrow \mathbb{R}_{>0}$ (fiberwise length).
- Replace \mathcal{R} by \mathcal{R}^{\prime}, the preaheaf that assigns a submersion $M \rightarrow U$ to fiberwise metrics that have finite length in each fiber. \mathcal{R} is the sheafification of \mathcal{R}^{\prime}.
- Write

$$
\mathcal{R} \simeq \operatorname{hocolim}_{\mathbb{R} \times U \rightarrow \mathcal{R}^{\prime}}(\mathbb{R} \times U \rightarrow U)
$$

- Colimit is taken over the category whose objects are fiberwise metric with finite length on $\mathbb{R} \times U$. Morphisms are fiberwise isometric embeddings.
- This indexing category is equivalent to the following category: Objects are smooth maps $\alpha: U \rightarrow \mathbb{R}_{>0}$ (fiberwise length). Morphisms are pairs ($h: U \rightarrow U^{\prime}, \beta: U \rightarrow \mathbb{R}_{\geq 0}$): $\alpha \rightarrow \alpha^{\prime}$ such that

$$
\alpha^{\prime} \circ h \geq \alpha+\beta
$$

Here, $\beta(u)$ is keeping track of the "offset" of an interval of length $\alpha(u)$ embedded into a larger interval.
$■$ Set $(0, \alpha):=\{(t, u) \in \mathbb{R} \times U: 0<t<\alpha(u)\}$.

■ Set $(0, \alpha):=\{(t, u) \in \mathbb{R} \times U: 0<t<\alpha(u)\}$.

- Let D denote the category described above.

■ Set $(0, \alpha):=\{(t, u) \in \mathbb{R} \times U: 0<t<\alpha(u)\}$.

- Let D denote the category described above. We have

$$
\operatorname{hocolim}_{\mathbb{R} \times U \rightarrow \mathcal{R}^{\prime}}(\mathbb{R} \times U \rightarrow U) \simeq \operatorname{hocolim}_{D}(\mathbb{R} \times U \rightarrow U)
$$

- The second equivalence replaces $\mathbb{R} \times U \rightarrow U$ be a fiberwise diffeomorphic object $(0, \alpha) \rightarrow U$.

■ Set $(0, \alpha):=\{(t, u) \in \mathbb{R} \times U: 0<t<\alpha(u)\}$.

- Let D denote the category described above. We have

$$
\operatorname{hocolim}_{\mathbb{R} \times U \rightarrow \mathcal{R}^{\prime}}(\mathbb{R} \times U \rightarrow U) \simeq \operatorname{hocolim}_{D}(\mathbb{R} \times U \rightarrow U)
$$

- The second equivalence replaces $\mathbb{R} \times U \rightarrow U$ be a fiberwise diffeomorphic object $(0, \alpha) \rightarrow U$.
- We know that $\mathcal{C}_{1}(\mathbb{R} \times U \rightarrow U) \simeq \mathbb{Z} / 2 \times U$.

■ So passing \mathcal{C}_{1} inside the homotopy colimit, we get

$$
\operatorname{hocolim}_{(0, \alpha) \rightarrow \mathbb{R}>0} \mathbb{Z} / 2 \times U
$$

which we still need to compute.

- We compute the colimit objectwise by taking the nerve of the Grothendieck construction, applied to $\mathrm{D} \rightarrow \mathrm{PSh}\left(\right.$ Cart, $\mathrm{sSet}^{\mathbb{Z} / 2}$).
- Fix $W \in$ Cart. Let G_{W} denote the category obtained by the applying the Grothendieck construction.

■ We compute the colimit objectwise by taking the nerve of the Grothendieck construction, applied to
D $\rightarrow \mathrm{PSh}\left(\right.$ Cart, $\mathrm{sSet}^{\mathbb{Z} / 2}$).
■ Fix $W \in$ Cart. Let G_{W} denote the category obtained by the applying the Grothendieck construction.

- We can split off a factor of $\mathbb{Z} / 2$ to get $G_{W}=E_{W} \times \mathbb{Z} / 2$.
- We define a functor

$$
\left.F: E_{W} \rightarrow \mathcal{B}\left(C^{\infty}(W, \mathbb{R}),+\right)\right)
$$

that essentially throws away all the data except β.

- We recall that β 's add when morphisms are composed.
- We show that F induces an equivalence on nerves, using Quillen's theorem A.

■ We compute the colimit objectwise by taking the nerve of the Grothendieck construction, applied to
D $\rightarrow \mathrm{PSh}\left(\right.$ Cart, $\mathrm{sSet}^{\mathbb{Z} / 2}$).
■ Fix $W \in$ Cart. Let G_{W} denote the category obtained by the applying the Grothendieck construction.

- We can split off a factor of $\mathbb{Z} / 2$ to get $G_{W}=E_{W} \times \mathbb{Z} / 2$.
- We define a functor

$$
\left.F: E_{W} \rightarrow \mathcal{B}\left(C^{\infty}(W, \mathbb{R}),+\right)\right)
$$

that essentially throws away all the data except β.

- We recall that β 's add when morphisms are composed.
- We show that F induces an equivalence on nerves, using Quillen's theorem A. The point is that Kan fibrantly replacing E_{W} formally adds inverses for $\beta: W \rightarrow \mathbb{R}_{\geq 0}$.
- So we get we have computes the homotopy colimit. We get

$$
\mathcal{C}_{1}(\mathcal{R}) \simeq \mathbb{Z} / 2 \times \mathbf{B} \mathbb{R}
$$

