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We will apply the results of GCH in dimension d = 1 to the
sheaf R of fiberwise Riemannian metrics.

The statement takes the form

Fun⊗(BordR1 ,C) ≃ Map(R,C×
1 )

where the RHS is the simplicial set of maps in FEmbd .

We will show the RHS is equivalent (in the oriented case) to

Map(BR,C×),

where the mapping simplicial set is taken in PSh∆(Cart).
Recall, C× is a simplicial presheaf on Cart.
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There is a homotopy cocontinuous functor

C1:PSh∆(FEmb1) → PSh(Cart, sSetGL(1))

that descents to an equivalence on PSh∆(FEmb1)flc

Since C×
1 is fibrant in PSh∆(FEmb1)flc, it follows that we

have an equivalence

Map(R,C×
1 ) ≃ MapZ/2(C1(R), C1(C×

1 ))

In the second argument, C1(C×
1 ) ≃ C×, by the cobordism

hypothesis.

So we need to compute C1(R).
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Replace R by R′, the preaheaf that assigns a submersion
M → U to fiberwise metrics that have finite length in each
fiber.

R is the sheafification of R′.
Write

R ≃ hocolimR×U→R′(R× U → U).

Colimit is taken over the category whose objects are fiberwise
metric with finite length on R× U. Morphisms are fiberwise
isometric embeddings.
This indexing category is equivalent to the following category:
Objects are smooth maps α:U → R>0 (fiberwise length).
Morphisms are pairs (h:U → U ′, β:U → R≥0):α → α′ such
that

α′ ◦ h ≥ α+ β

Here, β(u) is keeping track of the “offset” of an interval of
length α(u) embedded into a larger interval.
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Set (0, α): = {(t, u) ∈ R× U: 0 < t < α(u)}.

Let D denote the category described above. We have

hocolimR×U→R′(R× U → U) ≃ hocolimD(R× U → U)

The second equivalence replaces R× U → U be a fiberwise
diffeomorphic object (0, α) → U.

We know that C1(R× U → U) ≃ Z/2× U.

So passing C1 inside the homotopy colimit, we get

hocolim(0,α)→R>0
Z/2× U,

which we still need to compute.
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We compute the colimit objectwise by taking the nerve of the
Grothendieck construction, applied to
D → PSh(Cart, sSetZ/2).

Fix W ∈ Cart. Let GW denote the category obtained by the
applying the Grothendieck construction.

We can split off a factor of Z/2 to get GW = EW × Z/2.
We define a functor

F :EW → B(C∞(W ,R),+))

that essentially throws away all the data except β.

We recall that β’s add when morphisms are composed.

We show that F induces an equivalence on nerves, using
Quillen’s theorem A. The point is that Kan fibrantly replacing
EW formally adds inverses for β:W → R≥0.
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So we get we have computes the homotopy colimit. We get

C1(R) ≃ Z/2× BR
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