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Geometrically framed bordisms

m As we have discussed, the general case follows from the
codescent property and the GCH in the geometrically framed
case.
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m For the geometrically framed case, we take the representable
presheaf (R? x U — U) € FEmby as the geometric structure.

m For fixed U € Cart, () € T and m € AX?, a vertex in

Bord® U=V (U, (0), m)

is a U-family of bordisms that is cut into a grid (varying
smoothly in U), along with a partition of the set of connected
components.
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Geometrically framed bordisms

m As we have discussed, the general case follows from the
codescent property and the GCH in the geometrically framed
case.

m For the geometrically framed case, we take the representable
presheaf (R? x U — U) € FEmby as the geometric structure.

m For fixed U € Cart, () € T and m € AX?, a vertex in

Bord® U=V (U, (0), m)

is a U-family of bordisms that is cut into a grid (varying
smoothly in U), along with a partition of the set of connected
components. The bordism also is fiberwise embedded (over
U) into R¥.

m An /-simplex is a smooth deformation of the m-cut tuples,
parametrized by A’. The face maps restrict the germ of the

core, as needed.
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m Framed case crucially uses duals.
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m Framed case crucially uses duals.

Definition
Let (C,®,1) be a symmetric monoidal cat. Let ¢ € C. Then a
dual for c is an object ¢V along with maps

ecV®c—1
nl—c®cY

s.t.

2"l c"®(CE®c)2(c"ed)®c 51V =Y

is the identity.
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m Framed case crucially uses duals.

Definition
Let (C,®,1) be a symmetric monoidal cat. Let ¢ € C. Then a
dual for c is an object ¢V along with maps
ecV®c—1
nl—c®cY
s.t.

2"l c"®(CE®c)2(c"ed)®c 51V =Y

V

is the identity. Same with ¢ and c" reversed.
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Let C = Vecty, with tensor product as the monoidal structure.
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Let C = Vecty, with tensor product as the monoidal structure. For
V € Vecty, let VV:=hom(V, k) be the usual dual space.
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Example

Let C = Vecty, with tensor product as the monoidal structure. For
V € Vecty, let VV:=hom(V, k) be the usual dual space. Let

eVeoVY ok

be the canonical pairing.
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Example

Let C = Vecty, with tensor product as the monoidal structure. For
V € Vecty, let VV:=hom(V, k) be the usual dual space. Let

eVeVY =k
be the canonical pairing. Fix a basis {v;} and define
nk—=VeVvY

by 1 > . v;i ® v, where {v)} is the dual basis.
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Example

Let C = Vecty, with tensor product as the monoidal structure. For
V € Vecty, let VV:=hom(V, k) be the usual dual space. Let

eVeVY =k
be the canonical pairing. Fix a basis {v;} and define
nk—=VeVvY

by 1+ > .v;i ® v, where {v} is the dual basis. Easy to check
that the triangle identities hold.

m For a 2-category, one can also define duals for morphisms:
they are adjunctions.
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Example

Let C = Vecty, with tensor product as the monoidal structure. For
V € Vecty, let VV:=hom(V, k) be the usual dual space. Let

eVeVY =k
be the canonical pairing. Fix a basis {v;} and define
nk—=VeVvY

by 1+ > .v;i ® v, where {v} is the dual basis. Easy to check
that the triangle identities hold.

m For a 2-category, one can also define duals for morphisms:
they are adjunctions. Can extend to higher cats by induction.
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Duals in Bor
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. 2
Duals in Bordy *Y~Y

]'C
].
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Duals in (0o, d)-categories

m Once again, our idea is to localize at yet another set of
morphisms.

Let Adj denote the (stupid) nerve of 2-category that is generated
by
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m Once again, our idea is to localize at yet another set of
morphisms.

Let Adj denote the (stupid) nerve of 2-category that is generated
by

m Two objects x and y

m Two nonidentity morphisms f:x — y and g:y — x
m Two nonidentity 2-morphisms 7: 1, — gf and e: fg — 1,.

22/23  7/32



Duals in (0o, d)-categories

m Once again, our idea is to localize at yet another set of
morphisms.

Definition
Let Adj denote the (stupid) nerve of 2-category that is generated
by

m Two objects x and y

m Two nonidentity morphisms f:x — y and g:y — x

m Two nonidentity 2-morphisms 7: 1, — gf and e: fg — 1,.

subject to the relations given by the two triangle identities.

m We write f — Adj, n — Adj, ¢ = Adj for the sub
2-categories generated by f, (f,g,n) and (f, g,¢€),
respectively.
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A smooth symmetric monoidal (oo, d)-category C has duals for
k-morphisms if:
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A smooth symmetric monoidal (oo, d)-category C has duals for
k-morphisms if:
m A fibrant object in PSha(Cart x ' x AXd)inj’loc
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Definition

A smooth symmetric monoidal (oo, d)-category C has duals for
k-morphisms if:
m A fibrant object in PSha(Cart x ' x AXd)inj,loc
m For fixed m € A*k=1 (¢) € T and U € Cart, the bisimplicial
set Cm «+,0(U, (€)) is local with respect to the canonical
morphism
f — Adj.
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A smooth symmetric monoidal (oo, d)-category C has duals for
k-morphisms if:
m A fibrant object in PSha(Cart x ' x AXd)inj’loc

m For fixed m € A*k=1 (¢) € T and U € Cart, the bisimplicial
set Cm «+,0(U, (€)) is local with respect to the canonical
morphism

f — Adj.

Definition
We say that C has all duals if it has duals for all k-morphisms with
1<k<d-1.
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m Adding the maps f — Ad]j (after applying the left adjoint to
the evaluation at (U, (¢),(m, —,0))) to the list of maps at
which we localize, we get a new model category:

C>®Cat®

(o0

,d): = PShA(Cart x [ x AXd)inj,lOC

28/31  9/32



m Adding the maps f — Ad]j (after applying the left adjoint to
the evaluation at (U, (¢),(m, —,0))) to the list of maps at
which we localize, we get a new model category:

C>®Cat®

(o0

,d): = PShA(Cart x [ x AXd)inj,lOC

m A fibrant object C solves the lifting property

29/31  9/32



m Adding the maps f — Ad]j (after applying the left adjoint to
the evaluation at (U, (¢),(m, —,0))) to the list of maps at
which we localize, we get a new model category:

C>®Cat®

(o0

,d): = PShA(Cart x [ x AXd)inj,lOC

m A fibrant object C solves the lifting property

f—— Cmx0(U, (£))

1Ty

||

YRR,
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m Adding the maps f — Ad]j (after applying the left adjoint to
the evaluation at (U, (¢),(m, —,0))) to the list of maps at
which we localize, we get a new model category:

CwCat?ng 4 = PSha(Cart x T x AN Joe

m A fibrant object C solves the lifting property

f—>cm**0( )

777

||

AT %

m So every k-morphism is the left adjoint for an adjunction.
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The geometric cobordism hypothesis: framed case

Theorem (G.-P.)

Let d > 0, and let C be a fibrant object in CmCat?;’\i,. Then
evaluation at the (positive) point yields a weak equivalence

Fun®(BoroE *U=Y ) ~ C*(U)
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m Using Lurie's idea, we proceed by induction on the dimension.

34/38  10/32



The geometric cobordism hypothesis: framed case

Theorem (G.-P.)

Let d > 0, and let C be a fibrant object in CmCat?;’\i,. Then
evaluation at the (positive) point yields a weak equivalence

Fun®(BoroE *U=Y ) ~ C*(U)

Proof

m Using Lurie's idea, we proceed by induction on the dimension.
The base of the induction is d = 0.

35/38  10/32



The geometric cobordism hypothesis: framed case

Theorem (G.-P.)
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Proof
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The base of the induction is d = 0.

m Assume the statement is true (in full generality!) in dimension
d—1.
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The geometric cobordism hypothesis: framed case

Theorem (G.-P.)
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Proof of GCH

Definition
Fix d > 0. We define the subobject B, C %otOEdXU_)U as the

subobject of bordisms that admit a Morse function having critical
points of index at most k.
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Proof of GCH

Definition
Fix d > 0. We define the subobject B, C %otOEdXU_)U as the

subobject of bordisms that admit a Morse function having critical
points of index at most k.

By — B — B — -+ — Bi1 — %otbﬂjdxu_’u
+ + + +
_I_

(),
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d
B1— By — B — -+ — By —— Bordy U7V

00 ) - B O

- . - -
O q
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d
By — By — B 0 == Bg-1 —— Bordy ¥U7U

@@@ B O

@q S
(),

m Problem: What if the disc of index 0 is not sent to the unit of
an adjunction?
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d
B1— By — B — -+ — By —— Bordy U7V

o
(0

m Problem: What if the disc of index 0 is not sent to the unit of
an adjunction?

m For higher index, this is not a problem (use exchange
principle).
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Handle cancellations

Let k > 0 and fix m € AX9—2,
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Handle cancellations

Definition
Let k > 0 and fix m € A*9~2. We define the subobject

Hi(m) C Bk(m) to be the subobject generated (as a bisimplicial
space) by the bisimplices occuring in the following diagram:
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Handle cancellations

Definition
Let k > 0 and fix m € A*9~2. We define the subobject

Hi(m) C Bk(m) to be the subobject generated (as a bisimplicial
space) by the bisimplices occuring in the following diagram:

gd—k=1 y pk-1 id gd—k=1y pk-1 id gd—k=1  pk-1
Dd*kxokfllg Dd*kxDng lsd‘k‘lka‘lx[OTI]
Dd—k » gk—2 id Da—k 5 gk=2 € Gd—k=1y pk-1
Dd*kxskfzx[o,ul fJDdkaDkfl Jsd*kflxokflx[o,l]
Dd—k % Sk—z n sd—k—l X Dk—l = sd—k—l X Dk—l
i
D"*"XS“*ZX[OJ]J’ ngd*kka*1 ng""‘xD“’l
DIk « Gk—2 id Dd—k « gk—2 DA~k x k=2
id :

m U € Cart and (¢) € T are present throughout, but we will omit
these from notation.
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Handle cancellations

Definition
Let k > 0 and fix m € A*9~2. We define the subobject

Hi(m) C Bk(m) to be the subobject generated (as a bisimplicial
space) by the bisimplices occuring in the following diagram:

gd—k=1 y pk-1 id gd—k=1y pk-1 id gd—k=1  pk-1
De—kxDk-1|g Dd*kxDng lsd‘k‘lka‘lx[OTI]
Dd—k » gk—2 id Da—k 5 gk=2 € Gd—k=1y pk-1
Dd*kxskfzx[o,ul fJDdkaDkfl Jsd*kflxokflx[o,l]
Dd—k % Sk—z n sd—k—l X Dk—l = sd—k—l X Dk—l
i
D"*"XS“*ZX[OJ]J’ ngd*kka*1 ng""‘xD“’l
DIk « Gk—2 id Dd—k « gk—2 DA~k x k=2
id :

m U € Cart and (¢) € T are present throughout, but we will omit
these from notation.

m We again work in families over Al 47/47  13/32



Handles of index k — 1

m We define Og_1 C Hy as the further subobject just containing
the bisimplices in the left column.

Theorem (G.-P., Propositions 4.2.33, 4.3.2)

For k > 1, we have a homotopy pushout diagram

Ok—1 —— Bk—1

L

Hk—>Bk
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Handles of index k — 1

m We define Og_1 C Hy as the further subobject just containing
the bisimplices in the left column.

Theorem (G.-P., Propositions 4.2.33, 4.3.2)

For k > 1, we have a homotopy pushout diagram

Ok—1 —— Bk—1

L

Hk—>Bk

m This statement can be regarded as a generalization of Lurie's
claims 3.4.12 and 3.4.17:
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Handles of index k — 1

m We define Og_1 C Hy as the further subobject just containing
the bisimplices in the left column.

Theorem (G.-P., Propositions 4.2.33, 4.3.2)

For k > 1, we have a homotopy pushout diagram

Ok—1 —— Bk—1

L

ffk e f;k

m This statement can be regarded as a generalization of Lurie's
claims 3.4.12 and 3.4.17: B is freely generated from By_; by
the addition of O(d — k) worth of handles of index k and a

handle cancellation for each index k-handle.
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Another crucial ingredient:
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Another crucial ingredient:

Theorem (G.-P., Proposition 4.2.24)

For k > 1, the map Ox_1 — Hy induces weak equivalence

Fun®(Hk, C) — Fun®(0k_1, C)unit
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Another crucial ingredient:

Theorem (G.-P., Proposition 4.2.24)

For k > 1, the map Ox_1 — Hy induces weak equivalence

Fun®(Hk, C) — Fun®(0k_1, C)unit

Corollary

For d > 1 and C a fibrant object in CwCat?;’L, There are weak
equivalences
Fun® (B, C) — Fun®(By_1, C)

for k > 2 and a weak equivalence

Fun®(Bl, C) E) Fun®(B_1, C) XFun®(O_1,C) Fun®(H0, C)unit
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Proof of corollary

m The homotopy pushout square

Ok—1—— Bk—1

|

Hk—)Bk

gives rise to a homotopy pullback square

54/57  16/32



Proof of corollary

m The homotopy pushout square
Ok—1— Bk-1
Hk E— Bk
gives rise to a homotopy pullback square
Fun®(Ok_1, C) +—— Fun®(By_1, C)

T T

Fun®(Hy, C) +——— Fun®(By, C)
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Proof of corollary

m The homotopy pushout square
Ok—1— Bk-1
Hk E— Bk
gives rise to a homotopy pullback square
Fun®(Ok_1, C) +—— Fun®(By_1, C)

T T

Fun®(Hy, C) +——— Fun®(By, C)

m By definition, the left map factors through the coproduct
summand of units.
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Proof of corollary

m The homotopy pushout square
Ok—1—— Bk—1
ffk _— fgk
gives rise to a homotopy pullback square

Fun®(Ok_1, C) +—— Fun®(By_1, C)

T T

Fun®(Hy, C) +——— Fun®(By, C)

m By definition, the left map factors through the coproduct
summand of units.
m Hence, for the first claim, it suffices to prove that the top map

factors through the coproduct summand of units.
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m This follows from Lurie's exchange principle.
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m This follows from Lurie's exchange principle.

Proposition (G.-P., Proposition 4.4.2)

Let X be a d > 3-fold complete Segal space and suppose we have
the following multisimplices

m fix = yand fl:y — x of degree (1,0,...,0).
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m This follows from Lurie's exchange principle.

Proposition (G.-P., Proposition 4.4.2)

Let X be a d > 3-fold complete Segal space and suppose we have
the following multisimplices

m fix = yand fl:y — x of degree (1,0,...,0).
m u:id, — f oy f1 and v':id, — f o fT of degree (1,1,0,...,0).
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m This follows from Lurie's exchange principle.

Proposition (G.-P., Proposition 4.4.2)

Let X be a d > 3-fold complete Segal space and suppose we have
the following multisimplices

m fix = yand fl:y — x of degree (1,0,...,0).
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m This follows from Lurie's exchange principle.

Proposition (G.-P., Proposition 4.4.2)

Let X be a d > 3-fold complete Segal space and suppose we have
the following multisimplices

m fix = yand fl:y — x of degree (1,0,...,0).

m u:id, — f oy f1 and v':id, — f o fT of degree (1,1,0,...,0).

m o idgr o1 U’ — woq idgr of degree (1,1,1,0,...,0).

Suppose both u and u’ are units of an adjunction.
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m This follows from Lurie's exchange principle.

Proposition (G.-P., Proposition 4.4.2)

Let X be a d > 3-fold complete Segal space and suppose we have
the following multisimplices

m fix = yand fl:y — x of degree (1,0,...,0).

m u:id, — f oy f1 and v':id, — f o fT of degree (1,1,0,...,0).

m o idgr o1 U’ — woq idgr of degree (1,1,1,0,...,0).
Suppose both u and u’ are units of an adjunction. Then there are
morphisms ~:idgi . — uoy v and B:u' oy v — ids. st associated
to o via equivalences.
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m This follows from Lurie's exchange principle.

Proposition (G.-P., Proposition 4.4.2)

Let X be a d > 3-fold complete Segal space and suppose we have
the following multisimplices

m fix = yand fl:y — x of degree (1,0,...,0).

m u:id, — f oy f1 and v':id, — f o fT of degree (1,1,0,...,0).

m o idgr o1 U’ — woq idgr of degree (1,1,1,0,...,0).
Suppose both u and u’ are units of an adjunction. Then there are
morphisms ~:idgi . — uoy v and B:u' oy v — ids. st associated
to « via equivalences. Moreover, B is the counit of an adjunction if
and only if vy is the unit of an adjunction.
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Exchanging a counit for a unit
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m This only works for k > 2!
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m This only works for k > 2!

m For k =1, we obtain an equivalence

Fun®(Bl, C) — Fun®(Bo, C)unit
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m This only works for k > 2!

m For k =1, we obtain an equivalence

FUII@(BL C) — FU.H®(B(), C)unit

m This, combined with the pullback diagram for kK = 0 proves
claim 2.
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Proof of GCH
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Proof of GCH

m By the corollary we have an equivalences

Fun®(Borok <V=Y C) ~ Fun®(By, C)
and

Fun®(By, C) ~ Fun®(B_1, C) X Fun®(0_1,C) Fun®(Ho, C)unit
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Proof of GCH

m By the corollary we have an equivalences

Fun®(Borok <V=Y C) ~ Fun®(By, C)
and

Fun®(By, C) ~ Fun®(B_1, C) X Fun®(0_1,C) Fun®(Ho, C)unit

m The object B_; contains cylinders with a fiberwise embedding
into RY.
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Proof of GCH

m By the corollary we have an equivalences

Fun®(Borok <V=Y C) ~ Fun®(By, C)
and

Fun®(By, C) ~ Fun®(B_1, C) X Fun®(0_1,C) Fun®(Ho, C)unit

m The object B_; contains cylinders with a fiberwise embedding
into RY. This is not equivalent to Bord%" <Y~V
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Proof of GCH

m By the corollary we have an equivalences

Fun®(%0tb]§dxu_>u, C) ~ Fun®(By, Q)
and
Fun®(By, C) ~ Fun®(B_1, C) X Fun®(0_1,C) Fun®(Ho, C)unit

m The object B_; contains cylinders with a fiberwise embedding
into RY. This is not equivalent to Bord%" <Y~V

We define a functor ty_1: FEmby_1 — FEmby by sending a
submersion M — U to M x R — U.
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Proof of GCH

m By the corollary we have an equivalences

Fun®(%0tb]§dxu_>u, C) ~ Fun®(By, Q)
and
Fun®(By, C) ~ Fun®(B_1, C) X Fun®(0_1,C) Fun®(Ho, C)unit

m The object B_; contains cylinders with a fiberwise embedding
into RY. This is not equivalent to Bord%" <Y~V

We define a functor ty_1: FEmby_1 — FEmby by sending a
submersion M — U to M x R — U.

v 1(]R X U—>U)

m We have B_; ~ Bord
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Proof of GCH

m By the corollary we have an equivalences
Fun®(%0tb]§dxu_>u, C) ~ Fun®(By, Q)
and
Fun®(By, C) ~ Fun®(B_1, C) X Fun®(0_1,C) Fun®(Ho, C)unit
m The object B_; contains cylinders with a fiberwise embedding
into RY. This is not equivalent to Bord]R IXU_’Ul

Definition
We define a functor ty_1: FEmby_1 — FEmby by sending a
submersion M — U to M x R — U.
m We have B_; ~ Bo DLd l(R XU%U)
m By GCH in dimension d -1, we have an equivalence
Fun®(By, C) ~ Map(tg_1(R? x U = U), C*) Xpuno(0_,.c) Fun®(Ho, C)unic (M)
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A homotopy pushout for geometric structures

Lemma

We have a homotopy pushout diagram in sPShA(FEmbd_l)c’ﬂC:

(ta—2)ity LRI U— U)——RIIx U— U

l |

RILxU—U——-iy (R U— U)

Proof: Idea is to move to O(d — 1)-equivariant presheaves by a
zig-zag of Quillen equivalences.
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A homotopy pushout for geometric structures

Lemma

We have a homotopy pushout diagram in sPShA(FEmbd_l)c’ﬂC:

(ta—2)ity LRI U— U)——RIIx U— U

l |

RILxU—U——-iy (R U— U)

Proof: Idea is to move to O(d — 1)-equivariant presheaves by a
zig-zag of Quillen equivalences. This turns the above diagram into
a homotopy pushout diagram in sPSha (Cart; sSet®(@—1)):
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O(d — 1) I—'O(d—2) O(d — 1) X U—— O(d — 1) x U

| |

O(d—1)x U »O(d) x U

m This can be shown to be a homotopy pushout square of
equivariant spaces (Lurie's proof of Proposition 2.4.6).
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Moving down to codimension 2

Since C;;_, is fiberwise locally constant (by the induction
hypothesis), we have a homotopy pullback diagram

Map((Ld—l)!szl(Rd_l X U)a C¢>j<_1) A— Map(Rd_l X U7 C¢>j<_1)

T T

Map(R~1 x U,C) ;) +——— Map(¢5_;(R? x U),C) ;)

m The two off-diagonal corners are equivalent to
d—
Fun®(Bordk " *Y=Y () by the induction hypothesis.
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Moving down to codimension 2

Since C;;_, is fiberwise locally constant (by the induction
hypothesis), we have a homotopy pullback diagram

Map((Ld—l)!szl(Rd_l X U)a C¢>j<_1) A— Map(Rd_l X U7 C¢>j<_1)

T T

Map(R~1 x U,C) ;) +——— Map(¢5_;(R? x U),C) ;)

m The two off-diagonal corners are equivalent to
d—
Fun®(Bordk " *Y=Y () by the induction hypothesis.
m Then we invoke the corollary in dimension d — 1 to get
Fun®(Bordk <=V Q)

~Map(tj_»(R4! x U),Cx ) X Fun®(0_y.4_1,C) Fun®(Ho.g—1, C)unit
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= To save on space, let's denote CB: = Fun®(B, C).
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= To save on space, let's denote CB: = Fun®(B, C).
m We have a big pullback diagram:

Co*l’dil NIap(L§72(Rd_1 X U)1 C;—Z) A — Map("Z—Z(Rd_l X U)1 CX) ><(:0—1.‘1—1 ZIO»dil

| T

Pt e Map(uy (R x U), CJ_y) Xcoyg 1 Col* ™ e—————— Map(ij_; (R x U),C}_,)
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= To save on space, let's denote CB: = Fun®(B, C).
m We have a big pullback diagram:

Co*l’dil NIap(L§72(Rd_1 X U)1 C;—Z) A — Map("Z—Z(Rd_l X U)1 CX) ><(:0—1.‘1—1 ZIO»dil

| T

Pt e Map(uy (R x U), CJ_y) Xcoyg 1 Col* ™ e—————— Map(ij_; (R x U),C}_,)

m So we have an equivalence
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= To save on space, let's denote CB: = Fun®(B, C).
m We have a big pullback diagram:

Cofdl Map(th_(RI7L x U), C_,) «————— Map(i}j_,(R9"! x U), CX) X0 141 Choa

T

CoPo e Map(_o(RY™1 % U), CJ_y) X oy gy Co®® 4 Map(u_1 (RY x U), C5_,)

m So we have an equivalence
Map(j_1(R? x U = U),CJ_ ) ~

Map(L§_2(Rd71 x U — U),C:ﬁz) XCO—l,d—l CHO,d71

" X0 14-1 x CHlo.d-1
m Plugging back into (#), we get an equivalence
Fun®(Bl7 C*) ~
Map(t-2(R? ™! x U = U), Cf_y) Xco_y gy Cul™ ™ X oy 4y XC"* X o, CIP
©)
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m Focusing on the triple pullback

Ho,d—1 Ho,a—1 H
Cy X0 1,41 XCuy Xeco_y C°%
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m Focusing on the triple pullback

Ho,d—1 Ho,a—1 H
Cu X 01,41 xCy X oy c,°,

we observe that the projection
Ho.4— Ho.4— Ho.4—
Cu% ™ X o g XCu™? T x o, Clo = %

is an equivalence (since C has duals).
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m Focusing on the triple pullback

Ho,d—1 Ho,qg—1 H
Cy XCO—Ld—l xCy X 01 Cuo,

we observe that the projection
Ho,d—1 Ho,d—1 H Ho,d—1
Cy X0 1,d-1 xCy X 01 CUO — Cy

is an equivalence (since C has duals).
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m Focusing on the triple pullback

Ho,d—1 Ho,d—1 H
Cu ><C071Yd71 XCU Co 1 C

we observe that the projection
Ho,d—1 Ho,d—1 H Ho,d—1
C, X 0_1,4-1 xCy Xco, G0 = Cy

is an equivalence (since C has duals).
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m Finally, combining with (), we have equivalences

Fun®(SBotD]§d_§ Y=Y C) ~ Fun®(By, C)
:Map(LZ_Q(RdJ x U — U),C;d) X 0141 CHoa—1 o
~Map(tg_2(R'! x U= U),CJ,) X oy, , C0d
2Fun®(Bl,d_1, Q)
~Fun® (Boro; ;Y 7Y, €) = C* ()

Ho,d—1 Ho
c0-1,9-1 XC Xco_, C
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m Finally, combining with (), we have equivalences

Fun®(%0t0njdj U_>U, C) ~ Fun®(Bl7 Q)
~Map(t_o(R*! x U — U),CJ_,) X0 141 cHoa—1
~Map(ii_»(R x U — U),CX,) X 01 g1 CHo.a—1
~Fun®(By,4_1,C)

Pun (B30, ) CH(U)

Ho,d—1 Ho
O-1,9-1 XC Xco_, C

m The induction is complete.
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Proof of the key lemmas

Lemma (Proposition 4.2.24)

For k > 1, the map Ox_1 — Hy induces weak equivalence
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Proof of the key lemmas

Lemma (Proposition 4.2.24)

For k > 1, the map Ox_1 — Hy induces weak equivalence

Fun®(Hy, C) — Fun®(Ox_1, C)unit
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Proof of the key lemmas

Lemma (Proposition 4.2.24)

For k > 1, the map Ox_1 — Hy induces weak equivalence

Fun®(Hy, C) — Fun®(Ok_1, C)unit

Proof: We let M C Map(Adj, Bx) be the coproduct summand of
maps that send the left adjoint to bordisms of the form f.
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Proof of the key lemmas

Lemma (Proposition 4.2.24)

For k > 1, the map Ox_1 — Hy induces weak equivalence
Fun®(Hy, C) — Fun®(Ok_1, C)unit
Proof: We let M C Map(Adj, Bx) be the coproduct summand of

maps that send the left adjoint to bordisms of the form f. We
claim we have a homotopy pushout

M xng—1 — Ok—1

| l

M x Adjd_]_ —_— Hk
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m Let P be the objectwise pushout and let P — Hj be the
induced map.
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m Let P be the objectwise pushout and let P — Hj be the
induced map. The idea of the proof is to show the homotopy
fibers of this map are contractible.
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m Let P be the objectwise pushout and let P — Hj be the
induced map. The idea of the proof is to show the homotopy
fibers of this map are contractible.

m We analyze homotopy fibers over each connected component
in Hk.

97/100  28/32



m Let P be the objectwise pushout and let P — Hj be the
induced map. The idea of the proof is to show the homotopy
fibers of this map are contractible.

m We analyze homotopy fibers over each connected component
in H,. The homotopy fiber F. over a bordism € € Hy is a
choice of adjunction data in H:

m Let Gy be the connected component of the identity on gp.
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m Let P be the objectwise pushout and let P — Hj be the
induced map. The idea of the proof is to show the homotopy
fibers of this map are contractible.

m We analyze homotopy fibers over each connected component
in H,. The homotopy fiber F. over a bordism € € Hy is a
choice of adjunction data in H:

m Let Gy be the connected component of the identity on gp.
Then we define maps

F6 — Go Go — FE.
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m Let P be the objectwise pushout and let P — Hj be the
induced map. The idea of the proof is to show the homotopy
fibers of this map are contractible.

m We analyze homotopy fibers over each connected component
in H,. The homotopy fiber F. over a bordism € € Hy is a
choice of adjunction data in H:

m Let Gy be the connected component of the identity on gp.
Then we define maps

F6 — Go Go — FE.

m The composition F. — Gy — F. is homotopic to identity.
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The maps F. — Gy and Gy — F.

m (Fc — Gp) Restrict adjunction data to the counit € and then
insert € into the following diagram:
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The maps F. — Gy and Gy — F.

m (Fc — Gp) Restrict adjunction data to the counit € and then
insert € into the following diagram:

Gd—k=1 o pk=1 5 gd—k—1 o pk-1

DI~k % k=2 ., pd—k y Sk—z\g} € J
J p J f 7gd—k—1y pk—1———gd—k-1 o pk—1
“a

Dd—k « Sk—2 — pd-k « Sk—2

m (Gp — F.) Insert a bordism in g’ € Gy into the following
diagram:
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The maps F. — Gy and Gy — F.

m (Fc — Gp) Restrict adjunction data to the counit € and then
insert € into the following diagram:

Gd—k=1 o pk=1 5 gd—k—1 o pk-1

DI~k % k=2 ., pd—k y Sk—z\g} € J
J p J f 7gd—k—1y pk—1———gd—k-1 o pk—1
“a

Dd—k « Sk—2 — pd-k « Sk—2

m (Gp — F.) Insert a bordism in g’ € Gy into the following
diagram:

% gd—k=1y pk-1_4 gd—k-1  pk-1

DI~k x S“*Zi J ° J

fo Ygd—k-1y pk-1———gd—k-1 y pk-1
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The composition F, — Gg — F.

Sd—k—l x Dk-1 *>5d—k—1 x Dk-1

DI~k x k=2 . pd—k y Sk—z\g‘ J €
J p J f §d—k=1 s pk—=1 ———rgd—k-1 y pk-1
d—k . ck—2 - - ‘é €
D xS e Dd k x Sk 2 0
™~

fo "gd—k-1 y pk=1———gd—k-1 y pk-1

m After composing the bottom portion of the diagram, the
entire diagram contracts to just (e, f, g), by a homotopy
(corresponding to one of the triangle identities).
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The composition F, — Gg — F.

Sd—k—l X Dk—l *>5d—k—1 X Dk—l

D~k 5 gk=2 4 pd—k 5k-2< J €
J p J f §d—k=1 s pk—=1 ———rgd—k-1 y pk-1
d—k k—2 — - ‘é €
Dk xS — DAk x §k-2 0
>~

fo "gd—k-1 y pk=1———gd—k-1 y pk-1

m After composing the bottom portion of the diagram, the
entire diagram contracts to just (e, f, g), by a homotopy
(corresponding to one of the triangle identities).

m Hence, F. — Gy — F. is homotopic to identity.
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The composition F, — Gg — F.

Sd—k—l X Dk—l *>5d—k—1 X Dk—l

D~k 5 gk=2 4 pd—k 5k-2< J €
J p J f §d—k=1 s pk—=1 ———rgd—k-1 y pk-1
d—k k=2 - - 6 €
D xS e Dd k x Sk 2 0
>~

fo "gd—k-1 y pk=1———gd—k-1 y pk-1

m After composing the bottom portion of the diagram, the
entire diagram contracts to just (e, f, g), by a homotopy
(corresponding to one of the triangle identities).

m Hence, F. — Gy — F. is homotopic to identity.

m Since Gy is contractible, this proves the claim.
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Lemma (Propositions 4.2.33, 4.3.2)

For k > 1, we have a homotopy pushout diagram

Ok—1 —— Bk—1

L

Hk—>Bk

Proof: We use introduce intermediate objects Hy C Hy C ﬁk and
Ok—1 C Ok—1 C Ok_1.
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Lemma (Propositions 4.2.33, 4.3.2)

For k > 1, we have a homotopy pushout diagram

Ok—1 —— Bk—1

L

Hk—>Bk

Proof: We use introduce intermediate objects Hy C Hy C ﬁk and
Ok_1 C Ok_1 C Ok_1. We have iterated homotopy pushouts:

Op1—— Ok 1 —— Hy —— Bi 1

| ]

H Hy Hi By
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m The right square requires cutting in the d-th direction,
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m The right square requires cutting in the d-th direction, the
middle square requires cutting in the (d — 1)st direction,
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m The right square requires cutting in the d-th direction, the
middle square requires cutting in the (d — 1)st direction, and
the first square requires cutting in the (d — 2)nd direction.

m At each stage we fix all multisimplicial directions but one.
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m The right square requires cutting in the d-th direction, the
middle square requires cutting in the (d — 1)st direction, and
the first square requires cutting in the (d — 2)nd direction.

m At each stage we fix all multisimplicial directions but one. We
then show that the canonical map out of the levelwise
pushout is a weak equivalence in the Rezk model structure.
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m The right square requires cutting in the d-th direction, the
middle square requires cutting in the (d — 1)st direction, and
the first square requires cutting in the (d — 2)nd direction.

m At each stage we fix all multisimplicial directions but one. We
then show that the canonical map out of the levelwise
pushout is a weak equivalence in the Rezk model structure.

m To do this, we work levelwise in the space direction.
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m The right square requires cutting in the d-th direction, the
middle square requires cutting in the (d — 1)st direction, and
the first square requires cutting in the (d — 2)nd direction.

m At each stage we fix all multisimplicial directions but one. We
then show that the canonical map out of the levelwise
pushout is a weak equivalence in the Rezk model structure.

m To do this, we work levelwise in the space direction. At each
level /, we show that the map is a weak equivalence in the
Joyal model structure.
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