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Geometrically framed bordisms

As we have discussed, the general case follows from the
codescent property and the GCH in the geometrically framed
case.

For the geometrically framed case, we take the representable
presheaf (Rd × U → U) ∈ FEmbd as the geometric structure.

For fixed U ∈ Cart, ⟨ℓ⟩ ∈ Γ and m ∈ ∆×d , a vertex in

BordR
d×U→U

d (U, ⟨ℓ⟩,m)

is a U-family of bordisms that is cut into a grid (varying
smoothly in U), along with a partition of the set of connected
components. The bordism also is fiberwise embedded (over
U) into Rd .

An l-simplex is a smooth deformation of the m-cut tuples,
parametrized by ∆l . The face maps restrict the germ of the
core, as needed.
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Framed case crucially uses duals.

Definition

Let (C,⊗, 1) be a symmetric monoidal cat. Let c ∈ C. Then a
dual for c is an object c∨ along with maps

1 ϵ: c∨ ⊗ c → 1
2 η: 1 → c ⊗ c∨

s.t.

c∨ ∼= c∨ ⊗ 1 → c∨ ⊗ (c ⊗ c∨) ∼= (c∨ ⊗ c)⊗ c∨ → 1⊗ c∨ ∼= c∨

is the identity. Same with c and c∨ reversed.
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Example

Let C = Vectk , with tensor product as the monoidal structure.

For
V ∈ Vectk , let V

∨: = hom(V , k) be the usual dual space. Let

ϵ:V ⊗ V ∨ → k

be the canonical pairing. Fix a basis {vi} and define

η: k → V ⊗ V ∨

by 1 7→
∑

i vi ⊗ v∨i , where {v∨i } is the dual basis. Easy to check
that the triangle identities hold.

For a 2-category, one can also define duals for morphisms:
they are adjunctions. Can extend to higher cats by induction.
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Duals in BordR
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Duals in (∞, d)-categories

Once again, our idea is to localize at yet another set of
morphisms.

Definition

Let Adj denote the (stupid) nerve of 2-category that is generated
by

Two objects x and y

Two nonidentity morphisms f : x → y and g : y → x

Two nonidentity 2-morphisms η: 1x → gf and ϵ: fg → 1y .

subject to the relations given by the two triangle identities.

We write f → Adj, η → Adj, ϵ → Adj for the sub
2-categories generated by f , (f , g , η) and (f , g , ϵ),
respectively.
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Definition

A smooth symmetric monoidal (∞, d)-category C has duals for
k-morphisms if:

A fibrant object in PSh∆(Cart× Γ×∆×d)inj,loc

For fixed m ∈ ∆×k−1, ⟨ℓ⟩ ∈ Γ and U ∈ Cart, the bisimplicial
set Cm,∗,∗,0(U, ⟨ℓ⟩) is local with respect to the canonical
morphism

f → Adj.

Definition

We say that C has all duals if it has duals for all k-morphisms with
1 ≤ k ≤ d − 1.
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Adding the maps f → Adj (after applying the left adjoint to
the evaluation at (U, ⟨ℓ⟩, (m,−, 0))) to the list of maps at
which we localize, we get a new model category:

C∞Cat⊗,∨
(∞,d): = PSh∆(Cart× Γ×∆×d)inj,loc

A fibrant object C solves the lifting property

f

��

// Cm,∗,∗,0(U, ⟨ℓ⟩)

��
Adj //

88

∗

So every k-morphism is the left adjoint for an adjunction.
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The geometric cobordism hypothesis: framed case

Theorem (G.-P.)

Let d ≥ 0, and let C be a fibrant object in C∞Cat⊗,∨
∞,d . Then

evaluation at the (positive) point yields a weak equivalence

Fun⊗(BordR
d×U→U

d ,C) ≃ C×(U)

Proof

Using Lurie’s idea, we proceed by induction on the dimension.
The base of the induction is d = 0.

Assume the statement is true (in full generality!) in dimension
d − 1.

We first filter embedded bordisms by Morse index
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Proof of GCH

Definition

Fix d ≥ 0. We define the subobject Bk ⊂ BordR
d×U→U

d as the
subobject of bordisms that admit a Morse function having critical
points of index at most k.

· · ·

Bd−1 BordR
d×U→U

d
B0 B1 · · ·

+ +

...

+

...

B−1

+

+
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· · ·

Bd−1 BordR
d×U→U

d
B0 B1 · · ·

+

...

+

...

B−1

+

+

↓

Problem: What if the disc of index 0 is not sent to the unit of
an adjunction?

For higher index, this is not a problem (use exchange
principle).
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Handle cancellations

Definition

Let k ≥ 0 and fix m ∈ ∆×d−2.

We define the subobject
Hk(m) ⊂ Bk(m) to be the subobject generated (as a bisimplicial
space) by the bisimplices occuring in the following diagram:

Sd−k−1 × Dk−1 id //

Dd−k×Dk−1 g
��

Sd−k−1 × Dk−1 id //

Dd−k×Dk−1 g
��

Sd−k−1 × Dk−1

Sd−k−1×Dk−1×[0,1]
��

Dd−k × Sk−2 id //

Dd−k×Sk−2×[0,1]
��

Dd−k × Sk−2

Dd−k×Dk−1f
��

ϵ Sd−k−1 × Dk−1

Sd−k−1×Dk−1×[0,1]
��

Dd−k × Sk−2

Dd−k×Sk−2×[0,1]
��

η Sd−k−1 × Dk−1

Dd−k×Dk−1g
��

id
// Sd−k−1 × Dk−1

Dd−k×Dk−1g
��

Dd−k × Sk−2 id // Dd−k × Sk−2
id

// Dd−k × Sk−2.

U ∈ Cart and ⟨ℓ⟩ ∈ Γ are present throughout, but we will omit
these from notation.
We again work in families over ∆l .
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these from notation.
We again work in families over ∆l .
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Handle cancellations

Definition
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Handles of index k − 1

We define Ok−1 ⊂ Hk as the further subobject just containing
the bisimplices in the left column.

Theorem (G.-P., Propositions 4.2.33, 4.3.2)

For k ≥ 1, we have a homotopy pushout diagram

Ok−1
//

��

Bk−1

��

Hk
// Bk

This statement can be regarded as a generalization of Lurie’s
claims 3.4.12 and 3.4.17: Bk is freely generated from Bk−1 by
the addition of O(d − k) worth of handles of index k and a
handle cancellation for each index k-handle.
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Another crucial ingredient:

Theorem (G.-P., Proposition 4.2.24)

For k ≥ 1, the map Ok−1 → Hk induces weak equivalence

Fun⊗(Hk ,C) → Fun⊗(Ok−1,C)unit

Corollary

For d ≥ 1 and C a fibrant object in C∞Cat⊗,∨
∞,d , There are weak

equivalences
Fun⊗(Bk ,C) → Fun⊗(Bk−1,C)

for k ≥ 2 and a weak equivalence

Fun⊗(B1,C)
≃→ Fun⊗(B−1,C)×Fun⊗(O−1,C)

Fun⊗(H0,C)unit
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Proof of corollary

The homotopy pushout square

Ok−1

��

// Bk−1

��

Hk
// Bk

gives rise to a homotopy pullback square

Fun⊗(Ok−1,C) Fun⊗(Bk−1,C)oo

Fun⊗(Hk ,C)

OO

Fun⊗(Bk ,C)

OO

oo

By definition, the left map factors through the coproduct
summand of units.
Hence, for the first claim, it suffices to prove that the top map
factors through the coproduct summand of units.
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This follows from Lurie’s exchange principle.

Proposition (G.-P., Proposition 4.4.2)

Let X be a d ≥ 3-fold complete Segal space and suppose we have
the following multisimplices

f : x → y and f †: y → x of degree (1, 0, . . . , 0).
u: idx → f ◦1 f † and u′: idy → f ◦1 f † of degree (1, 1, 0, . . . , 0).
α: idf † ◦1 u′ → u ◦1 idf † of degree (1, 1, 1, 0, . . . , 0).

Suppose both u and u′ are units of an adjunction. Then there are
morphisms γ: idf †◦f → u ◦2 v ′ and β: u′ ◦2 v → idf ◦f † associated
to α via equivalences. Moreover, β is the counit of an adjunction if
and only if γ is the unit of an adjunction.
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Exchanging a counit for a unit

u′

u

u

v ′

u′

u′

v

u

≃

u′

v

u

v ′
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This only works for k ≥ 2!

For k = 1, we obtain an equivalence

Fun⊗(B1,C) → Fun⊗(B0,C)unit

This, combined with the pullback diagram for k = 0 proves
claim 2.
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Proof of GCH

By the corollary we have an equivalences

Fun⊗(BordR
d×U→U

d ,C) ≃ Fun⊗(B1,C)
and

Fun⊗(B1,C) ≃ Fun⊗(B−1,C)×Fun⊗(O−1,C)
Fun⊗(H0,C)unit

The object B−1 contains cylinders with a fiberwise embedding

into Rd . This is not equivalent to BordR
d−1×U→U

d−1 !

Definition

We define a functor ιd−1: FEmbd−1 → FEmbd by sending a
submersion M → U to M × R → U.

We have B−1 ≃ Bord
ι∗d−1(R

d×U→U)

d−1 .
By GCH in dimension d − 1, we have an equivalence

Fun⊗(B1,C) ≃ Map(ι∗d−1(Rd ×U → U),C×)×Fun⊗(O−1,C)
Fun⊗(H0,C)unit (♠)

69/75 20/32



Proof of GCH

By the corollary we have an equivalences

Fun⊗(BordR
d×U→U

d ,C) ≃ Fun⊗(B1,C)
and

Fun⊗(B1,C) ≃ Fun⊗(B−1,C)×Fun⊗(O−1,C)
Fun⊗(H0,C)unit

The object B−1 contains cylinders with a fiberwise embedding

into Rd . This is not equivalent to BordR
d−1×U→U

d−1 !

Definition

We define a functor ιd−1: FEmbd−1 → FEmbd by sending a
submersion M → U to M × R → U.

We have B−1 ≃ Bord
ι∗d−1(R

d×U→U)

d−1 .
By GCH in dimension d − 1, we have an equivalence

Fun⊗(B1,C) ≃ Map(ι∗d−1(Rd ×U → U),C×)×Fun⊗(O−1,C)
Fun⊗(H0,C)unit (♠)

70/75 20/32



Proof of GCH

By the corollary we have an equivalences

Fun⊗(BordR
d×U→U

d ,C) ≃ Fun⊗(B1,C)
and

Fun⊗(B1,C) ≃ Fun⊗(B−1,C)×Fun⊗(O−1,C)
Fun⊗(H0,C)unit

The object B−1 contains cylinders with a fiberwise embedding

into Rd .

This is not equivalent to BordR
d−1×U→U

d−1 !

Definition

We define a functor ιd−1: FEmbd−1 → FEmbd by sending a
submersion M → U to M × R → U.

We have B−1 ≃ Bord
ι∗d−1(R

d×U→U)

d−1 .
By GCH in dimension d − 1, we have an equivalence

Fun⊗(B1,C) ≃ Map(ι∗d−1(Rd ×U → U),C×)×Fun⊗(O−1,C)
Fun⊗(H0,C)unit (♠)

71/75 20/32



Proof of GCH

By the corollary we have an equivalences

Fun⊗(BordR
d×U→U

d ,C) ≃ Fun⊗(B1,C)
and

Fun⊗(B1,C) ≃ Fun⊗(B−1,C)×Fun⊗(O−1,C)
Fun⊗(H0,C)unit

The object B−1 contains cylinders with a fiberwise embedding

into Rd . This is not equivalent to BordR
d−1×U→U

d−1 !

Definition

We define a functor ιd−1: FEmbd−1 → FEmbd by sending a
submersion M → U to M × R → U.

We have B−1 ≃ Bord
ι∗d−1(R

d×U→U)

d−1 .
By GCH in dimension d − 1, we have an equivalence

Fun⊗(B1,C) ≃ Map(ι∗d−1(Rd ×U → U),C×)×Fun⊗(O−1,C)
Fun⊗(H0,C)unit (♠)

72/75 20/32



Proof of GCH

By the corollary we have an equivalences

Fun⊗(BordR
d×U→U

d ,C) ≃ Fun⊗(B1,C)
and

Fun⊗(B1,C) ≃ Fun⊗(B−1,C)×Fun⊗(O−1,C)
Fun⊗(H0,C)unit

The object B−1 contains cylinders with a fiberwise embedding

into Rd . This is not equivalent to BordR
d−1×U→U

d−1 !

Definition

We define a functor ιd−1: FEmbd−1 → FEmbd by sending a
submersion M → U to M × R → U.

We have B−1 ≃ Bord
ι∗d−1(R

d×U→U)

d−1 .
By GCH in dimension d − 1, we have an equivalence

Fun⊗(B1,C) ≃ Map(ι∗d−1(Rd ×U → U),C×)×Fun⊗(O−1,C)
Fun⊗(H0,C)unit (♠)

73/75 20/32



Proof of GCH

By the corollary we have an equivalences

Fun⊗(BordR
d×U→U

d ,C) ≃ Fun⊗(B1,C)
and

Fun⊗(B1,C) ≃ Fun⊗(B−1,C)×Fun⊗(O−1,C)
Fun⊗(H0,C)unit

The object B−1 contains cylinders with a fiberwise embedding

into Rd . This is not equivalent to BordR
d−1×U→U

d−1 !

Definition

We define a functor ιd−1: FEmbd−1 → FEmbd by sending a
submersion M → U to M × R → U.

We have B−1 ≃ Bord
ι∗d−1(R

d×U→U)

d−1 .

By GCH in dimension d − 1, we have an equivalence

Fun⊗(B1,C) ≃ Map(ι∗d−1(Rd ×U → U),C×)×Fun⊗(O−1,C)
Fun⊗(H0,C)unit (♠)

74/75 20/32



Proof of GCH

By the corollary we have an equivalences

Fun⊗(BordR
d×U→U

d ,C) ≃ Fun⊗(B1,C)
and

Fun⊗(B1,C) ≃ Fun⊗(B−1,C)×Fun⊗(O−1,C)
Fun⊗(H0,C)unit

The object B−1 contains cylinders with a fiberwise embedding

into Rd . This is not equivalent to BordR
d−1×U→U

d−1 !

Definition

We define a functor ιd−1: FEmbd−1 → FEmbd by sending a
submersion M → U to M × R → U.

We have B−1 ≃ Bord
ι∗d−1(R

d×U→U)

d−1 .
By GCH in dimension d − 1, we have an equivalence

Fun⊗(B1,C) ≃ Map(ι∗d−1(Rd ×U → U),C×)×Fun⊗(O−1,C)
Fun⊗(H0,C)unit (♠)

75/75 20/32



A homotopy pushout for geometric structures

Lemma

We have a homotopy pushout diagram in sPSh∆(FEmbd−1)Č,flc:

(ιd−2)!ι
∗
d−2(Rd−1 × U → U)

��

// Rd−1 × U → U

��

Rd−1 × U → U // ι∗d−1(Rd × U → U)

Proof: Idea is to move to O(d − 1)-equivariant presheaves by a
zig-zag of Quillen equivalences.

This turns the above diagram into
a homotopy pushout diagram in sPSh∆(Cart; sSet

O(d−1)):

76/77 21/32



A homotopy pushout for geometric structures

Lemma

We have a homotopy pushout diagram in sPSh∆(FEmbd−1)Č,flc:
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O(d − 1) ⊔O(d−2) O(d − 1)× U //

��

O(d − 1)× U

��

O(d − 1)× U // O(d)× U

This can be shown to be a homotopy pushout square of
equivariant spaces (Lurie’s proof of Proposition 2.4.6).
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Moving down to codimension 2

Since C×
d−1 is fiberwise locally constant (by the induction

hypothesis), we have a homotopy pullback diagram

Map((ιd−1)!ι
∗
d−1(Rd−1 × U),C×

d−1) Map(Rd−1 × U,C×
d−1)

oo

Map(Rd−1 × U,C×
d−1)

OO

Map(ι∗d−1(Rd × U),C×
d−1)

OO

oo

The two off-diagonal corners are equivalent to

Fun⊗(BordR
d−1×U→U

d−1 ,C) by the induction hypothesis.

Then we invoke the corollary in dimension d − 1 to get

Fun⊗(BordR
d−1×U→U

d−1 ,C)

≃Map(ι∗d−2(Rd−1 × U),C×
d−1)×Fun⊗(O−1,d−1,C)

Fun⊗(H0,d−1,C)unit
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To save on space, let’s denote CB : = Fun⊗(B,C).

We have a big pullback diagram:

CO−1,d−1 Map(ι∗d−2(Rd−1 × U),C×
d−2)

oo Map(ι∗d−2(Rd−1 × U),C×)×
C
O−1,d−1 C

H0,d−1
u

oo

C
H0,d−1
u

OO

Map(ι∗d−2(Rd−1 × U),C×
d−2)×C

O−1,d−1 C
H0,d−1
u

oo

OO

Map(ι∗d−1(Rd × U),C×
d−1)

OO

oo

So we have an equivalence

Map(ι∗d−1(Rd × U → U),C×
d−1) ≃

Map(ι∗d−2(Rd−1 × U → U),C×
d−2)×C

O−1,d−1 C
H0,d−1
u ×

C
O−1,d−1 ×C

H0,d−1
u

Plugging back into (♠), we get an equivalence

Fun⊗(B1,C
×) ≃

Map(ι∗d−2(Rd−1 × U → U),C×
d−2)×C

O−1,d−1 C
H0,d−1
u ×

C
O−1,d−1 ×C

H0,d−1
u ×

C
O−1 C

H0
u

(♡)
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Focusing on the triple pullback

C
H0,d−1
u ×

C
O−1,d−1 ×C

H0,d−1
u ×CO−1 C

H0
u ,

we observe that the projection

C
H0,d−1
u ×

C
O−1,d−1 ×C

H0,d−1
u ×CO−1 C

H0
u → C

H0,d−1
u

is an equivalence (since C has duals).
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Focusing on the triple pullback

C
H0,d−1
u ×

C
O−1,d−1 ×C

H0,d−1
u ×CO−1 C

H0
u ,

we observe that the projection
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H0,d−1
u ×
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u ×CO−1 C

H0
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is an equivalence (since C has duals).

• •
f

g

η
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Focusing on the triple pullback

C
H0,d−1
u ×

C
O−1,d−1 ×C

H0,d−1
u ×CO−1 C

H0
u ,

we observe that the projection

C
H0,d−1
u ×

C
O−1,d−1 ×C

H0,d−1
u ×CO−1 C

H0
u → C

H0,d−1
u

is an equivalence (since C has duals).

• •
f

88/88 25/32



Finally, combining with (♡), we have equivalences

Fun⊗(BordR
d×U→U

d−1 ,C) ≃ Fun⊗(B1,C)

≃Map(ι∗d−2(Rd−1 × U → U),C×
d−2)×C

O−1,d−1 C
H0,d−1 ×

C
O−1,d−1 ×CH0,d−1 ×

C
O−1 C

H0

≃Map(ι∗d−2(Rd−1 × U → U),C×
d−2)×C

O−1,d−1 C
H0,d−1

≃Fun⊗(B1,d−1,C)

≃Fun⊗(BordR
d×U→U

d−1 ,C) ≃ C×(U)

The induction is complete.
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Proof of the key lemmas

Lemma (Proposition 4.2.24)

For k ≥ 1, the map Ok−1 → Hk induces weak equivalence

Fun⊗(Hk ,C) → Fun⊗(Ok−1,C)unit

Proof: We let M ⊂ Map(Adj,Bk) be the coproduct summand of
maps that send the left adjoint to bordisms of the form f . We
claim we have a homotopy pushout

M× ηd−1

��

// Ok−1

��

M×Adjd−1
// Hk
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Let P be the objectwise pushout and let P → Hk be the
induced map.

The idea of the proof is to show the homotopy
fibers of this map are contractible.

We analyze homotopy fibers over each connected component
in Hk . The homotopy fiber Fϵ over a bordism ϵ ∈ Hk is a
choice of adjunction data in Hk :

Let G0 be the connected component of the identity on g0.
Then we define maps

Fϵ → G0 G0 → Fϵ.

The composition Fϵ → G0 → Fϵ is homotopic to identity.
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The maps Fϵ → G0 and G0 → Fϵ

(Fϵ → G0) Restrict adjunction data to the counit ϵ and then
insert ϵ into the following diagram:

Dd−k × Sk−2

Dd−k × Sk−2

Dd−k × Sk−2

Dd−k × Sk−2

Sd−k−1 × Dk−1 Sd−k−1 × Dk−1

Sd−k−1 × Dk−1Sd−k−1 × Dk−1
η̃

g

f

g0

ϵ

(G0 → Fϵ) Insert a bordism in g ′ ∈ G0 into the following
diagram:

Dd−k × Sk−2

Sd−k−1 × Dk−1 Sd−k−1 × Dk−1

Sd−k−1 × Dk−1Sd−k−1 × Dk−1

g0

f0

ϵ0

g ′
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The composition Fϵ → G0 → Fϵ

Dd−k × Sk−2

Dd−k × Sk−2

Dd−k × Sk−2

Dd−k × Sk−2

Sd−k−1 × Dk−1 Sd−k−1 × Dk−1

Sd−k−1 × Dk−1Sd−k−1 × Dk−1
η̃

g

f

g0

ϵ

Sd−k−1 × Dk−1Sd−k−1 × Dk−1

ϵ0

f0

After composing the bottom portion of the diagram, the
entire diagram contracts to just (ϵ, f , g), by a homotopy
(corresponding to one of the triangle identities).

Hence, Fϵ → G0 → Fϵ is homotopic to identity.

Since G0 is contractible, this proves the claim.

104/106 30/32



The composition Fϵ → G0 → Fϵ

Dd−k × Sk−2

Dd−k × Sk−2

Dd−k × Sk−2

Dd−k × Sk−2

Sd−k−1 × Dk−1 Sd−k−1 × Dk−1

Sd−k−1 × Dk−1Sd−k−1 × Dk−1
η̃

g

f

g0

ϵ

Sd−k−1 × Dk−1Sd−k−1 × Dk−1

ϵ0

f0

After composing the bottom portion of the diagram, the
entire diagram contracts to just (ϵ, f , g), by a homotopy
(corresponding to one of the triangle identities).

Hence, Fϵ → G0 → Fϵ is homotopic to identity.

Since G0 is contractible, this proves the claim.

105/106 30/32



The composition Fϵ → G0 → Fϵ

Dd−k × Sk−2

Dd−k × Sk−2

Dd−k × Sk−2

Dd−k × Sk−2

Sd−k−1 × Dk−1 Sd−k−1 × Dk−1

Sd−k−1 × Dk−1Sd−k−1 × Dk−1
η̃

g

f

g0

ϵ

Sd−k−1 × Dk−1Sd−k−1 × Dk−1

ϵ0

f0

After composing the bottom portion of the diagram, the
entire diagram contracts to just (ϵ, f , g), by a homotopy
(corresponding to one of the triangle identities).

Hence, Fϵ → G0 → Fϵ is homotopic to identity.

Since G0 is contractible, this proves the claim.

106/106 30/32



Lemma (Propositions 4.2.33, 4.3.2)

For k ≥ 1, we have a homotopy pushout diagram

Ok−1
//

��

Bk−1

��

Hk
// Bk

Proof: We use introduce intermediate objects Hk ⊂ Hk ⊂ H̃k and
Ok−1 ⊂ Ok−1 ⊂ Õk−1.

We have iterated homotopy pushouts:

Ok−1
//

��

Ok−1
//

��

H̃k
//

��

Bk−1

��

Hk
// Hk

// H̃k
// Bk
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Ok−1 ⊂ Ok−1 ⊂ Õk−1. We have iterated homotopy pushouts:

Ok−1
//

��

Ok−1
//

��

H̃k
//

��

Bk−1

��

Hk
// Hk

// H̃k
// Bk

108/108 31/32



The right square requires cutting in the d-th direction,

the
middle square requires cutting in the (d − 1)st direction, and
the first square requires cutting in the (d − 2)nd direction.

At each stage we fix all multisimplicial directions but one. We
then show that the canonical map out of the levelwise
pushout is a weak equivalence in the Rezk model structure.

To do this, we work levelwise in the space direction. At each
level l , we show that the map is a weak equivalence in the
Joyal model structure.
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