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Origins of functorial field theory

1948 (Feynman): path integral formulation of quantum
mechanics

1949 (Feynman–Kac): the Feynman–Kac formula

Later: path integral used in QFT, no longer rigorous

1980s (Witten): properties of path integrals for (conformal)
field theory

1980s (Segal): mathematical formulation of conformal field
theory
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Origins of functorial field theory

1948 (Feynman): path integral formulation of quantum
mechanics
1949 (Feynman–Kac): the Feynman–Kac formula
Later: path integral used in QFT, no longer rigorous
1980s (Witten): properties of path integrals for (conformal)
field theory
1980s (Segal): mathematical formulation of conformal field
theory

Definition

A conformal field theory is a symmetric monoidal functor

Bord → Vect.

Bord: 1-manifolds and conformal 2-bordisms, with ⊔.
Vect: vector spaces and linear maps, with ⊗.
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Example (The σ-model)

Σ: a worldvolume (later: an arbitrary bordism);

X : a target space (later: a simplicial presheaf on manifolds;
for Chern–Simons X = B∇G );

X → B: background gauge field (e.g., B = Bd
∇U(1)).
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Origins of functorial field theory

Example (The σ-model)

Σ: a worldvolume (later: an arbitrary bordism);

X : a target space (later: a simplicial presheaf on manifolds;
for Chern–Simons X = B∇G );

X → B: background gauge field (e.g., B = Bd
∇U(1)).

The σ-model studies Map(Σ,X ) equipped with the action
functional induced by X → B (e.g., holonomy).

1-manifold S 7→ functions on Map(S ,X )

2-bordism B: S1 → S2 7→ linear map (pull-push)

Map(S1,X ) → Map(B,X ) → Map(S2,X ).
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How to compose bordisms
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Further developments

1980s (Atiyah, Kontsevich, . . . ): topological theories: easier
to construct and study, but less relevant to physics

1992 (Freed, Lawrence): extended field theories (correspond
to locality in physics)

1995 (Baez–Dolan): the topological cobordism and tangle
hypotheses

2002 (Stolz–Teichner): modern formulation of nontopological
field theories (including supersymmetry); the Stolz–Teichner
program

2004 (Costello): the (∞, 2)-category of topological
2-dimensional bordisms

2006 (Hopkins–Lurie); 2015 (Calaque–Scheimbauer): the
(∞, d)-category of topological bordisms
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Summary of necessary features

Locality: need d-bordisms with corners of all codimensions
(up to d) with compositions in d directions
=⇒ symmetric monoidal d-category of bordisms

Homotopy: need chain complexes to encode BV-BRST
=⇒ must encode (higher) diffeomorphisms between bordisms
=⇒ symmetric monoidal (∞, d)-categories

Geometric (nontopological) structures on bordisms:
Riemannian/Lorentzian metrics,
complex/conformal/symplectic structures,
principal G -bundles with connection,
higher gauge fields (Kalb–Ramond, Ramond–Ramond)
=⇒ an (∞, 1)-sheaf of geometric structures

Smoothness: values of field theories depend smoothly on
bordisms
=⇒ (∞, 1)-sheaf of (∞, d)-categories of bordisms
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Previous results on the topological cobordism hypothesis

2008 (Lurie): outline of a proof of the topological cobordism
hypothesis

2017 (Ayala–Francis): a different proof, conditional on a
conjecture

2004 (Costello), 2009 (Schommer-Pries):
the 2-dimensional topological cobordism hypothesis

2006 (Galatius–Madsen–Tillmann–Weiss);
2011 (Bökstedt–Madsen); 2017 (Schommer-Pries):
the invertible case
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Low-dimensional nontopological field theories

Examples of 2-dimensional nonextended nontopological field
theories:

2007 (Pickrell): Riemannian 2-dimensional field theory

2018 (Runkel–Szegedy): volume-dependent 2-dimensional
field theory

Classifications of holonomy maps, transport functors, and
1-dimensional nontopological field theories:

1990 (Barrett), 1994 (Caetano–Picken),
2007 (Schreiber–Waldorf): parallel transport for bundles

2000 (Mackaay–Picken), 2004 (Picken),
2008 (Schreiber–Waldorf): parallel transport for gerbes

2015 (Berwick-Evans–P.), 2020 (Ludewig–Stoffel):
1-dimensional field theories
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Canonical example: Schrödinger quantum mechanics

Input data:

H: a vector space (state space);

H:H → H: a linear map (Hamiltonian).

Output data: a 1-dimensional oriented Riemannian functorial field
theory:

(R0,+) 7→ H, (R0,−) 7→ H∗;

It : (R0,+) → (R0, 0) 7→ exp(tH/iℏ):H → H.
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So what does “nontopological” mean?

Definition

Given d ≥ 0, the site Embd has

Objects: d-manifolds;

Morphisms: open embeddings;

Covering families: open covers.

Definition

(Preliminary.) Given d ≥ 0, a d-dimensional geometric structure is
a simplicial presheaf on Embd :

Embopd → sSet.
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So what does “nontopological” mean?

Definition

(Preliminary.) Given d ≥ 0, a d-dimensional geometric structure is
a simplicial presheaf on Embd :

Embopd → sSet.

(Topological structures send isotopic maps to homotopic maps.)
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So what does “nontopological” mean?

Definition

(Preliminary.) Given d ≥ 0, a d-dimensional geometric structure is
a simplicial presheaf on Embd :

Embopd → sSet.

Example

Send a d-manifold M to the set of Riemannian metrics on M;

Send an open embedding M → N of d-manifolds to the map
that restricts a metric from N to M.
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Examples of geometric structures

Riemannian, Lorentzian, pseudo-Riemannian metrics;
positive/negative sectional/Ricci curvature;

conformal, complex, symplectic, contact, Kähler structures;

foliations, possibly with transversal metrics;

smooth map to a target manifold M (traditional σ-model);

smooth map to an orbifold or ∞-sheaf on manifolds;

etale map or an open embedding into a target manifold N;

topological structures: orientation, framing, etc.

differential n-forms (possibly closed).
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Examples of geometric structures: gauge transformations

Definition

Send a d-manifold M to (the nerve of) the groupoid
B∇G (M):

Objects: principal G -bundles with connection on M (gauge
fields);
Morphisms: connection-preserving isomorphisms (gauge
transformations).

Send an open embedding of d-manifolds M → N to the
restriction functor.
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Examples of geometric structures: (higher) gauge
transformations

Principal G -bundles with connection on M (gauge fields, e.g.,
the electromagnetic field);

Bundle gerbe with connection on M (B-field, Kalb–Ramond
field).

Bundle 2-gerbe with connection on M (supergravity C-field).

Bundle (d − 1)-gerbes with connection on M (Deligne
cohomology, Cheeger–Simons characters, ordinary differential
cohomology, circle d-bundles).

Geometric tangential structures: geometric Spinc -structure,
String (Waldorf), Fivebrane (Sati–Schreiber–Stasheff),
Ninebrane (Sati). (Vanishing of anomaly.)

differential K-theory (Ramond–Ramond field). Requires
∞-groupoids.
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Smoothness of geometric structures

Defect: a FFT can map a smooth family of geometric structures to
a nonsmooth family of values.
Solution: make everything fibered over smooth manifolds
(equivalently: cartesian spaces)

Definition

Given d ≥ 0, the site FEmbd has

Objects: submersions T → U with d-dimensional fibers,
where U ∼= Rn is a cartesian manifold;

Morphisms: commutative squares with T → T ′ a fiberwise
open embedding over a smooth map U → U ′;

Covering families: open covers on total spaces T .

Definition

Given d ≥ 0, a d-dimensional geometric structure is a simplicial
presheaf on FEmbd :

S: FEmbopd → sSet.

Example:

T → U 7→ the set of fiberwise Riemannian metrics on T → U;
(T → T ′,U → U ′) 7→ the restriction map from T ′ to T .
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Smoothness in action

Fix a target manifold M;

S(T → U) = C∞(T ,M) with a choice of fiberwise
orientation on T → U;
T : the smooth category of vector spaces;
d = 1.

Theorem (Kobayashi, Schreiber–Waldorf, Berwick-Evans–P., Ludewig–Stoffel)

The groupoid FFT1,S,T is equivalent to the groupoid of
finite-dimensional vector bundles with connection over M and
connection-preserving isomorphisms.

Construction:

Start with a vector bundle V → M with connection.
Send an object P:R0 → M to the fiber VP ∈ T (R0).
Send a smooth family of objects P:Rn → M to the pullback
vector bundle P∗V ∈ T (Rn).
Send a bordism p: [0, 1] → M to the parallel transport map
Vp(0) → Vp(1).
Send a smooth family of bordisms p:Rn × [0, 1] → M to the
smooth map of bundles p(−, 0)∗V → p(−, 1)∗V .
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The main theorem

Ingredients:

A dimension d ≥ 0.

A smooth symmetric monoidal (∞, d)-category V of values.

A d-dimensional geometric structure S.
The smooth symmetric monoidal (∞, d)-category of bordisms
BordSd with geometric structure S.

k-morphisms (k ≤ d): k-dimensional bordisms
with d-dimensional germs of an S-structure;
corners of all codimensions, arranged in a d-dimensional grid;

Monoidal product: disjoint union of bordisms.
Composition: gluing of bordisms (in any of the d directions).
Bordisms come in smooth families over V :

can be pulled back along smooth maps U → V ;
can be glued along open covers of V ;

k-morphisms (k > d): higher gauge transformations from S;
k-morphisms (k > d): homotopies of cuts.
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with d-dimensional germs of an S-structure;
corners of all codimensions, arranged in a d-dimensional grid;
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Composition: gluing of bordisms (in any of the d directions).
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can be glued along open covers of V ;

k-morphisms (k > d): higher gauge transformations from S;
k-morphisms (k > d): homotopies of cuts.
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BordSd with geometric structure S.

k-morphisms (k ≤ d): k-dimensional bordisms
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The main theorem

Ingredients:

A dimension d ≥ 0.

A smooth symmetric monoidal (∞, d)-category V of values.

A d-dimensional geometric structure S.
The smooth symmetric monoidal (∞, d)-category of bordisms
BordSd with geometric structure S.

k-morphisms (k ≤ d): k-dimensional bordisms
with d-dimensional germs of an S-structure;
corners of all codimensions, arranged in a d-dimensional grid;

Monoidal product: disjoint union of bordisms.
Composition: gluing of bordisms (in any of the d directions).
Bordisms come in smooth families over V :

can be pulled back along smooth maps U → V ;
can be glued along open covers of V ;

k-morphisms (k > d): higher gauge transformations from S;
k-morphisms (k > d): homotopies of cuts.
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The main theorem

Ingredients:

A dimension d ≥ 0.

A smooth symmetric monoidal (∞, d)-category V of values.

A d-dimensional geometric structure S.
The smooth symmetric monoidal (∞, d)-category of bordisms
BordSd with geometric structure S.

Definition

A d-dimensional functorial field theory valued in V with geometric
structure S is a smooth symmetric monoidal (∞, d)-functor

BordSd → V.
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The main theorem

Definition

A d-dimensional functorial field theory valued in V with geometric
structure S is a smooth symmetric monoidal (∞, d)-functor

BordSd → V.

Definition

The simplicial set of d-dimensional functorial field theories valued
in V with geometric structure S is the derived mapping simplicial
set

FFTd ,V(S) = RMap(BordSd ,V).

Can be refined to a derived internal hom.
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The main theorem

Definition

The simplicial set of d-dimensional functorial field theories valued
in V with geometric structure S is the derived mapping simplicial
set

FFTd ,V(S) = RMap(BordSd ,V).

Can be refined to a derived internal hom.

Theorem (G.–P., The geometric cobordism hypothesis)

Part I (Lecture 3): Bordd is a left adjoint functor:

RMap(BordSd ,V) ≃ RMap(S,V×
d ),

where V×
d = FFTd ,V , i.e., V×

d (T → U) = FFTd ,V(T → U).
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The main theorem

Theorem (G.–P., The geometric cobordism hypothesis)

Part I (Lecture 3): Bordd is a left adjoint functor:

RMap(BordSd ,V) ≃ RMap(S,V×
d ),

where V×
d = FFTd ,V , i.e., V×

d (T → U) = FFTd ,V(T → U).

Part II (Lecture 4): The evaluation-at-points map

V×
d (Rd × U → U) = FFTd ,V(R

d × U → U) → V×(U)

is a weak equivalence of simplicial sets.
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Example: the prequantum Chern–Simons theory

Input data:

G : a Lie group with Lie algebra g;
⟨−,−⟩: a G -invariant polynomial of degree 2 on g;
a level c ∈ H4(BG ,Z) such that [c]R = [⟨−,−⟩].
S = B∇G (principal G -bundles with connection; gauge fields);
V = B3U(1) (a single k-morphism for k < 3; 3-morphisms are
U(1)).

Output data: a fully extended 3-dimensional G -gauged FFT.

Part I: RMap(BordB∇G
3 ,B3U(1)) ≃ RMap(B∇G , (B3U(1))×3 )

Part II: (B3U(1))×3 (R
3×U → U) ≃ B3C∞(U,U(1)) (P.–Stolz–Teichner)

Poincaré: RMap(B∇G , (B3U(1))×3 ) ≃ RMap(B∇G ,B3C∞(−,U(1)))

≃ RMap(B∇G ,B4Z)×h
RMap(B∇G ,B4R)RMap(B∇G ,Ω4

cl)

Freed–Hopkins: RMap(B∇G ,Ω4
cl) ≃ (Sym2 g∗)G ∋ ⟨−,−⟩

RMap(B∇G ,B4Z) ≃ RMap(BG ,K(Z, 4)) ∋ c

RMap(B∇G ,B4R) ≃ RMap(BG ,K(R, 4)) ∋ [c]R ≃ [⟨−,−⟩]
Remark: Also works for higher dimensions and Lie ∞-groups!
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RMap(B∇G ,B4R) ≃ RMap(BG ,K(R, 4)) ∋ [c]R ≃ [⟨−,−⟩]
Remark: Also works for higher dimensions and Lie ∞-groups!
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Example: the prequantum Chern–Simons theory
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Example: the prequantum Chern–Simons theory

Input data:

G : a Lie group with Lie algebra g;
⟨−,−⟩: a G -invariant polynomial of degree 2 on g;

a level c ∈ H4(BG ,Z) such that [c]R = [⟨−,−⟩].
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Example: the prequantum Chern–Simons theory

Input data:

G : a Lie group with Lie algebra g;
⟨−,−⟩: a G -invariant polynomial of degree 2 on g;
a level c ∈ H4(BG ,Z) such that [c]R = [⟨−,−⟩].

S = B∇G (principal G -bundles with connection; gauge fields);
V = B3U(1) (a single k-morphism for k < 3; 3-morphisms are
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Remark: Also works for higher dimensions and Lie ∞-groups!
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Example: the prequantum Chern–Simons theory

Input data:

G : a Lie group with Lie algebra g;
⟨−,−⟩: a G -invariant polynomial of degree 2 on g;
a level c ∈ H4(BG ,Z) such that [c]R = [⟨−,−⟩].
S = B∇G (principal G -bundles with connection; gauge fields);

V = B3U(1) (a single k-morphism for k < 3; 3-morphisms are
U(1)).

Output data: a fully extended 3-dimensional G -gauged FFT.

Part I: RMap(BordB∇G
3 ,B3U(1)) ≃ RMap(B∇G , (B3U(1))×3 )

Part II: (B3U(1))×3 (R
3×U → U) ≃ B3C∞(U,U(1)) (P.–Stolz–Teichner)
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RMap(B∇G ,B4R) ≃ RMap(BG ,K(R, 4)) ∋ [c]R ≃ [⟨−,−⟩]
Remark: Also works for higher dimensions and Lie ∞-groups!
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Example: the prequantum Chern–Simons theory

Input data:

G : a Lie group with Lie algebra g;
⟨−,−⟩: a G -invariant polynomial of degree 2 on g;
a level c ∈ H4(BG ,Z) such that [c]R = [⟨−,−⟩].
S = B∇G (principal G -bundles with connection; gauge fields);
V = B3U(1) (a single k-morphism for k < 3; 3-morphisms are
U(1)).

Output data: a fully extended 3-dimensional G -gauged FFT.

Part I: RMap(BordB∇G
3 ,B3U(1)) ≃ RMap(B∇G , (B3U(1))×3 )

Part II: (B3U(1))×3 (R
3×U → U) ≃ B3C∞(U,U(1)) (P.–Stolz–Teichner)

Poincaré: RMap(B∇G , (B3U(1))×3 ) ≃ RMap(B∇G ,B3C∞(−,U(1)))
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cl)

Freed–Hopkins: RMap(B∇G ,Ω4
cl) ≃ (Sym2 g∗)G ∋ ⟨−,−⟩

RMap(B∇G ,B4Z) ≃ RMap(BG ,K(Z, 4)) ∋ c

RMap(B∇G ,B4R) ≃ RMap(BG ,K(R, 4)) ∋ [c]R ≃ [⟨−,−⟩]
Remark: Also works for higher dimensions and Lie ∞-groups!
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Example: the prequantum Chern–Simons theory

G : a Lie group with Lie algebra g;
⟨−,−⟩: a G -invariant polynomial of degree 2 on g;
a level c ∈ H4(BG ,Z) such that [c]R = [⟨−,−⟩].

Part I: RMap(BordB∇G
3 ,B3U(1)) ≃ RMap(B∇G , (B3U(1))×3 )

Part II: (B3U(1))×3 (R
3×U → U) ≃ B3C∞(U,U(1)) (P.–Stolz–Teichner)

Poincaré: RMap(B∇G , (B3U(1))×3 ) ≃ RMap(B∇G ,B3C∞(−,U(1)))

≃ RMap(B∇G ,B4Z)×h
RMap(B∇G ,B4R)RMap(B∇G ,Ω4
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RMap(B∇G ,B4R) ≃ RMap(BG ,K(R, 4)) ∋ [c]R ≃ [⟨−,−⟩]
Remark: Also works for higher dimensions and Lie ∞-groups!
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Example: the prequantum Chern–Simons theory

G : a Lie group with Lie algebra g;
⟨−,−⟩: a G -invariant polynomial of degree 2 on g;
a level c ∈ H4(BG ,Z) such that [c]R = [⟨−,−⟩].

Part I: RMap(BordB∇G
3 ,B3U(1)) ≃ RMap(B∇G , (B3U(1))×3 )

Part II: (B3U(1))×3 (R
3×U → U) ≃ B3C∞(U,U(1)) (P.–Stolz–Teichner)

Poincaré: RMap(B∇G , (B3U(1))×3 ) ≃ RMap(B∇G ,B3C∞(−,U(1)))
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RMap(B∇G ,B4R)RMap(B∇G ,Ω4
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RMap(B∇G ,B4Z) ≃ RMap(BG ,K(Z, 4)) ∋ c

RMap(B∇G ,B4R) ≃ RMap(BG ,K(R, 4)) ∋ [c]R ≃ [⟨−,−⟩]
Remark: Also works for higher dimensions and Lie ∞-groups!
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Example: the prequantum Chern–Simons theory

G : a Lie group with Lie algebra g;
⟨−,−⟩: a G -invariant polynomial of degree 2 on g;
a level c ∈ H4(BG ,Z) such that [c]R = [⟨−,−⟩].

Part I: RMap(BordB∇G
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Part II: (B3U(1))×3 (R
3×U → U) ≃ B3C∞(U,U(1)) (P.–Stolz–Teichner)
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Remark: Also works for higher dimensions and Lie ∞-groups!
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Example: the prequantum Chern–Simons theory

G : a Lie group with Lie algebra g;
⟨−,−⟩: a G -invariant polynomial of degree 2 on g;
a level c ∈ H4(BG ,Z) such that [c]R = [⟨−,−⟩].

Part I: RMap(BordB∇G
3 ,B3U(1)) ≃ RMap(B∇G , (B3U(1))×3 )

Part II: (B3U(1))×3 (R
3×U → U) ≃ B3C∞(U,U(1)) (P.–Stolz–Teichner)

Poincaré: RMap(B∇G , (B3U(1))×3 ) ≃ RMap(B∇G ,B3C∞(−,U(1)))
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Freed–Hopkins: RMap(B∇G ,Ω4
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RMap(B∇G ,B4Z) ≃ RMap(BG ,K(Z, 4)) ∋ c

RMap(B∇G ,B4R) ≃ RMap(BG ,K(R, 4)) ∋ [c]R ≃ [⟨−,−⟩]
Remark: Also works for higher dimensions and Lie ∞-groups!

109/112 16/19



Example: the prequantum Chern–Simons theory

G : a Lie group with Lie algebra g;
⟨−,−⟩: a G -invariant polynomial of degree 2 on g;
a level c ∈ H4(BG ,Z) such that [c]R = [⟨−,−⟩].

Part I: RMap(BordB∇G
3 ,B3U(1)) ≃ RMap(B∇G , (B3U(1))×3 )

Part II: (B3U(1))×3 (R
3×U → U) ≃ B3C∞(U,U(1)) (P.–Stolz–Teichner)

Poincaré: RMap(B∇G , (B3U(1))×3 ) ≃ RMap(B∇G ,B3C∞(−,U(1)))

≃ RMap(B∇G ,B4Z)×h
RMap(B∇G ,B4R)RMap(B∇G ,Ω4

cl)

Freed–Hopkins: RMap(B∇G ,Ω4
cl) ≃ (Sym2 g∗)G ∋ ⟨−,−⟩

RMap(B∇G ,B4Z) ≃ RMap(BG ,K(Z, 4)) ∋ c

RMap(B∇G ,B4R) ≃ RMap(BG ,K(R, 4)) ∋ [c]R ≃ [⟨−,−⟩]
Remark: Also works for higher dimensions and Lie ∞-groups!
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Example: the prequantum Chern–Simons theory

G : a Lie group with Lie algebra g;
⟨−,−⟩: a G -invariant polynomial of degree 2 on g;
a level c ∈ H4(BG ,Z) such that [c]R = [⟨−,−⟩].

Part I: RMap(BordB∇G
3 ,B3U(1)) ≃ RMap(B∇G , (B3U(1))×3 )

Part II: (B3U(1))×3 (R
3×U → U) ≃ B3C∞(U,U(1)) (P.–Stolz–Teichner)

Poincaré: RMap(B∇G , (B3U(1))×3 ) ≃ RMap(B∇G ,B3C∞(−,U(1)))

≃ RMap(B∇G ,B4Z)×h
RMap(B∇G ,B4R)RMap(B∇G ,Ω4

cl)

Freed–Hopkins: RMap(B∇G ,Ω4
cl) ≃ (Sym2 g∗)G ∋ ⟨−,−⟩

RMap(B∇G ,B4Z) ≃ RMap(BG ,K(Z, 4)) ∋ c

RMap(B∇G ,B4R) ≃ RMap(BG ,K(R, 4)) ∋ [c]R ≃ [⟨−,−⟩]
Remark: Also works for higher dimensions and Lie ∞-groups!
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Example: the prequantum Chern–Simons theory

G : a Lie group with Lie algebra g;
⟨−,−⟩: a G -invariant polynomial of degree 2 on g;
a level c ∈ H4(BG ,Z) such that [c]R = [⟨−,−⟩].

Part I: RMap(BordB∇G
3 ,B3U(1)) ≃ RMap(B∇G , (B3U(1))×3 )

Part II: (B3U(1))×3 (R
3×U → U) ≃ B3C∞(U,U(1)) (P.–Stolz–Teichner)

Poincaré: RMap(B∇G , (B3U(1))×3 ) ≃ RMap(B∇G ,B3C∞(−,U(1)))

≃ RMap(B∇G ,B4Z)×h
RMap(B∇G ,B4R)RMap(B∇G ,Ω4

cl)

Freed–Hopkins: RMap(B∇G ,Ω4
cl) ≃ (Sym2 g∗)G ∋ ⟨−,−⟩

RMap(B∇G ,B4Z) ≃ RMap(BG ,K(Z, 4)) ∋ c

RMap(B∇G ,B4R) ≃ RMap(BG ,K(R, 4)) ∋ [c]R ≃ [⟨−,−⟩]
Remark: Also works for higher dimensions and Lie ∞-groups!
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Applications (current and future)

Consequence of the GCH: smooth invertible FFTs are
classified by the smooth Madsen–Tillmann spectrum.
(Previous work: Galatius–Madsen–Tillmann–Weiss,
Bökstedt–Madsen, Schommer-Pries.)

The Stolz–Teichner conjecture: concordance classes of
extended FFTs have a classifying space. (Proof: Locality +
the shape theorem (Berwick-Evans–Boavida de Brito–P.).

Construction of power operations on the level of FFTs
(extending Barthel–Berwick-Evans–Stapleton).

(G.) The Freed–Hopkins conjecture (Conjecture 8.37 in
Reflection positivity and invertible topological phases)

Examples of nontopological FFTs: bundle (d − 1)-gerbes with
connection (P.–Stolz–Teichner)

Quantization of functorial field theories.
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Tools

Higher category theory;

Sheaves and stacks (∞-sheaves);

Simplicial sets and simplicial presheaves;

Elementary differential topology;

Elementary Morse theory;

Homotopy theory.
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A preview of things to come. . .

Lecture 2: Definitions and examples
Lecture 3: Locality (Part I)
Lecture 4: The framed case (Part II)
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