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Introduction
All representations are finite-dimensional.
Most groups will be finite.
We assume that k is a commutative ring (later: field).

Classic Definition. An n-dimensional representation of a group G is a group homomorphism D:G →
GLn(k). (D comes from Darstellung.) Two representations D and D′ are said to be equivalent if there is a
T ∈ GLn(k) such that for all g ∈ G we have T−1D(g)T = D′(g). The character of D is a function χD:G → k
such that χD(g) = tr(D(g)) for all g ∈ G.

Note. If two representations are equivalent, they have the same characters. If two elements of the group
are conjugate (g ∼ g′), then χD(g) = χD(g′).

We call χD a “class function” because it is constant on each conjugacy class.

Definition. A representation D is faithful if the corresponding homomorphism is injective.

Modern Definition. (80 years old.) A G-module (over k) is a k-module (usually finitely generated) with
a k-linear G-action. (Note: g must act as a k-automorphism because g−1 exists.)

Isomorphisms of G-modules make obvious sense. We say that G acts faithfully if the only element that
acts as identity is the unit.

To link these definitions we do the following. Suppose that we have a homomorphism D:G → GLn(k).
We set g · v = D(g)(v). Conversely, if we have a G-module, then we define D(g)(v) = g · v.
Propositions. Two representations D and D′ are equivalent iff two associate G-modules are equivalent.

Ring theoretic perspective
Form a group ring kG = k[G], which is a k-algebra.

Observation. G-modules over k are the same as kG-modules.

Definition. Representation afforded by a G-module V over k is irreducible iff V 6= 0 and V has no non-
trivial kG-submodules. Representation afforded by a G-module V over k is indecomposable iff V 6= 0 and
V 6= V1 ⊕ V2 for non-trivial kG-modules V1 and V2.

An irreducible representation is indecomposable but not vice versa. One dimensional representations
are always irreducible and indecomposable.

Example. Let k = F2, let G be a cyclic group of order 2 generated by element σ, and let V = kG with
a left action. This module is not irreducible because {0, σ} is a non-trivial kG-submodule. This module is
indecomposable because {0, σ} is the only non-trivial kG-submodule.

Matricial perspective
Suppose that D is a reducible representation with V0 ⊂ V being a non-trivial kG-invariant submodule.

Choose a basis of V0 and supplement it to a basis of V . We have two representations: g → D1(g) afforded by

V0 and g → D2(g) afforded by V/V0. Then the matrix corresponding toD(g) has the form

(
D1(g) E(g)

0 D2(g)

)
.

If D is decomposable, then E(g) = 0.

Note. One-dimensional representation is a homomorphism G → k∗ = GL1(k). Two such representations
are equivalent iff they are equal.

Composition factors
If V is a kG-module then there exists a composition series 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vm = V , with all Vk

different. Here Vk+1/Vk are simple kG-modules. The sequence of these composition factors is unique up to
a permutation.

In our earlier example the composition factors are trivial one-dimensional representations.
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Direct sums
We have χV⊕V ′ = χV + χV ′ .
Scalar extensions. If we have an extension of fields K/k and a representation V over k, then we have a

representation over K, which satisfies the equation V K = K ⊗k V .
The character of a representation is the sum of the characters of its composition factors.
If we recall our example, we can easily see that the equivalence class of kG-module is not determined by

its character, because the character of the module in the example is 0 and the character of the direct sum of
two copies of k is also 0.

Example. If G is a finite group, then we have a left regular representation. Its character χ satisfies the
following equations: χ(1) = |G| and χ(g) = 0 for g 6= 1.

Review of simple modules. Let R be any ring. An R-module V is simple iff V 6= 0 and every element
of V generates V . An R-module V is simple iff it is isomorphic to R/m for some maximum left ideal m of R.
Here m is uniquely determined if R is commutative. If R is a finite-dimensional k-algebra (k is a field), then
there are only finitely many simple R-modules up to isomorphism. Proof: Look at the left regular module
of R. By Jordan-Hölder theorem we have finitely many composition factors V1, . . . , Vn. If V is simple, we
have V = R/m. We can complete the two-element series m and R to a Jordan-Hölder series.

Master Theorem. (To be proved.) If G is a finite group with r conjugacy classes and k is the field of
complex numbers, then the number of irreducible representations is equal to r. If ni is the dimension of
ith irreducible representation of G, then it divides |G|. Also

∑
k n

2
k = |G| (magic equation). Every finite-

dimensional kG-module is uniquely a direct sum of irreducible representations. (The direct sum itself is not
unique.)

Example. Let G = 〈σ, ϕ | σ7 = ϕ3 = 1, ϕ−1σϕ = σ2〉. We have |G| = 21. We have 3 one-dimensional
representations of G. Representatives of conjugacy classes: 1, σ, σ3, ϕ, ϕ2. By magic equation we discover
that there are only two more irreducible representations, which are 3-dimensional.

For finite abelian group we get a character table in the following way: let G∗ = Hom(G,C∗) be the
character group of G. The character table consists of these characters line by line. We have non-canonical iso-
morphism between G and G∗ and canonical isomorphism between G and G∗∗. All irreducible representations
have dimension 1.

Another perspective (without Master Theorem).

Theorem. Let G be a finite abelian group, k be algebraically closed field. Then any simple kG-module V
is 1-dimensional.

Proof. It suffices to show that for any g ∈ G the operator D(g) is a scalar multiplication. Let λ ∈ k
be an eigenvalue of D(g) and E(λ) be the λ-eigenspace of D(g). Obviously, it is invariant under G-action.
Therefore, D(g) = λIn.

Remark. We need only assume that the polynomial xe−1 splits over k, where e is the exponent of G. But
if k is arbitrary, the theorem does not work. The cyclic group of order 3 acts irreducible on Q2 by rotations
by 2π/3.

Example. Character table of quaternion group (of order 8). We use a complex matrix model of H. It
is easy to see that D(1), D(i), D(j), D(k) are linearly independent. Therefore, C ⊗R H is isomorphic to
M2(C). Restriction to G gives us a 2-dimensional complex representation. It is irreducible, since D(G)
C-spans M2(C). We also have four obvious 1-dimensional representations.

A construction idea. Denote by k be a field and by D a division algebra over k. Denote by G a subgroup
of D∗ such that G spans D over k. Then D is a simple kG-module.

Proof. Trivial.

Example. Denote by G the cyclic group of order n. Construct all simple QG-modules.

Solution. Denote by d a divisor of n. Take Vd. By previous theorem, adjoining a primitive dth root of 1
to Q we obtain a simple QG-module. We have dimQ Vd = φ(d). Composition factors of QG regarded as a
left module include all Vd. Since the sum of their dimensions is equal to n, we have listed all simple modules
over QG.
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Example. Now we want to find all simple RG-modules, where G is the quaternion group.

Solution. At dimension 1 we have 4 RG-representations. Now denote by H the real quaternions. They
form a simple RG-module. If we tensor multiply this by C, it splits into two irreducible modules.

The multiplicative group of quaternions has other finite subgroups apart from the classical quaternion
group. For example, it contains generalized quaternion group of order 4m. Take inside C∗ a cyclic subgroup
of order 2m and adjoin j to it. We also have other subgroups: binary tetrahedral group (order 24), binary
octahedron group (order 48), binary icosahedral group (order 120). Hurwitz defined the ring of integral
quaternions inside rational quaternions. It consists of all quaternions with integer coefficients and with
simultaneously semi-integer coefficients.

We want to obtain all irreducible complex representations of tetrahedron group A4 and binary tetrahe-
dron group BT. The conjugacy classes of A4 are 1 (1), τ (3), σ (4), σ2 (4), where τ = (12)(34) and σ = (123).
The character table is

1 τ σ σ2

1 3 4 4
χ1 1 1 1 1
χ2 1 1 ω ω2

χ3 1 1 ω2 ω
χ4 3 −1 0 0

The first three characters are 1-dimensional representations. The remaining representation must have
dimension 3. It comes from representation of A4 as group of symmetries of tetrahedron.

Theorem. Binary tetrahedron group is isomorphic to SL2(F3).

Proof. We sketch two different approaches. First, easy counting shows that SL2(F3) has 24 elements.
Recall that BT24 is a semidirect product of Q8 and C3, we just find the same structure inside SL2(F3).
We write down a unique 2-Sylow subgroup of SL2(F3). Then we write down a matrix σ0 of order 3 and
compute the conjugation action of it on 2-Sylow subgroup. Another way to prove this fact is as follows:

Recall 2-dimensional irreducible complex representation: D(i) =

(
i 0
0 −i

)
and D(j) =

(
0 1
−1 0

)
. The

rest is left to reader as an exercise.

Dihedral group. Dn = 〈r, s | rn = s2 = 1 and srs−1 = r−1〉. If n is odd, then [G,G] = 〈r〉 and
G/[G,G] = 〈s〉. We have two 1-dimensional representations. If n is even, then [G,G] = 〈r2〉 and G/[G,G] =
〈r〉 × 〈s〉. We have four 1-dimensional representations. For n = 2 we have one 2-dimensional representation
coming from symmetries of n-gon on the plane. We now see that Q8 and D4 have the same character tables
but are not isomorphic. For higher n we get the following results:

Future theorem. If char k does not divide n!, then the reduced representation is irreducible over k.
Suppose E is a finite G-set. We can easily construct a G-module with E as a basis. This module is

reducible, since elements with equal coefficients form a nontrivial submodule. Denote by V̄ the corresponding
factor module. We have χV̄ (g) = |FixE(g)| − 1. We will show that if char k does not divide n! and G is a
symmetric group, then the reduced module is simple. We can use this fact to understand representation of
S3 and S4.

We work out all irreducible complex representations of S4. Two of them are trivial one-dimensional rep-
resentations. Inside S4 we have normal Klein 4-group. Its factor group is S3, therefore, one two-dimensional
representation is obtained via pullback from S3 representation. Two 3-dimensional representations come
from tetrahedron and octahedron.

Chapter 1

Notational Convention: Write homs of modules on the opposite side of scalars.
Homo-law: (rm)f = r(mf). If we let E = End(RM), then M = RME is (R,E)-bimodule. We have

End(RR) = R: r → [x → xr]. Similarly, End(RR) = R: r → [x → rx].
Let E = End(RM). Then Mn = nM = ⊕n copiesM . We have End(Mn) = Mn(E).
Schur’s lemma: endomorphism ring of a simple module is a division ring.
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A module M is called semisimple iff every submodule splits iff it is a (direct) sum of simple submodules
iff it is a (direct) sum of all of its simple submodules.

A semisimple moduleM is indecomposable iff it is simple. Semisimple modules are closed under arbitrary
direct sums, submodules and quotient modules. If M is semisimple, then M is finitely generated iff it has
finite length iff it is a simple sum of simple modules. In this case, M is a direct sum of its composition
factors.

A ring R is called left-semisimple iff RR is semisimple. A ring is semisimple iff all R-modules are
semisimple.

A ring R is called simple iff R 6= 0 and the only (two-sided) ideals are 0 and R. (Warning: Semisimple
rings are not simple in general.)

Ideals of a ring R are in bijective correspondence with ideals of the ring Mn(R). Therefore, if R is
simple, then so is Mn(R). In particular, matrices over division ring form simple ring.

Moreover, matrices over division ring form semisimple ring, more precisely: Mn(D) = nDn as left
modules. Therefore, Dn is the only simple Mn(D)-module.

Now note that End(Mn(D)D
n) = D.

Artin-Wedderburn theorem. A ring R is left semisimple iff it is isomorphic to finite direct product of
matrix rings over division ring.

Proof. Write RR as a direct sum of simple modules ⊕knkMk. Now we see that End(⊕knkMk) =∏
k Mnk

(End(Mk)).

Definition. A bimodule SVT is faithfully balanced if the ring homomorphisms S → End(VT ) and T →
End(SV ) are both isomorphisms.

Omnipresence: Start with any module SV . (We may replace S by its image in EndV . Now S acts
faithfully.) Now let T = End(SV ), so that V = SVT . Then replace S by End(VT ). Now this bimodule is
faithfully balanced.

Important example. For any ring R the ring Mn(R)R
n
R is faithfully balanced bimodule. This includes for

n = 1 the case RRR. Nice observation: Mn(R)R
n is simple iff n 6= 0 and R is a division ring. If R is division

ring, the statement is trivial. To prove the other implication we use Schur’s lemma.

Artin-Wedderburn theorem. A ring R is a left semisimple ring iff R is a finite direct product of matrix
rings over division rings: Mni(Di).

Proof of uniqueness. It suffices to describe ni and Di in terms of the ring R. Note that Dni
i is a simple

R-module if we let other components of R act trivially. Therefore, the number of rings in the decomposition
is equal to the number of simple left R-modules. Di is the endomorphism ring of ith simple module. Now ni

is the dimension of this module over Di. Also ni is the multiplicity of Vi as composition factor. Moreover,
ni is the matrix size of the ith component in the Artin-Wedderburn decomposition.

Corollary. A left semisimple ring is also right semisimple ring and vice versa. Also a left semisimple ring
is Artinian, and, therefore, Noetherian.

Corollary. A semisimple ring is a direct sum of its indecomposable ideals, which are uniquely determined
up to a permutation.

Corollary. A commutative ring is semisimple iff it is isomorphic to a finite direct product of fields.
Now we want to relate simple rings to semisimple.

Theorem. If R is a simple ring, then R is semisimple iff R = Mn(D) where D is a division ring iff R is
left artinian.

Proof. We only need to prove that an artinian simple ring is semisimple. Take a left minimal ideal I of R.
Now take let B be the sum of all left ideals that are isomorphic to this one. We easily see that this sum is
also a right ideal, therefore it coincides with the whole ring. By artinity we obtain the desired result.

Note that there is no simple classification of left Noetherian rings.

Maschke’s theorem (1899). Suppose k is a field and G is a group. Then kG is semisimple iff the
characteristic of k does not divide |G| and G is finite. If kG is semisimple, we call this case ordinary.
Otherwise we call it modular.
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Modern proof. In the ordinary case we need to prove that every exact sequence of kG-modules splits.
Fix a k-homomorphism λ:V → W such that λ is identity on W . Now average λ over all elements of G,
obtaining a kG-homomorphism.

Assume that kG is semisimple. G may be infinite. Consider the augmentation map ϵ: kG → k,
ϵ(
∑

agg) =
∑

g∈G ag. Now take the kernel of ϵ. This kernel splits. Denote by J its complement, which is
a left ideal. For any α ∈ J such that α 6= 0 we have (g − 1)α ∈ (ker ϵ) ∩ J = 0. Therefore, α = gα for all
g, hence α = a

∑
h∈G h. Moreover, G is finite. Now note that ϵ(α) = a|G| 6= 0, therefore char k does not

divide |G|.
Maschke’s original approach involved hermitean forms and orthogonal complements. In real case replace

the hermitean product by ordinary inner product.

Proposition. Every complex representation is equivalent to a unitary representation. Every real repre-
sentation is equivalent to a orthogonal representation.

Proof. Average an arbitrary hermitean form over all elements of group.

Corollary. Every real or complex G-submodule splits.

Proof. Take an orthogonal complement.
From now on we assume that char k does not divide |G|. Denote by Mi = Dni

i the simple G-modules.
We have Di = EndR(Mi). Let mi = dimk Mi and di = dimk Di. We have mi = nidi, the Wedderburn
components of kG are End(Mi). We have RR = ⊕knkMk. Now we obtain the general magic equation
|G| =

∑
i nimi =

∑
i n

2
i di ≤

∑
i m

2
i .

If k is algebraically closed, then di = 1 and we obtain the usual magic equation.
The number r is equal to the number of conjugacy classes. To prove this note that the number of

conjugacy classes is equal to the dimension of the center of kG.

Example. Suppose G is an abelian group. We have ni = 1 and every Di is a field, therefore kG is a direct
product of fields. Every Di supports a simple kG-module. If k has all necessary roots of unity, then Di = k.
Therefore, if G and H are abelian and |G| = |H|, then CG is isomorphic to CH.

Example. Construct the Wedderburn decomposition of QG, where G is a cyclic group of order n. We
have QG = Q[t]/(tn − 1). By Chinese remainder theorem we have QG =

∏
d\n Q[t]/(Φd(t)) =

∏
d\n Q(ζd).

The last product is the Wedderburn decomposition.
Now we replace Q by R. We have two cases. In the first case the order of group is even. In this case it

is easy to see that the Wedderburn decomposition is R×R×Cn/2−1. In the remaining case the Wedderburn
decomposition is R× C(n−1)/2.

G QG RG CG
C12 Q2 ×Q(ω)2 ×Q(i)×Q(ζ12) R2 × C5 C12

S3 Q2 ×M2(Q) R2 ×M2(R) C× C×M2(C)
Q8 Q4 ×HQ R4 ×H C4 ×M2(C)
D4 Q4 ×M2(Q) R4 ×M2(R) C4 ×M2(C)
A4 Q×Q(ω)×M3(Q(

√
−7)) R× C×M3(R) C3 ×M3(C)

〈ϕ, σ〉 Q×Q(ω)× C3 ×M3(C)2
S4 C2 ×M2(C)×M3(C)2

Theorem of splitting fields

How simple modules behave under extension of scalars?

Theorem. A left artinian ring R is simple iff there exists a faithful simple left R-module M .

Proof. (Jacobson radical argument.) Assume that there is a faithful simple left moduleM over left artinian
ring R. First we show that R is semisimple. Check that RR is a semisimple module. It suffices to show that
any minimal left ideal I ⊂ RR splits. Fix 0 6= a ∈ I. Then am 6= 0 for some m ∈ M . Hence Ram = M .
In particular, m = ram and (1 − ra)m = 0, therefore R(1 − ra) is a proper left ideal of R. Denote by J a
maximal left ideal that contains R(1− ra). Note that I ∩ J = 0, therefore RR = I ⊕ J .

5



Burnside’s theorem. Denote by D a skew field. If we take a ring R we have D ⊂ R ⊂ Mn(D). Let
M = Dn. Then R = Mn(D) iff RM is simple and End(RM)) = D.

Proof. Certainly, R is a left artinian ring. Moreover, M is simple and faithful. By the theorem above, R
is simple. The Wedderburn theory applies to R, hence R = Mn(D).

Homomorphism theorem. Let R be a k-algebra (not necessarily finite-dimensional) and K ⊃ k be a
field extension. Let M and N be left R-modules. Then the natural map HomR(M,N) → HomRK (MK , NK)
is a K-vector space isomorphism. Here RK = K ⊗k R and MK = K ⊗k M .

Proof. First Course, page 104.

Theorem. Let R be a k-algebra (not necessarily finite-dimensional). Let RM be a simple R-module. We
have End(RM) = k iff R → End(Mk) is surjective iff for any field extension K ⊃ k the module MK is a
simple RK-module iff there is an algebraically closed field extension E ⊃ k such that ME is a simple RE

module.

Proof. (2) follows from (1) applied to image of R → End(Mk). (3) follows from (2) because we have
surjective morphism RK → (End(Mk))

K = EndK(MK), hence MK is RK-simple. (1) follows from (4):
EndRE (ME) = E is isomorphic to (EndR(M))E , therefore End(RM) = k.

Definition. Let R be a finite-dimensional k-algebra. Field extension K ⊃ k is a splitting field for R if
every simple RK-module is absolutely simple.

Absolutely simple means that its isomorphism ring is the ring of scalars. Alternatively, it stays simple
under any extension.

Algebraic closure is an example of splitting field.

A simple module over semisimple ring is absolutely simple if its Wedderburn component looks like
Mn(k).

Proposition 1. If k ⊂ K is a field extension, R is a finite-dimensional k-algebra, then any simple RK-
module U is a composition factor of V K for some simple R-module V .

Proof. Insert U into composition series of RR
K .

Proposition 2. Splitting field represents “stable state”. If k ⊂ K ⊂ L are field extensions, K is a splitting
field for k-algebra R and Ui is a complete set of RK simple modules, then UL

i is a complete set of RL simple
modules. And L is a splitting field for R. Moreover, assume that L is a splitting field. Then K is a splitting
field iff every simple RL-module is defined over K (is isomorphic to tensor product of L and some RK-simple
module.

Theorem. For any finite-dimensional k-algebra there is a finite field extension K/k that splits R.

Proof. Take L = k̄ and construct K. Take maximal left ideals Ai in RL. Then Mi = RL/Ai gives a
complete set of RL-simples. Take a big finite extension K within L such that Ai ∩ RK contains an L-basis
of Ai.

Back to groups. If char k does not divide |G| and Mi is a complete set of kG-simple modules. Then
|G| ≤

∑
i(dimk Mi)

2 with equality iff k is a splitting field.

Definition. A set I ⊂ R is called nil if every element of I is nilpotent.

Theorem. Any nil left ideal J ⊂ R is nilpotent. The sum of two nil ideals is also nil.

Proof. Trivial. The first part uses descending chain condition on left ideals and Nakayama lemma.

Proposition. Let rad(R) (Wedderburn Radical) be the sum of all nil ideals of R. Then this is a nilpotent
ideal that contains all nil left (or right) ideals J.

Corollary. The ring R/ rad(R) is semisimple. The Wedderburn radical is the set of all elements that kill
all simple modules.
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Proof. After replacing R by R/ rad(R) we may assume rad(R) = 0. We want RR to be semisimple. Since
it is artinian, it is sufficient to check that every minimal left ideal E splits off. Note that E2 6= 0, since
otherwise it would be nil. Hence there is an a ∈ E such that Ea 6= 0. We must have Ea = E. Write a = ea
where e ∈ E. Consider left ideal X = {x ∈ E | xa = 0}. We have X ⊂ E and X 6= E, hence X = 0. We
have a = ea = e2a, therefore e = e2. Then E = Re splits.

Let I = rad(R). Want IM = 0 for all simple M . Otherwise we have IM = M and M = INM = 0.
Contradiction.

Let R̄ = R/ rad(R). R̄ is semisimple. So simple R̄-modules are certainly simple R-modules. The direct
sum of a complete set of simple modules over R̄ is faithful over R̄. If r kills all R-simples, then it kills all R̄
simples, hence r̄ = 0, therefore r ∈ rad(R).

We can define general rad(R) as the set of all elements that kill all simple modules. This is the Jacobson
radical.

Nil radicals present an obstruction to semisimplicity. Factorization by largest nil ideal yields a semisimple
ring. A ring and its factor ring by Wedderburn radical have the same simple modules.

Recall that the (Wedderburn) radical of a finite-dimensional algebra is the set of all elements that kill
all simple modules. If we apply this definition for arbitrary ring, we obtain Jacobson radical.

Theorem. Suppose that k has characteristic p and G is a finite p-group. Let M be a simple kG-module.
Then G acts trivially on M . In particular, dimk M = 1.

Proof. Suppose that |G| = pn. We use induction on n. Fix a central element of order p. Obviously,
D(c) − I is nilpotent. Hence c acts trivially on its kernel. Now view M as simple k[G/〈c〉]-module and
induct.

Corollary. Under same hypothesis, rad(kG) = I, where I is the augmentation ideal. And I |G| = 0. Every
proper left (right) ideal of kG is contained in I. So kG is a noncommutative local ring.

Proof. For every g ∈ G the element g− 1 acts trivially on every single kG-module. Then g− 1 ∈ rad(kG).
Therefore, I ⊂ rad(kG) and I = rad(kG). We know that this ideal is nilpotent. The composition series of

kGkG has exactly |G| factors. We know that I kills each composition factor. Hence, I |G| = 0.

Refinement. Suppose that k has characteristic p and G is a finite group with a normal p-subgroup H.
Then H acts trivially on any simple kG-modules.

Proof. Let M0 be the submodule consisting of all elements that are invariant under action of center of G.
It is a kG-submodule, hence it coincides with M .

Corollary. If k has characteristic p and G has a normal p-Sylow subgroup H. Then simple kG-modules are
the same as simple k(G/H)-modules. We are back to non-modular representations. Moreover, rad(kG) =∑

h∈H kG(h− 1).

Proof. First we verify that RHS is an ideal. Then we verify that RHS is contained in rad(kG). At last we
observe that if we mod out RHS we obtain a semisimple ring k[G/H]. Hence, rad(kG) is contained in RHS.

Chapter 2

Theory of Characters.
If M is a left module over finite dimensional k-algebra, such that M is finite-dimensional over k, then its

character is a function χ = (r → tr(m → rm)). If 0 → M ′ → M → M ′′ → 0 is exact, then χM = χM ′+χM ′′ .

Theorem. Suppose that k has characteristic zero and R is finite-dimensional k-algebra. Then isomorphism
classes of semisimple R-modules are determined by their characters.

Proof. Let R/ rad(R) =
∏

i Wi be the Wedderburn decomposition. Let Mi be the corresponding R-
simples. Let M = ⊕iliMi. We need to compute li in terms of χM . Fix s ∈ R such that sj = [i = j]. We
have χM (s) = liχMi

(s) = li dimk Mi. Since the characteristic is zero, li is uniquely determined.
Back to groups. If k has characterstic zero, two representation of G are equivalent iff their characters

coincide.
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Proposition. In any characteristic if the order of g is equal to m, then χD(g) is equal to the sum of mth
roots of unity in algebraic closure of k. In particular, if k = C, then χD(g) is an algebraic integer in Q(ζm).

Definition. The kernel of character is the set of all group elements g such that χ(g) = χ(1) ∈ k.

Theorem. If k has characteristic zero, then kerχ = ker(D). If χi are all the characters of kG-simples,
then the intersection of their kernels is the trivial group.

Proof. We can assume that k is algebraically closed. If g ∈ kerχ, then n = χ(1) =
∑

i λi, where λi are
the eignevalues of D(g). Clearly, λi. Moreover, D(g)|G| = 1, hence D(g) is diagonalizable. Hence D(g) = 1.

Definition. Let Irr(G) be the set of all characters of irredecuble representations. For a character χ define
its center as the set of all elements g such that |χ(g)| = χ(1).

Theorem. An element g belongs to the center of a character iff D(g) = λI iff g ∈ Z(G/ kerχ).

Proof. As before, conclude that D(g) is diagonalizable and all of its eigenvalues are equal to each other.
Conversely, if g ∈ Z(G/ kerχ) we conclude that g belongs to the center.

Notation. We always assume that char k does not divide |G|. We have kG =
∏

Mni
(Di), mi = nidi etc.

Let χi be the ith irreducible character.

Centrally primitive idempotents theorem. Let ei be the identities of the Wedderburn components.
These are centrally primitive idempotents in kG. A central idempotent is called primitive if it is nonzero and
we cannot represent it as a sum of two nonzero central idempotents which have zero product (are orthogonal).
We have ei = ni/|G|

∑
g χi(g

−1)g. In particular, char k does not divide ni. If, in addition, k is a splitting
field, then Cg = |g|

∑
i χi(g)ei/ni.

Proof. Suppose that ei =
∑

h ai,hh. If χr is the regular character, then we have χr(eig
−1) = ai,g|G|.

We have ai,g = |G|−1χr(eig
−1) = |G|−1niχi(g

−1). To prove the second relation, note that Cg =
∑

bg,iei.
Applying χj on both sides, we have |g|χj(g) = bg,jnj . (Under splitting assumption we have di = 1.) Hence,
bg,j = |g|χj(g)/nj .

Theorem. Frobenius integrality theorem. Suppose k has characteristic zero and is a splitting field. Then
|g|χi(g)/ni is an algebraic integer. Moreover, dimMi = ni divides |G|.

Proof. The center of kG is
∏

i kei. Now Cg ∈ ZG is a ring that is finitely generated as an abelian group.
Projecting upon the kei we get images that are algebraic integers. Finally, ei = ni|G|−1

∑
g χi(g

−1)g. We

have |G|/ni ∈
∑

g ACg ⊂
∑

g A
(∑

j Aej

)∑
j Aej . Hence |G|/ni is a rational integer.

First orthogonality relation. (No splitting field assumption.) For all i and j we have

|G|−1
∑
g∈G

χi(g
−1)χj(hg) = [i = j]χi(h)/ni.

Proof. Use the fact that eiej = [i = j]ei. Recall that ei = ni|G|−1
∑

g χi(g
−1)g. Comparing coefficients

of h−1 we find out that ni|G|−1nj |G|−1
∑

g χi(g
−1)χj(hg) = [i = j]ni|G|−1χi(h).

Corollary. If k has characteristic zero (no splitting field assumption), then a represetation is absolutely
irreducible iff

∑
g χ(g

−1)χ(g) = |G|.

Proof. Say χD = χi with di = 1. Apply FOR with i = j. To prove the converse, write χ =
∑

i piχi.
Then |G| =

∑
g(
∑

i piχi(g
−1))(

∑
j pjχj(g)) =

∑
i,j p

2
i di|G|. Since char k = 0, we have

∑
i p

2
i di = 1. Hence

pi = di = 1 for some i and pj = 0 for all other j.
Now consider the set of all functions µ:G → k that are constant on conjugacy classes. Define a k-bilinear

form [µ, ν] = |G|−1
∑

g µ(g
−1)ν(g) ∈ k.

Corollary. Assume that k is a splitting field. Then χi form an orthonormal k-basis. Moreover, for any
µ ∈ Fk(G) we have µ =

∑
i[µ, χi]χi (Fourier expansion). We also have Plancherel formula: for all µ and ν in

Fk(G) we have [µ, ν] =
∑

i[µ, χi][ν, χi]. Assuming characteristic zero we see that µ ∈ Fk(G) is of the form χM

for some kG-module M iff [µ, χi] are all nonnegative integers. Moreover, M is irrdeucible iff [µ, µ] = 1.

8



Second orthogonality relation. Suppose that k is a splitting field and g and h are two elements of G.
Then

∑
i χi(g)χi(h

−1) = [g ∼ h]|CG(g)|.

Proof. Use CPI and CPI for splitting field case.

Applications to permutation characters.

Burnside’s lemma. The number of orbits of an action of a finite group G on a set E is equal to
[1, π] = |G|−1

∑
g π(g), where π(g) is the number of elements that are fixed by the element g.

Proof. It is sufficient to prove the lemma for transitive case. We have |G| = n|Gi|. Now
∑

g π(g) = n|Gi|.

Theorem. Suppose G acts transitively on E and let t be the number of orbits of G1. Then t = [π, π].

Proof. Expand |G| · [π, π].

Lemma. Suppose G is transitive on E and n ≥ 2. Then G is doubly transitive iff t = 2 where t is the
number of G1-orbits on E. Here G1 is the stabilizer of an element.

Theorem. Suppose G is transitive on E. Then G is doubly transitive iff V̄ is an absolutely irreducible
kG-module. Here V̄ is reduced kG-module corresponding to the factor of free k-module on E by all elements
with zero sum.

Proof. Let χ = χV̄ = π− 1. Then [χ, χ] = [π− 1, π− 1] = [π, π]− 2[π, 1] + [1, 1] = t− 2m+1 = t− 1 ∈ k.
We know that V̄ is absolutely irreducible iff [χ, χ] = 1 iff t = 2 iff G is doubly transistive.

Now assume that k is a splitting field. Let gi be a set of representatives of conjugacy classes. The the
character table Ci,j = χi(gj). Let Bi,j = |gi| · |G|−1χj(g

−1
i ).

Theorem. FOR holds iff CB = 1. SOR holds iff BC = 1. Hence, all the statements are equivalent to
each other.

Proof. Trivial substitution.
If k = C and µ =

∑
i aiχi for real ai, then µ(g) = µ(g−1). On C one usually uses a different pairing:

〈µ, ν〉 = [µ, ν̄]. This is a positive definite hermitean form. Irreducible characters form an orthonormal basis
as before. We also have Fourier expansion and Plancherel formula.

Corollary. For any class function χ ∈ F (G) define Q(χ) =
∑

g Qχ(g) ⊂ C. If χ is an irreducible character,
then Q(χ) is an algebraic number field.

This follows from char.pdf: for any irreducible character χ we have χ(g)χ(h) = χ(1)|G|−1
∑

z χ(gh
z).

Theorem. Every χ ∈ Irr(G) satisfies char.pdf: χ(g)χ(h) = χ(1)|G|−1
∑

z χ(gh
z), where hz = z−1hz.

Corollary. If χ ∈ Irr(G), then Q(χ) is an abeliean field extension of Q.

Proof of Corollary. Q(χ) is a finite-dimensional Q-domain, hence a field extension of Q. Observe that
χ(g) ∈ Q(ζ) where ζ = exp(2πi|G|−1). We see that Q(χ) is Galois over Q with Galois group Gal(Q(χ)/Q) =
G/H which is an abelian group.

Proof of Theorem. For g ∈ G define αi,j,g = #{(g′, g′′) ∈ G × G | g = g′g′′ ∧ g′ ∼ gi ∧ g′′ ∼ gj}. Note
that g 7→ αi,j,g is a class-function. Let’s write αi,j,p = αi,j,g where g belongs to pth conjugacy class. Then
CiCj =

∑
p αi,j,pCp. Apply πl to CiCj . We get |gi| · |gj |χl(1)

−1χ(gi)χ(gj) =
∑

p αi,j,p|gp|χ(gp).

Converse Theorem. An aribtrary function µ:G → C is a scalar multiple of irreducible character iff µ
satisfies char.pdf.

Sketch of Proof. Last part: write µ = zχ where χ ∈ Irr(G). We have µ(1) = zχ(1) ∈ R+. Hence z ∈ R+.
Also 1 = 〈µ, µ〉 = z2〈χ, χ〉 = z2. Hence z = 1 and µ = χ.

First part: suppose that char.pdf holds. Suppose µ(1) = 0. Then µ = 0 · 1G. Assume µ(1) 6= 0. In
char.pdf set g = 1. We have µ(h) = |G|−1

∑
z χ(h

z). Hence µ is a class function. Define π:Z(CG) → C
by π(Ci) = |gi|µ(gi)µ(1)−1 ∈ C. Check that π is a C-algebra homomorphism. It is enough to check that
π(Ci)π(Cj) =

∑
αi,j,pπ(Cp) via char.pdf. After this, π = πl for some µ. Then you check µ = zχl.
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New Representations from Old

(1) Twist a group representation by group automorphism. Only outer automorphisms yield nontrivial
twistings. (2) Twist a group representation by field automorphism. (3) Twist a group character by field
automorphism of character field.

In the last case we obtain a group character because char.pdf stays true under field automorphism. To
connect (2) and (3) note that we can extend (non-uniquely) a field automorphism of a character field and
obtain the twisted representation.

(4) If V is a kG-module, then V ∗ is also a kG-module: (gλ)(v) = λ(g−1v). Obviously, χD′(g) = χD(g−1)
for all g.

Note that the group inverse sends conjugacy classes to conjugacy classes. We say that a conjugacy class
is real if it is invariant under group inverse. A character over complex numbers is real-valued if all of its
values are real.

Burnside Theorem 1. The number of real conjugacy classes is equal to the number of real-valued
characters.

Proof (Brauer). By permuting pairs of complex-conjugated characters we get a matrix PC. Similarly,
by permuting pairs of conjugacy classes which are mutually inverse we get a matrix CQ. Now C−1PC = Q
and tr(P ) = tr(Q).

Corollary, |G| is even iff the is a real-valued irreducible character χ 6= 1.

Proof. From Burnside’s theorem we obtain that the existence of χ is equivalent to existence of self-inverse
conjugacy class.

Proposition. Suppose that the columns of character table are permuted arbitrarily. Then we can compute
which column corresponds to the identity class. Moreover we can determine the sizes of conjugacy classes.

Proof. Suppose that χ ∈ Irr(G). Note that kerχ = {g ∈ G | χ(g) = χ(1)}. We will also prove that
kerχ = {g ∈ G | 0 < χ(g) ≥ |χ(h)|}. One of the inclusions is clear. The other inclusion is also trivial. Now
recall that the intersection of the kernels of all characters consists of trivial element. Hence, the first column
is uniquely determined by the character table. Now we can find |gj | by second orthogonality relation.

Theorem. The character table determines the position of the elements of the group commutant.

Proof. Recall that the commutant is equal to the intersection of all one-dimensional characters.

Theorem. The character table determines all normal subgroups.

Proof. Denote by Ni = kerχi a set of normal subgroups. Obviously, their finite intersections constitute
the set of all normal subgroups.

Theorem. G is simple iff all kernels are trivial except for the kernel corresponding to the first row.

Proof. Trivial consequence of the previous theorem.

Theorem. Given a normal subgroup of given group G, the character table of G determines the character
table of factor group (although not its isomorphism class).

Proof. Take all irreducible characters whose kernel contains given normal subgroup. These characters
correspond to all irreducible characters of factor group. Now remove all duplicate columns.

Theorem. The character table determines the position of the center. It also determines whether the group
is abelian and its isomorphism class is uniquely determined.

Proof. The center is the set of all elements whose conjugacy class size is 1. It is also the intersection of
the centers of all characters.

Theorem. The character table determines the position of upper central series. Hence it determines
whether the group is nilpotent.

Proof. Trivial consequence of definitions and previous results.
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Theorem. The character tables determines whether the group is solvable.

Proof. A group is solvable iff there is a normal series with p-groups as factors.

Proposition. If H is a normal subgroup of G, then |CḠ(ḡ)| ≤ |CG(g)|.

Second Burnside theorem. If |G| is odd, then it is congruent to the number of conjugacy classes
modulo 16.

Proof. The only real irreducible character is the trivial character. Also, the dimensions of irreducible
characters are odd, since they divide the order of group.

Corollary. If |G| ≤ 19 is odd, then it is odd.

Theorem. If |G| is odd and every prime that divides |G| is congruent to 1 modulo 4, then |G| and the
number of conjugacy classes are congruent modulo 32.

Chapter 3
Tensor Products and Invariants.
Multiplicative structure on character ring provides a good tool for computation. We can construct new

irreducible representations from existing ones. For example, we can now determine the character table of A5

given only its icosahedral representation.
Another kind of product (outer product): Let V be a kG1-module and W be a kG2-module. Then

V#W = V ⊗k W is a kG-module, where G = G1 ×G2. Here (g1, g2)(v⊗w) = g1v⊗ g2w. This construction
is a special case of tensor product if we regard V and W as kG-modules.

Proposition. Suppose that V and V ′ are irreducible kG1-modules and W and W ′ are irreducible kG2-
modules. Then V#W is isomorphic to V ′#W ′ iff V is isomorphic to V ′ and W is isomorphic to W ′. If V
and W are absolutely irreducible, then V#W is also absolutely irreducible.

Proof. The first part is trivial if we regard V#W as kG1-module and decompose it into irreducible parts.
This implies that V is isomorphic to V ′. The same argument goes for W ′. The second part is proven
as follows. Recall that kG is isomorphic to kG1 ⊗ kG2. By Burnside’s theorem the maps D1: kG1 →
Endk(V ) and D2: kG2 → Endk(W ) are epimorphisms. Hence End(V#W ) is isomorphic to End(V ) ⊗
End(W ). Therefore the map kG → End(V#W ) is epimorphic, hence V#W is absolutely irreducible.

Theorem. Suppose that k is the splitting field for G1 and G2. Suppose that char k does not divide |G|.
Tensor products of all pairs of irreducible representations of G1 and G2 form complete set of irreducible
representations of G1 ×G2.

Proof. Obviously all of these representations are non-isomorphic and absolutely irreducible. The number
of conjugacy classes of direct product of groups is equal to the product of the corresponding numbers of
conjugacy classes.

Note that the character table of direct product of groups is equal to the tensor product of corresponding
character tables.

In particular, if some representations have the same character tables, then their tensor products with
anything also have the same character tables.

Let V be a simple CG-module and let χ = χV .

Frobenius theorem. χ(1) divides |G|.

Schur’s theorem. χ(1) divides [G : Z(G)].

Generalized Schur’s theorem. χ(1) divides [G : Z(χ)].

Proof. Recall that H = Z(χ) = {h ∈ G | |χ(h)| = χ(1)} is a normal subgroup of G. Note that V n = #nV
is an irreducible CGn-module. Also H acts on V as complex numbers: hv = λ(h)v. Now we see that
Kn = {(h1, . . . , hn) ∈ Hn | λ(

∏
i hi) = 1} is a normal subgroup of Gn that acts trivially on V n. Hence V n is

a simple Gn/Kn-module. Note that |H|n−1 divides Kn because projection of Kn onto first n− 1 arguments
is surjective. Now |Gn/Kn| = |H| · [G : H]n/x. By Frobenius this is divisible by χ(1)n. Hence χ(1) divides
[G : H].

11



Burnside-Brauer theorem. Assume that char k = 0 and D is an arbitrary representation of G. Suppose
that the character of D is faithful and takes m distrinct values. Then any irreducible character is contained
in ϕi for 0 ≤ i < m.

Proof. We just obtain Vandermonde system with m equations and m unknowns. All unknowns must be
zero. Here jth unknown is the sum

∑
χ(g)=aj

χ(g−1).
Generally, if field characterstic does not divide the order of the group, then the scalar product of any

two characters is an integer number.

Definition. Poincaré series P of a character is
∑

n≥0[ϕ
n, χ]tn for a given character ϕ.

Theorem. Poincaré series is a rational function in t.

Proof. Expand [ϕn, χ] and change the order of summation. We obtain |G|−1
∑

g χ(g
−1)(1− ϕ(g)t)−1.

We can use this theorem to prove Burnside-Brauer theorem. Instead of working with ϕn we can work
with the symmetric power of ϕ, which is denoted by ϕ(n). Using ϕ(n) we can form a new Poincaré series Q.

Theorem. In characteristic zero we have
∑

n≥0 ϕ
(n)(g)tn = det(I − gt)−1. Hence,

Qϕ,χ(t) = |G|−1
∑
g

χ(g−1) det(I − gt)−1.

Proof. We can assume that our field is algebraically closed. The action of an element of the group on
vector space is diagonalizable. Now recall that SnV has monomial basis.

We are interested in T (V )G and S(V )G, which are the fixed points of T (V ) and S(V ). Note that
dim(TnV )G is the number of times 1G appears in Tn(V ), i.e., [ϕn, 1G].

Using theorems that we proved above we see that PT (V )G(t) = |G|−1
∑

g(1−ϕ(g)t)−1. Also PS(V )G(t) =

|G|−1
∑

g det(I − gt)−1.
Possible use of formulae: Suppose we locate a graded subspace of invariants I0 ⊂ I. If PI0 = PI , then

I0 = I!
What can we say about I = S(V )G. An affine k-algebra is a commutative finitely-generated k-algebra.

By Hilbert basis theorem, this algebra is a noetherian ring. Let us study more general situation: R is an
affine k-algebra, and let G is a finite group acting on R as a group of k-algebra automorphisms. Let I = RG.

Noether theorem. R over I is an integral ring extension. R is a finitely-generated I-module. I = RG is
an affine k-algebra.

Proof. Pick an r ∈ R. Then fr(t) =
∏

g(t − gr) ∈ R[t] is a G-invariant polynomial. Now take some
generating set ri for R. Take all coefficients of polynomials fr for all ri. Let S be a subalgebra generated
by these elements. This subalgebra is G-invariant. Each ri is integral over S, hence R is generated by ri as
S-module. Now note that I is a finitely-generated S-module. This implies that I is an affine k-algebra.

Chapter 4
Some applications.

Definition. We say that an irreducible character is prime to g if (χ(1), |g|) = 1.
Recall three facts about irreducible characters: Frobenius integrality theorem: |g|χ(1)−1χ(g) is an

algebraic integer. The center of a character contains the group center. Here Z(χ) = {g ∈ G | |χ(g)| = χ(1)}.
Moreover, Z(χ)/ ker(χ) = Z(G/ kerχ).

Burnside theorem 3. If χ is prime to g, then χ(g) = 0 or g ∈ Z(χ).

Proof. Suppose that 1 = mχ(1) + n|g|. Consider α = χ(g)/χ(1) = mχ(g) + n|g|χ(g)/χ(1). Assume
χ(g) 6= 0. Let αi be the conjugates of α. Each αi is an average of some roots of 1. Hence |

∏
i αi| = 1 and

|α| = 1. Hence |χ(g)| = χ(1).

Corollary. If G is a nonabelian simple group and χ 6= 1 is prime to g 6= 1, then χ(g) = 0.

Burnside theorem 4. Suppose there is an element g such that |g| = pe, p is a prime. Then G is not a
simple group.
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Proof. Assume G is simple. Apply second orthogonality relation. All χi(1) must be divisible by p.

Burside theorem 5. If G = paqb for prime p and q, then G is solvable.

Proof. Induction by the size of the group. Assume that p 6= q and a and b are positive. Take a q-Sylow
subgroup Q. Fix a nontrivial g ∈ Z(G). Then CG(g) contains Q. If e = 0, then g generates a nontrivial
normal subgroup. Otherwise, we apply Burnside theorem 4.

Corollary. If G is a simple group with a p-Sylow subgroup P that is abelian and χ is an irreducible
character with χ(1) = pr for r > 0, then |P | = pr.

Proof. G is nonabelian. Take g ∈ P such that g 6= 1. Then χ is prime to g. Hence χ(g) = 0. Therefore,
|g| is a p-prime number. Now 〈χP , 1P 〉 = |P |−1χ(1). Hence |P | = χ(1) = pr.

Proposition. If G is a simple group, χ is an irreducible character, χ(1) = p where p is a prime number,
then the p-part of |G| is p and p 6= 2.

Proof. It suffices to show that p-Sylow subgroup P is abelian. Since p divides |G|, we have P 6= {1}.
Recall that G acts faithfully on V and Z(χ) = Z(G) = {1}.

If VP is a simple CP -module, then 1 6= Z(P ) ⊂ Z(χP ) = {g ∈ P | |χP (g)| = p} ⊂ Z(χ) = {1}. Hence
VP is not simple, hence any 2 elements of P thus commute.

Classification of finite simple groups. Series of simples groups: cyclic groups of prime order, An for
n ≥ 5, linear groups (Jordan, Dickson) and other groups of Lie type by Chevalley, sporadic simple groups
by Mathiue and others ending at Monster, 26 in total.

Burnside was a pioneer in this area. Brauer was a visionary. His idea was to study the centralizer of
an involution (element of order 2). Feit and Thompson (young hotshots) proved that odd order group are
solvable. Gorenstein was the field marshall (20 year war).

Relationship between simple groups and the prime 2: χ(1) 6= 2, the number of distinct primes divisors
of |G| is not 2, and 2 divides |G|.

Brauer’sprogram of classifying finite simple groups: prove theorems like “if G is a finite simple group
that has centralizer of involution isomorphic to a given group T then G is isomorphic to one of the finite
number of given groups”.

We will illustrate this philosophy in the simplest case:

Theorem. Suppose we have an involution u whose centralizer has degree 2. Then [G : [G,G]] = 2. In
particular, if G is simple, then it has order 2.

Proof. We know that χi(u) is the sum of eigenvalues. Every eigenvalue for u is 1 or −1. On the other
hand we have SOR

∑
i χi(u)χi(u

−1) = |CG(u)| = 2. Hence 2 =
∑

i χi(u)
2. Say, χ2(u) = ±1 = ϵ and all

other χi(u) = 0. We have another SOR: 0 = 1 · 1 + ϵχ2(1). Hence χ2(1) = 1 and ϵ = −1. A linear character
cannot have 0 as a value. Hence we have 2 linear characters and [G : [G,G]] = 2.

Important tool of Frobenius-Schur indicator.

Theorem. For arbitrary representation V of finite group G with character χ we have χS2V (g) = (χ(g)2 +
χ(g2))/2 and χΛ2V (g) = (χ(g)2 − χ(g2))/2.

Definition. (Frobenius-Schur Indicator.) Let k be an algebraically closed field of characteristic 0. Then
s(χ) = |G|−1

∑
g χ(g

2) = |G|−1
∑

g(χS2V − χΛ2V (g)) = 〈χS , 1〉 − 〈χA, 1〉 is an integer number.

Note that 〈χS , 1〉+ 〈χA, 1〉 = 〈χ2, 1〉 = |G|−1
∑

g χ(g)χ(g) = 〈χ, χ̄〉 = [χ is real].

Corollary. For χ ∈ Irr(G) there are exactly 3 possibilities:
〈χS , 1〉 〈χA, 1〉 s(χ)
1 0 1
0 1 −1
0 0 0
Hence we have 3 possible types of irreducible characters. We can call them type 1, type 2, and type 3

charcters.
An example of dihedral group of order 8 and quaternion group shows that s(χ) cannot be determined

from the character table. Abelian group does not have type 2 characters. A nontrivial character of odd
group is always indefinite.
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Frobenius-Schur theorem. An irreducible character has type 1 iff V is defined over reals.

The number of square root of a group element is a class function, which is a virtual character:
θ =

∑
χ s(χ)χ. The number of involutions in G is equal to t =

∑
χ ̸=1 s(χ)χ(1). Moreover, t2 ≤ (s−1)(n−1),

where n = |G| and s is the number of conjugacy classes.

Proof. First note that 〈θ, χ〉 = |G|−1
∑

g θ(g)χ(g
−1) = |G|−1

∑
h χ(h

−2) = s(χ). Next note that 1 + t =

θ(1) =
∑

χ s(χ)χ(1) = 1 +
∑

1 ̸=χ∈Irr(G) s(χ)χ(1). And now t2 ≤ (
∑

χ ̸=1 χ(1))
2 = (

∑
χ ̸=1 1 · χ(1))2 ≤

(s− 1)
∑

χ ̸=1 χ(1) = (s− 1)(n− 1).

Corollary. If the group is even, then there is a non-trivial conjugacy class of size not exceeding ((n−1)/t)2.

Brauer-Fowler theorem. Let m be an integer number and G be a simple group. Let u be an involution
such that |CG(u)| ≤ m. Then |G| < (m2)!. In particular there exists only finitely many such groups G.

This result motivated Brauer’s program.

Involution count formula. The number of involutions equals
∑

χ ̸=1 s(χ)χ(1).

Proof of Brauer-Fowler theorem. Let n = |G|. Then t ≥ |u| = |G| · |CG(u)|−1 ≥ n/m. Existence of
small class theorem implies that there is g 6= 1 such that |g| < (n/t)2 ≤ m2. We have a small conjugacy
class. The group is simple, hence it must act faithfully on the cosets of this class, therefore we can embed it
into symmetric group of required size. More precisely, if H = G, then 1 6= g ∈ Z(G), therefore G = Z(G)
and |G| = 2. If H 6= G, then r = [G : H] > 1. And G maps to the symmetric group of the set G/H, which
has more than 1 element. This action is faithful.

Brauer’s vision was to study finite simple groups by looking at and controlling the centralizer of an
involution.

Chapter 5

Induced representations.
Two ways to get induced representations: restriction and tensor product (over noncommutative rings).

If U is a kG-module and H ⊂ G, then UH is kH-module obtained by restriction. If V is a kH-modules, then
V G is a kG-modules obtained by tensor product. Now (kG)kH is free of finite rank [G : H]. In particular,
dim(V G) = [G : H] dimV .

Suppose V is 1-dimensional (over k) kH-module. Then V G is called monomial kG-module. If we
use matricial representation, we see that DG is represented by block monomial (generalized permutation)
matrices.

We can easily see that χG(g) =
∑

i χ̇(g
−1
i ggi). Here χ̇ is χ extended by zeros. Hence χG(g) = 0

whenever g does not belong to any conjugate of H. In particular, if H is a normal subgroup of G, then
χG(G \H) = 0. Moreover, if H ⊂ Z(G), then χG = [G : H]χ̇. Note that in general χ̇ is not a class function
on G. We can only say that χ̇ does not depend on H-conjugacy class.

Corollary. If char k does not divide |H|, then χG(g) = |H|−1
∑

t∈G χ̇(t−1gt).

Philosophy. Many irreducible representations of G are monomial.

Lemma. If f :S → R is a ring homomorphism. If V is an S-module, then V R = R⊗S V is an R-module.
There is a natural abelian group isomorphism between HomR(V

R, U) = HomS(V,US).

Proof. Obvious.

Frobenius reciprocity. Suppose that char k does not divide |G|. (Semisimple situation.) If H ⊂ G, U
is a simple kG-module, V is a simple kH-module, m is the number of copies of V in UH , n is the number
of copies of U in V G. Then m > 0 iff n > 0. Also m = n iff dimk EndkG U = dimk EndkH V . The last
assumption holds when U and V are absolutely irreducible (the dimension is 1 of endomorphism ring is 1
for such modules).

Proof. The first statement follows from the previous lemma. The second one follows from decomposition
into irreducible modules. We have mEndkH V = nEndkG U .
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Corollary. If char k does not divide |G|, H ⊂ G, k is a splitting field for G and H, and Ui and Vj are all
simple kG and kH modulesw, then (Ui)H = ⊕jai,jVj iff V G

j = ⊕iai,jUi.

Theorem. In semisimple case without splittig field assumption we have i(W,U) = [χW , χU ] ∈ k, where
W and U are finite-dimensional kG-modules. Here i(W,U) = dimHomkG(W,U) is the intertwining number.
Moreover, if U is a kG-module and V is a kH-module, then [χU , χ

G
V ] = [(χU )H , χV ].

Proof. Using additivity reduce everything to simple modules. Apply first orthogonality relation.

Theorem. (No splitting field assumption.) If U is a kG-module and V is a kH-module, then V G ⊗k U =
(V ⊗ (UH))G as kG-modules. Taking characters we obtain (νG)µ = (νµH)G.

A couple of quick applications. Suppose that char k = 0 and G acts transitively on E. Identify E with
G/H where H is the stabilizer of a group element. Then kE is the induced representation of the trivial
representation of H. Let π be the fixed point counter: π = 1GH . Now [π, 1]G = [1GH , 1]G = [1, 1]H = 1
(Burnside lemma), [π, π] = [1GH , π]G = [1, πH ]H is the number of H-orbits on E. This is another old result.

If H is a subgroup of abelian group G. Then any linear character ν of H extends to a character of G.
Proof: C∗ is a divisible, hence injective Z-module. Character proof: νG = ⊕µi, hence ν = (µi)H .

Restriction and induction for class functions. We assume that char k does not divide |G|. Let Fk(G)
be the k-algebra of class functions on G. Restriction: Fk(G) → Fk(H) is a ring homomorphism. Induction:
if ν ∈ Fk(H), then νG:G → k is defined by νG(g) = |H|−1

∑
t ν̇(t

−1gt) = |H|−1
∑

t ν̇(g
t). Here ν̇ is ν

extended by zero. Note that if g /∈ ∪Ht then νG(g) = 0. Here ν̇ = 0 is an extension of ν. If ν is a character,
then νG is the induced character.

Proposition. If ν ∈ Fk(H), then νG ∈ Fk(G). (νE)G = νG. [νG, µ]G = [ν, µH ]H . (νµH)G = νGµ.

Proof. Trivial.

Definition. A group G is called monomial group if every irreducible complex representation of G is
monomial.

Examples. Q8, Dn, A4, S4, S3, special group of order 21.

Non-monomial groups. BT24 has 2-dimensional irreducible character, which is not monomial because
the group does not have index-2 subgroup. A5 is not monomial because three of its characters that have
order 3 and 4 are not monomial because A4 has no subgroup of index 3 and 4. Similarly, S5 is not monomial.

Two facts about monomial groups. If |G| < 24, then it is monomial. Nilpotent groups are monomial.
Monomial groups are solvable.

A group is nilpotent iff it is a direct product of Sylow p-groups. Monomial groups are closed under
direct products. p-groups are monomial.

Definition. A Hall subgroup is a subgroup H such that |H| and [G : H] are relatively prime. This is a
generalization of Sylow subgroup.

Third application. If H is a Hall subgroup and h ∈ H ∩ Z(G). Then h ∈ G′ iff h ∈ H ′.

Proof. Assume that h ∈ G′ and h /∈ H ′. Fix a 1-dimensional CH-module V on which h acts nontrivially.
Fix a simple CG-module U ⊂ V G whose dimension is relatively prime to p. This is possible only in Sylow
case. From Frobenius reciprocity it follows that V is a simple submodule of UH . Now h acts on U by scalar
multiplication by some λ ∈ C∗. Also the dimension of U and |H| are relatively prime. If h ∈ G′ then
det(D(h)) = λdimU = 1. On the other hand λ|H| = 1.

Goal for the rest of the course. To prove the following application of induced representations: If G
acts transitively on set E such that any non-indentity element has at most one fixed point, then for any two
fixed-point free elements their product is also fixed-point free unless it is equal to 1.

Mackey theorems. Suppose H and K are subgroups of G, V is a kH-module. (1) What can we say
about (V G)K? (2) When can we say V G is simple.

If G = ∪igiH, then V G = ⊕igi ⊗ V . We have V = 1⊗ V ⊂ V G. In fact gV = g(1⊗ V ) = g ⊗ V . Note:
G permutes the gV ’s transitively. (If g ∈ giH, then gV = giV .) Also H is the isotropy subgroup of V .
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Recognition criterion for an induced module. (H is not given a priori.) Suppose U is a kG-module
such that U = ⊕iVi, where Vi are k-vector subspaces. Suppose G acts on U in such a way that Ui are
permuted transitively. Let H be an isotropy subgroup of V . Then V is a kH-module and U = V G.

Proof. It is sufficient to prove that V G = kG ⊗kH V → U is surjective and two modules have the same
dimension.

Theorem. Suppose H and K are subgroups of G, V is a kH-module. Given K and H write the double-
coset decomposition G = ∪s∈SKsH. For any s ∈ G define Ks = sHs−1 ∩ K. Then sV ⊂ V G is a
kKs-submodule. We have (V G)K = ⊕s∈S(sV )K .

Proof. Define V (s) =
∑

g∈KsH gV ⊂ V G. Note that V (s) is a kK-submodule. Now we check that V (s) =

(sV )K as kK-modules. To see this, apply induced module criterion: K acts transitively on {gV | g ∈ KsH}.
Now the isotropy subgroup of sV is: xsV = sV iff x ∈ sHs−1 ∩K = Ks.

Theorem. Mackey’s irreducibility criterion. We assume that char k = 0. V G is absolutely irreducible iff V
is absolutely irreducible and for any s in S \ {1} two Hs-modules sV and VHs

have no common composition
factors.

Proof. We write [U,W ] for [χU , χW ]. [V G, V G] = [V, (V G)H ]H = [V,⊕s∈S(sV )H ]H =
∑

s∈S [V, (sV )H ]H =∑
s∈S [VHs

, sV ]Hs
= [V, V ]H +

∑
s∈S\{1}[VHs

, sV ]Hs
∈ k. Now V G is absolutely irreducible iff [V G, V G] = 1

iff [V, V ]H = 1 and for all s ∈ S \ {1} we have [VHs , sV ]Hs = 0.

Corollary. If char k = 0 and H is a normal subgroup of G, then Write G = ∪igiH. Let V be an absolutely
irreducible kH-module. Then V G is absolutely irreducible iff for any i ≥ 2 we have V 6= giV as kH-modules.

Corollary. If char k = 0. Let ν:H → k∗ be a linear character. Then the monomial character νG is
absolutely irreducible iff for any s ∈ S such that s 6= 1 there is an h ∈ sHs−1 ∩ H such that 6= (h) 6=
ν(s−1hs) = ν(hs), i.e., iff ν(h−1s−1hs) 6= 1.

Chapter 6
Frobenius groups.
If a finite group G acts on a finite nonempty set E. For e ∈ E we denote by Ge the isotropy subgroup

of e. We can easily see that Gge = g−1Geg. If G is transitive on E, then all isotropy subgroups are conjugate.
Recall that in transitive case E = G/Ge as G-sets.

Definition. We say that G-action on E is semiregular or regular iff for any e ∈ E we have Ge = {1} (also
called free) or the previous condition holds and it is transitive.

Definition. If E is a transitive G-set, then let K = {1} ∪ {g ∈ G | π(g) = 0} = G \ ∪eGe, where π is fixed
point counter. K is called the Frobenius kernel of the action. It is closed under inversion and conjugation.
If K is closed under multiplication, then it is a normal subgroup.

Jordan’s Inequality. If G acts transitively on E, then |K| ≥ |E|.

Proof. Burnside: |G| =
∑

g π(g) =
∑

g∈K π(g) +
∑

g∈G\K π(g) ≥ |E|+ |G| − |K|.

Jordan’s theorem. If H is a subgroup of G, then |G \ ∪Hg| ≥ [G : H]− 1.

Proposition. Consider statements: (1) π(g) ≤ 1 for any g ∈ G \ {1}. (2) |K| = |E|. (3) K is a subgroup
of G (hence K is a normal subgroup of G). We have (1) iff (2). If (3) holds, then there exists an H-set
isomorphism K = E where H acts on K by conjugation. In particular, (3) implies (1) and (2).

Proof. (1) iff (2) is clear from proof of Jordan inequality. Assume (3) holds. Define θ:K → E such
that θ(g) = ge where g ∈ K. Now we check that this is an H-set morphism. If g ∈ K and h ∈ H, then
θ(hg) = θ(hgh−1) = (hgh−1)(e) = h(ge) = hθ(g). Now we prove that θ is injective.

Definition. (Frobenius.) If (1) holds, we say that G-action on E is Frobenius provided that 1 < |E| < |G|.
In this case G is a Frobenius group.

Big Frobenius theorem. Let E be a Frobenius G-set. Then K is a subgroup. This also means that
(1), (2), and (3) are equivalent.
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Corollary. Let n = |E|, where E is a Frobenius G-set. Then K acts regularly on E, G is a semidirect
product of K and H, H acts semiregularly on E \ {e} and K∗ = K \ {1}, |H| divides n − 1, K and H are
Hall subgroups of G, K = {x ∈ G | xn = 1}.
Corollary. p-groups, abelian groups, and simple groups cannot be Frobenius.

K is called the Frobenius kernel, H = Ge is called Frobenius complement, and we have |G| = |K| · |H|.
Big Frobenius states that K is a subgroup of G (hence a normal subgroup).

Given a subgroup H of G, when is G/H a Frobenius G-set?

Definition. A nontrivial subgroup H of G is said to have trivial intersection property if for any g ∈ G \H
we have H ∩Hg = {1}.
Theorem. If H is a subgroup of G, then G acts Frobeniusly on G/H iff H has trivial intersection property.

Proof. Assume G/H is Frobenius. Then 1 6= H 6= G. Consider g /∈ H. Now Hg ∩ H fixes e and g−1e,
which are different points, hence Hg ∩ H = {1}. Now assume that H has trivial intersection property.

Suppose g 6= 1 fixes cosets xH and yH. We have xH = gxH, hence g ∈ Hx−1

. Also g ∈ Hy−1

. Honce
Hx−1 ∩ Hy−1 6= {1}. Conjugate this by y. We have {1} 6= Hx−1y ∩ H. By trivial intersection property
x−1y ∈ H, hence xH = yH.

Example. If G is nonabelian group of order pq, where p < q are prime, then it is Frobenius.

Proof. Fix Sylow’s subgroups P and Q. Note that Q is a normal subgroup because [G : Q] is the smallest
prime dividing |G|. It remains to check that H has trivial intersection property. Observe that NG(P ) = P by
cardinality consideration. Take g ∈ G\H. We know that Hg 6= H. Both are of order p, hence Hg∩H = {1}.
Extra: Q∗ is disjoint from ∪gH

g. This implies that Q∗ ⊂ K∗, hence Q = K.

Proposition. If H is a subgroup of G, the set K is a subset of G, H ∩ K = {1}. Then K is a normal
subgroup of G iff every ϕ ∈ Irr(H) extends to some χ ∈ Irr(G).

Proof. Consider extensions χi of all ϕi ∈ Irr(H). Let K̃ = ∩i kerχi ⊃ K. It is easy to see that K̃ = K is
a normal subgroup of G.

Key tool for proving big Frobenius. Suppose G is a group, H and K are its subgroups, H ∩K = {1},
and |H| · |K| = |G|. To show that K is a normal subgroup of G it is sufficient (and necessary) to check that
every ϕ ∈ Irr(H) extends to some χ ∈ Irr(G) with ker(χ) ⊃ K. Of course we may assume that ϕ 6= 1H .

Proof of the Big Frobenius. Suppose Ch(G) is the character ring of G (a ring of class functions on G).
Let Ch0(G) = {µ ∈ Ch(G) | µ(1) = 0} be an ideal of Ch(G). Step 1: res: Ch0(G) → Ch0(H) is surjective
and split by ind. Step 2: ind:Ch0(H) → Ch0(G) is an isometry (preserves inner product). Step 3: Let
ϕ ∈ Irr(H) be a nontrivial character. Define ν = d ·1H −ϕ ∈ Ch0(H). Now χ is what goes to νG by going-in
process. We must check that χ ∈ Irr(G) and K ⊂ kerχ.

Step 1: If ν ∈ Ch0(H), then νG(g) = |H|−1
∑

t∈G ν̇(gt). We have νG(1) = 0. If h 6= 1, then (νG)H(h) =
|H|−1

∑
t∈G ν̇(ht) = |H|−1

∑
t∈H ν(h) = ν(h). Step 2: If µ, ν ∈ Ch0(H), then 〈νG, µG〉. Step 3: Have

ν = d · 1H − ϕ. Define χ by equation d · 1G − χ = νG. Since νG restricts to ν we clearly have χH = ϕ. In
particular, χ(1) = ϕ(1) = d. Now 〈ν, 1H〉 = d and 〈ν, ν〉 = d2 + 1. On the other hand 〈ν, 1H〉 = 〈νG, 1G〉 =
〈d · 1G−χ, 1G〉 = d−〈χ, 1G〉 and 〈ν, ν〉 = 〈νG, νG〉 = d2+ 〈χ, χ〉. Therefore, 〈χ, χ〉 = 1. Hence χ or −χ is an
irreducible charcter. Finally need to know that K ⊂ kerχ. This means that g ∈ K implies χ(g) = χ(1) = d.
We may assume that g 6= 1.

We want to find all irreducible representations of Frobenius group G with kernel K and complement H
provided that we know all representations of K and H. (This covers affine groups in dimension 1, pq-groups,
etc.)

Proposition. | Irr(G)| = | Irr(H)|+ (| Irr(K)| − 1)/|H|.
Proof. First count the number of conjugacy classes that are in G \K∗. Two elements of H are conjugate
in G iff they are conjugate in H (take a projection from G to H with kernel K). Since G \ K∗ = ∪gH

g,
this gives us | Irr(H)| classes. Now we should count G-classes within K∗. Let H act by conjugation on
K-classes of K∗. This action is semiregular. Hence we have (| Irr(K) − 1)/|H| classes in K∗. To prove the
semiregularity, suppose that h ∈ H acts trivially on K-class of x. This means that hxh−1 = yxy−1, hence
h ∈ K ∩H.
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Theorem. Simple CG-modules consist of those that come from lifting CH-modules to G and (| Irr(K)| −
1)/|H| distinct simple CG-modules induced by tensor product from nontrivial simple CK-modules.

Proof. Look at the set of all nontrivial simple CK-modules. Let H act on this set by twisting: V 7→ hV =
h⊗ V ⊂ V G. Recall that (gV )G = V G. Hence any orbit of this action is mapped to the same CG-module.
Pick a simple submodule of this CG-module. If we restrict it to H, we get a direct sum of some the modules
of the orbit. This would product m (where m is the number of H-orbitsi of the twisting action) distinct
(because they are distinct as CH-modules) CG-simple modules (not yet counted). But then we would have
n|H| = | Irr(K)| − 1 ≤ |H|m, hence n ≤ m, therefore n = m and the size of each orbit is |H|. Hence H acts
semiregularly on nontrivial simple CK-modules. Frobenius Reciprocity implies that the restriction contains
all the elements of the oribt, comparison of dimensions implies that it must be isomorphic to V G where V is
an element of the orbit. Hence if we induce a CG-module from a CK-module by tensor product we obtain
a simple module.

Definition. A group H acting as a group of automorphisms of K is called fixed point free if for every
σ ∈ H and x ∈ K if σ(x) = x, then x = 1.

Question. What kind of groups can be K and H?

Theorem. (Without proof.) K is nilpotent.
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