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Morse theory.

Suppose X is a finite-dimensional smooth manifold and f :X → R is a Morse function. Morse theory relates
the topology of X and critical points and gradient flow of f . For example, if f is a Morse function, then
the number of critical points is at least

∑
i dimHi(X). We can also describe the cup product, characteristic

classes, Reidemeister torsion etc.
We are interested in this because this theory has infinite-dimensional generalizations. A classical example

is the loop space of X: LX. Choose a Riemannian metric on X. Then we can define a function f :LX → R:
f(γ) =

∫
S1 |γ′(t)|2dt. This function is called energy. Critical points of f are closed geodesics parametrized

at constant speed. It follows that for any metric on S2 there are at least three closed geodesics.
Floer theory has many versions: symplectic Floer theory studies invariants of symplectomorphisms of a

symplectic manifold.

Theorem. (Arnold Conjecture.) If M is a closed symplectic manifold and ϕ is a Hamiltonian symplecto-
morphism with nondegenerate fixed points, then the number of fixed points is at least

∑
i dimHi(M).

Much weaker Lefschetz theorem says that the number of fixed points is at least
∣∣∑

i(−1)i dimHi(M)
∣∣.

The strategy for proving Arnold conjecture is to define Floer homology of a symplectomorphism as the
homology of some chain complex generated by fixed points.

The second step is to show invariance under Hamiltonian isotopies. And the third step is to show that
Floer homology of idM is H∗(M).

First we shall do finite-dimensional Morse theory. Then we shall discuss symplectic Floer homology.
Then we shall apply this theory to obtain some topological invariants of 3-manifolds. We take a 3-dimensional
manifold, construct a functional on some infinite-dimensional space and take Floer homology of it. An
interesting example is Seiberg-Witten homology. There is a (mostly equivalent) Hegaard-Floer homology. A
third example is embedded contact homology.

Symplectic field theory is related to this stuff. SFT gives invariants of contact manifolds and Legendrian
knots. A contact form on a closed oriented 3-manifold is a 1-form λ such that λ∧ dλ ̸= 0. The kernel of λ is
called a contact structure. Associated to λ is the Reeb vector field R defined by dλ(R, x) = 0 and λ(R) = 1.

Weinstein Conjecture. For any closed oriented 3-manifold Y and any contact form R has a closed orbit.
Proved by Taubes using Floer homology ideas.

End of overview.
Finite-dimensional Morse theory.
Suppose that X is a closed smooth manifold, f :X → R is a smooth function. A critical point of f is

a point p ∈ X such that df(p) = 0. Denote the set of all critical points by Crit(f). If p is a critical point,
then we define the Hessian H(f, p):TpX ⊗ TpX → R as follows: if ∇ is a any connection on cotangent
bundle, then H(f, p) = ∇(df)p:TpX → T ∗

pX. Equivalently, we can regard df as a section df :X → T ∗X.
Then H(f, p) is the composition T (df)p:TpX → T(p,0)(T

∗X) = TpX ⊕ T ∗
pX → T ∗

pX. Critical point p is
called nondegenerate if H(f, p) is nondegenerate. Equivalently, the graph of df is transverse to the zero
section at (p, 0). The index of p is the number of negative eigenvalues counted with multiplicities. Note that
nondegenerate critical points are isolated. Morse lemma says that if p is a nondegenerate critical point of
index i, then there is a chart centered at p such that f = f(p) +H(f, p) in this chart.

A function f is called a Morse function if all of its critical points are nondegenerate.

Proposition. The set of Morse functions is open and dense in the space of smooth functions X → R in the
smooth topology.

Example. Height function on torus.

Non-example. Height function on torus lying horizontally.

A Morse-Bott function is a function whose critical points have nondegenerate Hessian and the set of
critical functions is a nice submanifold.

1



Classical Morse theory. If f is a Morse function and the values of f at critical points are all distinct. If
a is not a critical value, define Xa = f−1(−∞, a]. This is a smooth manifold with boundary ∂Xa = f−1(a).

Basic lemmas. If the interval [a, b] contains no critical values, then Xa is diffeomorphic to Xb. If the
interval [a, b] contains a single critical value and its index is i, then Xb is obtained from Xa by attaching an
i-handle Di ×Dn−i along Si−1 ×Dn−i.

The simplest application of this theory is Morse inequalities: if ci is the number of critical points of
index i and bi = dimHi(X), then for each i we have ci − ci−1 + · · ·+ (−1)ic0 ≥ bi − bi−1 + · · ·+ (−1)ib0.

Morse complex and Morse homology.
Suppose that X is a closed smooth manifold and f :X → R is a Morse function. Choose a generic

Riemannian metric on X. Hence we have ∇f , the gradient of f . Idea: Define a chain complex which is
generated by critical points of f and whose differential counts flow lines of −∇f between critical points.
This complex leads to Morse homology HM

∗ (X, f, g).

Fundamental theorem. HM
∗ (X, f, g) = Hs

∗(X).

Exercise. If C is a chain complex, ci = dimCi and bi = dimHi, then ci − · · ·+(−1)ic0 ≥ bi − · · ·+(−1)ib0
for all i.

Let ξ = −∇f , let ϕs:X → X for s ∈ R denote the flow generated by ξ. If p is a critical point, define
the descending manifold of p as D(p) = {x ∈ X | lims→−∞ ϕs(x) = p} and the ascending manifold of p as
A(p) = {x ∈ X | lims→∞ ϕs(x) = p}.

Proposition. Let p be an index i critical point. Then D(p) is an embedded open disc of dimension i. Also
TpD(p) is the negative eigenspace of H(f, p):TpX → T ∗

pX → TpX. Likewise, A(p) is an embedded open disc
of dimension dim(X)− i and TpA(p) is the positive eigenspace.

Definition. The pair (f, g) is called Morse-Smale if f is a Morse function and for any two critical points
p and q the manifold D(p) is transversal to A(q).

Proposition. Fix a Morse function f . If g is generic, then (f, g) is Morse-Smale. Generic means open and
dense.

From now on we assume that (f, g) is Morse-Smale.
If p and q are critical points a flow line of ξ = −∇f from p to q is a path γ:R → X such that

lims→−∞ γ(s) = p and lims→∞ γ(s) = q and γ′ = ξ. Flow lines are not unique.
Note: Morse cohomology is obtained by replacing −∇f with ∇f .
Note that R acts on the set of flow lines from p to q by precomposition with translations, Define m(p, q)

as the set of all flow lines modulo this action.
The map γ → γ(0) identifies the set of all flow lines from p to q with D(p) ∩ A(q). The Morse-Smale

condition implies that if p ̸= q then m(p, q) is a manifold of dimension ind(p)− ind(q)− 1.
Orientation of m(p, q). Choose an orientation of D(p) for each p. Given [γ] ∈ m(p, q) let x = γ(0) ∈

D(p)∩A(q). We have TxD(p) = Tx(D(p)∩A(q))⊕(TxX/TxA(q)) (follows from transversality). The last space
is isomorphic to T[γ]m(p, q) ⊕ Txℑ(γ) ⊕ TqD(q). Orient T[γ]m(p, q) so that this isomorphism is orientation
preserving.

Definition of Morse complex C∗(X, f, g). Denote by Ci the free abelian group generated by index i
critical points. A differential ∂i:Ci → Ci−1 is defined as follows: ∂p =

∑
q q ·#m(p, q). Note that m(p, q)

has dimension 0. The number #m(p, q) counts points with orientation (positive orientation gives 1, negative
gives −1).

Theorem. If X is closed and (f, g) is Morse-Smale then for any two critical points p and q the moduli space
m(p, q) has a natural compactification to a manifold with corners m̄(p, q) whose codimension k stratum is
m̄(p, q)k = ∪ri∈Crit(f)m(p, r1)×m(r1, r2)× · · ·m(rk−1, rk)×m(rk, q). Here p, r1, . . . , rk, and q must be all
different.

Corollary. If ind(p) − ind(q) = 1, then m(p, q) is compact and has dimension 0, hence it is finite and the
Morse differential is well-defined.
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Corollary. If ind(p)− ind(q) = 2, then m̄(p, q) is a compact oriented manifold with boundary⋃
r:ind(p)−ind(r)=1

m(p, r)×m(r, q).

Now we shall prove that ∂2 = 0. Suppose that ind(p)− ind(q) = 2. Then m̄(p, q) is a compact oriented
manifold with boundary ∪r:ind(p)−ind(r)=1m(p, r)×m(r, q). Then ⟨∂2p, q⟩ =

∑
r:ind(p)−ind(r)=1⟨∂p, r⟩·⟨∂r, q⟩ =

#∂m̄(p, q) = 0.
In general, in good case we can get a compactified moduli space of flow lines by adding broken flow

lines.
Decomposition into (compactifications of) descending boundary manifolds gives us a CW-decomposition

and the Morse boundary map is the cellular boundary map. Note that the closure of descending manifold
need not to be a closed ball. The sign of the differential depends on choice of orientations of descending
manifolds.

First we shall show that Morse homology does not depend on f and g. If (f ′, g′) is another Morse-Smale
pair, then there is canonical isomorphism between two Morse homologies.

We can define Morse complex without making any orientation choices. For every critical point we add
two different elements in the set of generators, which correspond to different orientations. Then we say that
their sum is zero. Henceforth we shall usually omit orientation choices from the notation.

There are two ways to prove that Morse homology is independent of metric and Morse function. One
of them is called continuation maps. Suppose (f0, g0) and (f1, g1) are two Morse-Smale pairs on X. Let
T = {(ft, gt) | t ∈ [0, 1]} be a generic smooth path from (f0, g0) to (f1, g1). Define the continuation
map between two Morse complexes as follows. Fix a nonnegative smooth function β: [0, 1] → R such that
β−1(0) = {0, 1}, β′(0) > 0 and β′(1) < 0.

Define a vector field V on [0, 1] × X by V = β(t)∂t + ζt, where ζt is the negative of gt-gradient of ft.
Note that Crit(V ) = {0} × Crit(f0) ∪ {1} × Crit(f1).

If P and Q are critical points of V , then denote by mV (P,Q) the moduli space of flow lines of V (modulo
reparametrization) from P to Q. Orient descending manifolds of critical points of V as follows: (0, p): use
[0, 1] direction first, then chosen orientation of D(p) in X, (1, q): use chose orientation of D(q) in X. If (ft, gt)
is generic, then mV (P,Q) is an oriented manifold. Note that mV ((0, p), (0, q)) = (−1)ind(p)+ind(q)m0(p, q),
mV ((1, p), (1, q)) = m1(p, q) and dimmV ((0, p), (1, q)) = ind(p) − ind(q). Now for p ∈ Criti(f0) define
Φ(p) =

∑
q∈Criti(f1)

#mV ((0, p), (1, q))q.

Lemma. Φ is a well-defined chain map.

Proof. Usual arguments show that if p ∈ Criti(f0) and q ∈ Criti(f1), then mV ((0, p), (1, q)) is compact
(finite), hence Φ is well-defined. If p ∈ Criti(f0) and q ∈ Criti−1(f1), then m

V ((0, p), (1, q)) has a compactifi-

cation to a 1-manifold with boundary ∂mV ((0, p), (1, q)) = ∪r∈Criti−1(f0)m
V ((0, p), (0, r))×mV ((0, r), (1, q))∪

∪r∈Criti(f1)m
V ((0, p), (1, r))×mV ((1, r), (1, q)).

One can now easily see that chain map conditions are satisfied. Another way to look at this: V has

a well-defined Morse complex with Ci = Ci−1(X, f0, g0) ⊕ Ci(X, f1, g1) and ∂ =

(
−∂0 0
Φ ∂1

)
, therefore

0 = ∂2 =

(
∂20 0

−Φ∂0 + ∂1Φ ∂21

)
.

Example. If (ft, gt) does not depend on t, then Φ = id.

Proof. Since V = β(t)∂t + ζ, any flow line of V on [0, 1] × X projects to a flow line of ζ on X. If
p, q ∈ Criti(f), then mζ(p, q) = ∅ when p ̸= q and one-element set consisting of constant map if p = q. It
follows that Φ = ± id and it is easy to check that Φ = id.

Lemma. Suppose we have two generic paths between a pair of Morse-Smale pairs. Then associated contin-
uation maps Φ0 and Φ1 are chain homotopic.

Proof. The space of Morse-Smale pairs is contractible, hence we can choose a generic homotopy between
two given generic paths. Hence we have a map of [0, 1]2 to Morse-Smale pairs. We define a vector field Ṽ on
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[0, 1]2 ×X by Ṽ = β(t)∂t + ζs,t. Define K:CM
∗ (X, f0, g0) → CM

∗ (X, f1, g1) by counting flow lines of Ṽ with

appropriate signs. If p ∈ Criti(f0), then K(p) =
∑

q∈Criti+1(f1)
# ∪s∈[0,1] m

Ṽ (((s, 0), p), ((s, 1), q))q. Trivial
computations show that K is a chain homotopy.

Corollary. The map Φ∗:H
M
∗ (X, f0, g0) → HM

∗ (X, f1, g1) does not depend on generic path T from (f0, g0)
to (f1, g1) because the space of Morse-Smale pairs is contractible.

Warning/Cool Thing. For other kinds of Floer theory continuation map depends on homotopy class of
path.

Lemma. Φ is a functor from fundamental groupoid of piecewise-smooth Morse-Smale pairs to chain com-
plexes. (Composition of paths gets mapped to the composition of maps.)

Theorem. Given (f0, g0) and (f1, g1), let Γ be a generic path from (f0, g0) to (f1, g1) and let ∆ be the
reverse path. Obviously Φ∆ΦGamma ∼ idCM

∗ (X,f0,g0). Likewise for ΦΓΦ∆. Hence ΦΓ induces isomorphism

on Morse homology. Hence we can define HM
∗ (X) = HM

∗ (X, f, g).

Note that if ft is Morse for all t, then we can identify critical points of f0 and f1. If (ft, gt) is Morse-Smale
for all t, this identification is an isomorphism of chain complexes. This isomorphism is chain homotopic to
continuation map. If we replace β by ϵβ for sufficiently small ϵ, then they become equal. Continuation maps
for different β are chain homotopic.

Bifurcations. For a generic family (ft, gt) there are times t1 < · · · < tk such that at each tm one of
the following happens: (1) Descending and ascending manifolds of two critical points whose indices differ
by 1 do not intersect transversally. Morse complex does not change. (2) Handleslide: if q, q′ ∈ Criti and
q ̸= q′. A flow line from q′ to r ∈ Criti−1 gets glued to a new flow line from q to r either before or after the
bifurcation. Thus, ∂+q = ∂−q ± ∂q′. Also ∂+p = ∂−p ∓ ⟨∂−p, q⟩q′ for p ∈ Criti+1. Define an isomorphism
Φ:C− → C+ as Φ(q) = q ± q′ and Φ(s) = s for all other critical points s. (3) Birth or death: two critical
points p ∈ Criti and q ∈ Criti−1 cancel. Algebraically: ∂+ = ∂−p

′ ± ⟨∂−p′, q⟩∂−p for all p′ ̸= p. Define chain
homotopy Φ:C− → C+ as Φ(p) = 0, Φ(q) = ±∂−p∓ ⟨∂−p, q⟩q and Φ(r) = r for all r ̸= p, q.

Exercise. With corrections as necessary, Φ induces an isomorphism on homology.

Disadvantages of this approach: Analysis gets more complicated; Not clear that the isomorphism on
homology is canonical.

Conjecture. For a given family (ft, gt) if we replace β by ϵβ for sufficiently small ϵ, then Φ′ = Φ.

Morse homology versus singular homology.

Idea: Define a map CM
∗ → C∗ by sending a critical point to its descending manifold.

Proposition. For each critical point p the descending manifold D(p) has a compactification to a mani-
fold D̄(p) with corners such that codimension k stratum is a union ofm(p, q1)×m(q1, q2)×· · ·×m(qk−1, qk)×
D(qk) over all distinct qi ∈ Crit(f) distinct from p. The endpoint map to D(qk) is continuous.

Claim. In general D̄(p) is homeomorphic to a closed ball with dimension ind(p). Hence the compactified
manifolds D̄(p) together with the maps e: D̄(p) → X give X the structure of CW-complex. Now the cellular
complex coincides with Morse complex, hence Morse homology is isomorphic to cellular (therefore, singular)
homology.

Other approach. Define chain map CM
∗ (X, f, g) → C∗(X). Roughly p→ D̄(p).

Another approach. If things are sufficiently smooth, we can use currents.

We shall not take these approaches.

One more approach. Pseudocycles. We shall not take this approach, but it is probably the best one.

Proof of the Proposition. We have

∂D̄(p) =
⋃

q∈Crit(f)\{p}

(−1)ind(p)+ind(q)+1m(p, q)×D(q)
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and
∂m̄(p, q) =

⋃
p ̸=q ̸=r ̸=p

(−1)ind(p)+ind(r)+1m(p, r)×m(r, q).

Lemma. For each p ̸= q there is a cubical singular chain mp,q ∈ Cs
|p|−|q|−1(m̄(p, q)) such that mp,q

represents the relative fundamental chain in H|p|−|q|−1(m̄(p, q), ∂m̄(p, q)) and at the chain level ∂mp,q =∑
p ̸=q ̸=r ̸=p(−1)|p|+|r|+1mp,r ×mr,q. Here × is the cross product on cubical chains.

Proof. By induction on |p| − |q|. Given p and q the right hand side represents the fundamental class of
∂m̄(p, q). It is easy to see that ∂ of right hand side equals zero. So right hand side is a cycle, hence it clearly
represents the fundamental class of ∂.

Lemma. For each critical point p we can choose dp ∈ Cs
|p|(D̄(p)) such that dp represents the relative

fundamental class in H∗(D̄(p), ∂D̄(p)) and ∂dp =
∑

p ̸=q(−1)|p|+|q|+1mp,q × dq.

Proof. User previous lemma and induction.

Rest of the proof of the Proposition. Define a mapD:CM
∗ (X, f, g) → Cs

∗(X) byD(p) = e#dp. NowD is
a chain map: ∂sD = D∂M . Proof: Let p ∈ Criti(f). We have ∂sdp =

∑
q∈Crit(f)\{p}(−1)i+|q|+1e#(mp,q×dq).

If ind(q) ≥ i, then m(p, q) = ∅, if ind(q) ≤ i− 2, then the corresponding cube is degenerate. Hence we have∑
q∈Criti−1(f)

#m(p, q)e#(dq) = D(∂Mp).

Hence we have a map HM
∗ (X, f, g) → Hs

∗(X). It is easy to show that this map is independent on the
choice of f and g.

Now we show that this map is an isomorphism. Fix (f, g) as before. A singular cube σ: [−1, 1]i → X
will be called admissible if it is smooth and transverse to the ascending manifolds of the critical points. The
subcomplex generated by admissible cubes is a deformation retract, hence induces canonical isomorphism
on homology. Given an admissible chain σ and p ∈ Crit(f), define m(σ, p) = {(t, γ) | t ∈ domσ∧γ: [0,∞) →
X ∧ γ(0) = σ(t) ∧ γ′(s) = ξ(γ(s)) ∧ lims→∞ γ(s) = q}. Now Tt[−1, 1]i is isomorphic to Tγm(σ, p)⊕ TpD(p).
We have dimm(σ, p) = i− ind(p).

Define A:Ca
∗ (X) → CM

∗ (X, f, g) as A(σ) =
∑

p∈Criti(f)
#m(σ, p)p. We can compactify m(σ, p). The

boundary consists of the boundary of the cube times the broken lines. We have ∂m̄(σ, p) = m(∂σ, p) ∪⋃
q∈Crit(f)\{p}(−1)i+ind(q)m(σ, q)×m(q, p). Lemma: A is a chain map: A∂s = ∂MA. Proof: If p ∈ Criti−1(f),

then m̄(σ, p) is a compact 1-manifold with boundary. Obvious computation completes the proof of the
lemma. Exercise: The induced map A∗:H

s
∗(X) → HM

∗ (X) is defined. Lemma: If the metric g is nice near
the critical points (so that moduli spaces are smooth manifolds with corners), then AD = idCM

∗
and DA is

chain homotopic to idCa
∗ (X). Proof: AD = id is clear because if p ∈ Criti and q ∈ Criti, then D(p) ∩ A(q)

is empty if p ̸= q and {p} if p = q. Chain homotopy K:Ca
∗ (X) → Ca

∗+1(X) is defined by flowing a cube
down. More precisely, define the forward orbit of σ to be the space F (σ) = [−1, 1]i × [0,∞) with the
map e:F (σ) → X: e(t, s) = ϕs(σ(t)) where ϕs is the gradient flow. Compactify to e: F̄ (σ) → X, choose
appropriate singular chains on F̄ (σ).

More algebraic topology (on closed smooth manifolds) using Morse theory.

Poincaré duality. If Xn is oriented, then HM
i (X) = Hn−i

M (X).

Definition of Morse cohomology. Replace chains by additive functions on chains. Replace the differential
by its dual.

Proof of Poincaré duality. Replace f with −f . Note that orientations for descending manifolds of f
together with orientation of X induce orientations of descending manifolds of −f (which are the same as
ascending manifolds of f) because TpX = TpD(p, f)⊕ TpA(p, f) and A(p, f) = D(p,−f).

Definition. A local coefficient system on a topological space X is a functor from fundamental groupoid
of X to the category of abelian groups. On a locally path connected X this is the same as a flat G-bundle.

Now we define a chain complex C generated by pairs (σ, g) where σ is a cube (or a simplex) in X and
g ∈ Gσ(t0), where t0 is the center of the cube. The differential is defined in an obvious way (use obvious path
from the center of the cube to the center of its face).
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If X is path connected and simply connected, then any local coefficient system is constant. If Xn is a
manifold, define a local coefficient system Ox on X by Ox = Hn(X,X \ {x}) (an orientation of X at x is a
generator of Ox).

Theorem. If X is a closed manifold and G is any local coefficient system on X, then

Hi(X,G) = Hn−i(X,G⊗O).

Suppose X is a closed smooth manifold and (f, g) is a Morse-Smale pair and L is a local coefficient
system on X. Define CM

i (X, f, g, L) = ⊕p∈Criti(f)Lp and ∂(p, l) =
∑

q∈Criti−1(f)

∑
γ∈m(p,q) ϵ(γ)(q, ϕγ(l)).

Proof. We have ∂2(p, l) =
∑

r∈Criti−2
(r,
∑

q∈Criti−2

∑
γ1∈m(p,q)

γ2∈m(q,r)

ϵ(γ1)ϵ(γ2)ϕγ2
(ϕγ1

(l))) = 0, because two cor-

responding paths are homotopic.

Poincaré duality. CM
i (X, f, g, L) = Cn−i

M (X,−f, g, L⊗O) is an isomorphism of chain complexes.

Cup product. Let X be a closed smooth manifold. Choose a generic triple of Morse-Smale pairs (f1, g1),
(f2, g2), (f3, g3). Define ∗:Ci

M (X, f1, g1)⊗Cj
M (X, f2, g2) → Ci+j

M (X, f3, g3) as follows: ⟨p∗q, r⟩ is the number
of flow lines from r to s, from s to p and from s to q, where s is an arbitrary point of X. Codimension
counting and transversality and compactness shows that there is only a finite number of such points. Why
is ∗ a chain map? Want δ(p ∗ q) = (δp) ∗ q + p ∗ (δq). Trivial configuration counting show that this is true.

We can also do this for general coefficient systems: Hi
M (X,G1)⊗Hj

M (X,G2) → Hi+j
M (X,G1 ⊗G2).

Theorem. Under the canonical isomorphism H∗
M = H∗

s the product ∗ agrees with the cup product.

Proof. Idea: ⟨p ∗ q, r⟩ = #(A(p) ∩A(q) ∩D(r)).

Spectral sequences in Morse theorem.
Let F → E → B be a smooth fiber bundle where F , E, and B are closed smooth manifolds. Define

E2
i,j = Hi(B,Hj(Eb)). Here Hj(Eb) is a local coefficient system. For k ≥ 2 we have maps ∂k:E

k
i,j →

Ek
i−k,j+k−1 such that ∂2k = 0 and Ek+1 = H(Ek). We define E∞

i,j = Ek
i,j for k > i and k > j.

H∗(E) has a filtration: α ∈ FiH∗(E) iff α can be represented by a sum of singular cubes such that their
projections to B depend on only i of the coordinates on [−1, 1]∗.

We have associated graded groups GiH∗(E) = FiH∗(E)/Fi−1H∗(E). Note that GmHn(E) = E∞
m,n−m.

Example: SU(2) → SU(3) is a fibration with base S5 and fiber S3. We have E2 = E∞. Hence
H∗(SU(3)) = H∗(S

5 × S3).
Construction of Leray-Serre spectral sequence for Morse theory.
Suppose B, E, and F are closed manifolds. Choose a generic family of pairs {(fb, gb) | b ∈ B} where

fb:Eb → R is a smooth function on b, and gb is a metric on Eb. Choose a Morse-Smale pair (fB , gB) on B
such that (fb, gb) is Morse-Smale whenever b ∈ Crit(fB). Choose a connection ∇ on E. For b ∈ B denote
by ξb the negative gradient of fb with respect to gb. Denote by ξB the negative gradient of fB with respect
to gB . Define a vector field V on E by V (b, e) = ξb +H(ξB), where H(ξB) is the horizontal lift with respect
to ∇. Now Crit(V ) = ∪b∈Crit(fB) Crit(fb). Define a chain complex C∗ = ⊕i+j=∗ ⊕b∈Criti(fB) Critj(fb).
Define ∂:C∗ → C∗−1 by counting flow lines of V in the usual manner. Usual arguments show that ∂ is well
defined, ∂2 = 0, and H∗(C∗, ∂) = H∗(E).

In general, this chain complex has a filtration defined by FiC∗ = ⊕ b∈Crit(fB)
ind(b)≤i

Z{Crit∗−ind(b)}(fb).

This filtered chain complex gives us a spectral sequence. We have E0
i,j = GiCi+j = ⊕b∈Criti(fB) Critj(fb).

The differential ∂0:E
0
i,j → E0

i,j−1 is induced by ∂. We have E1
i,j = ⊕b∈Criti(fB)H

M
j (Eb, fb, gb).

It is easy to see that E2
i,j = HM

i (B, fB , gB , {HM
j (Eb, fb, gb)}).

Theorem. For k ≥ 2 Morse theory spectral sequence agrees with Leray-Serre spectral sequence.

Idea of proof. Leray-Serre spectral sequence comes from filtration on Cs
∗(E) defined by FiC∗(E) spanned

by cubes whose projection depends on at most i coordinates.

A chain map that preserves filtration defines a map of spectral sequences. If it is an isomorphism on
E2 term, then it is an isomorphism on all higher terms.

The idea is to define D:CM
∗ → C∗(E) by sending a critical point of V to its descending manifold,

compactified and made into a singular chain, taking care to use cubes that project to cubes of the correct
dimension in B. Previous discussion shows that this is an isomorphism on E2 terms.
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Definition. A 1-form ω on X is Morse if it is closed and is locally a differential of Morse function.

Let p and q be critical points of ω. Let γn be a sequence of flow lines from p to q. Let r0, . . . , rk+1 be
critical points such that r0 = p and rk+1 = q. Let ηi be a flow line from ri to ri+1. Say that γn converges
to (η0, . . . , ηk) if there are real numbers sn,0 < · · · < sn,k such that γn restricted to corresponding interval
converges to ηi in C

∞ on compact sets as n→ ∞. Also we require that homology class of γn −
∑

i ηi is zero
for sufficiently large n. Define the energy of a flow line γ by E(γ) =

∫
|γ′2| =

∫
γ∗ω.

Proposition. If γn is a sequence of flow lines with E(γn) < C, then there is a subsequence converging to a
broken flow line.

Lemma. Let γ:R → X such that γ′(s) is dual to −ω(γ(s)) (a) E(γ) ≥ 0 and equality holds iff γ is a
constant map to a critical point. (b) If E(γ) <∞, then there are critical points p and q such that γ is a flow
line from p to q: lims→−∞ γ(s) = p and lims→∞ γ(s) = q. (c) There is δ > 0 such that if γ is nonconstant
then E(γ) > δ.

Proof of Proposition. Suppose γn is a sequence of flow lines from p to q with energy less than C. Without
loss of generality we can assume that limnE(γn) = D. Choose ϵ > 0 such that ϵ-balls around critical points
are disjoint. Define sn,0 = inf{s ∈ R | d(γn(s), ω−1(0)) > ϵ}. Pass to a subsequence so that γn restricted
to [sn,0, sn+1,0] converges to η9 in C∞ on compact sets. Must have E(η0) ≤ C0. If E(η0) = C0, then
γn → (η0) in the defined sense. If E(η0) < C0, do the following. Let t0 = sup{t | d(η0(t), ω−1(0)) > ϵ}.
Define sn,1 = inf{s | s > sn,0 + t0 + 1 ∧ d(γn(s)ω−1(0)) > ϵ}. Pass to a subsequence so that γn restricted to
[sn,1, sn+1,1] converges to η1. And so on. Note that γn is homotopic rel endpoints to η0 . . . ηk.

Morse theory for f :X → S1. (Simplest version.) Assume f is Morse, choose generic metric. Let Σ ⊂ X
be a level set of f not containing any critical points. Define C∗ over Λ = {

∑
n≥n0

ant
n} for an ∈ Z. Let Ci be

a free abelian group generated by index i critical points. If p ∈ Criti(f), then ∂p =
∑

q∈Criti−1(f)

∑
n≥0 t

nzn,

where zn is the number of flow lines from p to q that cross Σ n times. Usual argument shows that ∂2 = 0,
homology as a Λ-module is a topological invariant of X and the homotopy class of f :X → S1 in H1(X,Z).

Let X be a closed smooth manifold, ω be a Morse 1-form (dω = 0 and locally ω is a differential of a
Morse function), g be a generic metric on X. Choose K ⊂ H1(X) such that

∫
ω = 0 for all α ∈ K. (Usual

choices: K = {0} or K = ker(
∫
).) Let H = H1(X)/K.

Idea: Classify flow lines modulo the following equivalence relation: If γ and γ′ are elements of m(p, q),
then γ ∼ γ′ iff [γ − γ′] ∈ K. Note: if γ ∼ γ′, then E(γ) = E(γ′). So if ind(p) − ind(q) = 1, then each
equivalence class contains only finitely many flow lines.

Novikov ring: Let H be an abelian group and N :H → R be a homomorphism. Define Nov(H,N) as
formal sums of elements of H with integral coefficients such that for any neighborhood of 0 there are only
finitely many elements h ∈ H with nonzero coefficient and N(h) in the neighborhood. Multiplication is
defined as in group ring. There is an obvious injection Z[H] → Nov(H,N). If N = 0, then is an iso.

Definition of Novikov complex. Fix a base point x0 ∈ X. An anchored critical point is a pair (p, η)
where p ∈ ω−1(0) and η is a path from p to x0, modulo ∼. Define the energy E(p, η) =

∫
η
−ω. (Alternatively:

Let π: (X̃, x̃0) → (X,x0) be the covering space determined by K. The pair (p, η) corresponds to a zero of π∗ω
on X̃. We have π∗ω = df̃ , where f̃(x̃0) = 0 and E(p, η) = f̃(p̃).

Let Ci be a submodule of Novikov ring generated by all points p̃ with index i such that only finite
number of terms have nonzero coefficients and energy lying outside given neighborhood of 0.

Exercise. Ci is a module over Λ = Nov(H,−ω) where H acts by h(p, η) = (p, η + h). Moreover this is a
free module with one generator for each index i critical point of ω in X.

Define ∂:Ci → Ci−1 by ∂(p, η) =
∑

q∈Criti−1(ω)

∑
γ∈m(p,q) ϵ(γ)(q, η − γ).

Exercise. ∂ is well-defined.

Theorem. HN
∗ (X,x0, ω, g,K) depends only on X, [ω], and K. (The isomorphisms are canonical only up

to multiplication by elements of H.)

Usually we cannot vary [ω] except by positive scaling.
Interpretation in classical topology: Chose a cell decomposition of X, lift it to a cell decomposition

of X̃. Then Cc
∗(X̃) is a module over Z[H].
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Theorem. (Novikov.) HN
∗ = H∗(C

c
∗(X̃) ⊗Z[H] Λ) = H∗(C

∞/2
∗ (X̃)). Here C

∞/2
∗ (X̃) is the half-infinite

singular chain complex of X̃ (formal sums of simplices such that for any real c only finitely many simplices
intersect {x̃ ∈ X̃ | f̃(x̃) > c}.

Often HN
∗ is torsion. Suppose H has no torsion so that the quotient ring of Λ is a field. Suppose

HN
∗ ⊗Q(Λ) = 0.

Theorem. The Reidemeister torsion of Cc
∗(X̃) ⊗Z[H] Q(Λ) is equal to the Reidemeister torsion of CN

∗ ⊗Λ

Q(Λ)) times a certain count of closed orbits of the gradient flow.

Pseudoholomorphic curves in symplectic manifolds.

Note: we shall call them holomorphic curves.

Definition. A symplectic manifold is a smooth manifold with a closed nondegenerate 2-form (nondegenerate
means that it defines an isomorphism TM → T ∗M , equivalently ωn ̸= 0 everywhere, where 2n is the
dimension of the manifold, which must be even).

Definition. A morphism of symplectic manifolds is a smooth map such that 2-form of the second man-
ifold pulls back to the 2-form of the first manifold. An isomorphism of symplectic manifolds is called a
symplectomorphism.

Darboux’s Theorem. Every symplectic manifold has an open cover such that restriction to each element
is symplectomorphic to R2n with standard symplectic form.

Note. Every symplectomorphism preserves volume form ωn, hence it preserves volume.

Question. How different is a symplectomorphism from a volume-preserving diffeomorphism?

Answer. For n = 1 these notions are the same.

Gromov nonsqueezing theorem. Suppose there is a symplectic embedding ϕ:B2n(r) → B2(R)×R2n−2.
Then r ≤ R.

Recognition of R4. Suppose M is a symplectic manifold such that H̃∗(M) = 0 and M is asymptotically
symplectomorphic to R4, more precisely, there are compact sets K1 ⊂ M and K2 ⊂ R4 and a symplecto-
morphism ϕ:M \K1 → R4 \K2. Then M is symplectomorphic to R4, by a symplectomorphism agreeing
with ϕ outside a compact set.

Symplectomorphisms of S2 ×S2. Let ω1 and ω2 be two symplectic forms on S2 with
∫
ω1 =

∫
ω2. Then

Symp(S2 × S2, ω1 ⊕ ω2) has two connected components. The identity component is homotopy equivalent
to SO(3)× SO(3).

Definition. An almost complex structure on M is a bundle map J :TM → TM such that J2 = −1.
Example: M is a complex manifold, and J is multiplication by i. In such a case J is called integrable.

Definition. An almost complex structure is ω-tame if ω(v, Jv) > 0 whenever v ̸= 0. It is ω-compatible if
it is ω-tame and ω(Jv, Jw) = ω(v, w).

Note. If J is ω-tame, then it defines a Riemannian metric g on M by g(v, w) = (ω(v, Jw) + ω(w, Jv))/2.
If J is ω-compatible, then g(v, w) = ω(v, Jw).

Idea. Lots of complex geometry generalizes to symplectic manifolds with tame almost complex structure.

Proposition. There is no obstruction to finding or extending tame or compatible almost complex structures.
More precisely, let Ω be the space of symplectic forms on R2n, J be the space of complex structures on R2n,
C be the set of compatible pairs, and T be the set of tame pairs. Then C and T are fibrations over Ω with
contractible fibers.

Proof. We only show that these fibrations have contractible, more precisely, convex fibers. This is obvious.

Exercise. Let ω be a linear symplectic form and g a linear metric on R4. Then g comes from ω and
ω-compatible J iff ω is self-dual with respect to g and |ω| =

√
2.
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Definition. A Riemann surface is a closed surface σ is a closed surface Σ with an almost complex structure J
(necessarily integrable). mg,n is the space of genus g Riemann surfaces with n marked points.

Fact. mg,n is a smooth orbifold with dimension 3g− 3+n for g ≥ 2 or g = 1 and n ≥ 1 or g = 0 and n ≥ 3.
For g = 1 and n = 0 the dimension is 1 and for g = 0 and n ≤ 2.

Definition. Let M be an almost complex manifold. A (pseudo)holomorphic curve in M is a smooth map
u: (Σ, j) → (M,J) such that J ◦ du = du ◦ j. (This means that du respects almost complex structure.) Two
curves are equivalent if there is a biholomorphic map from (Σ, j) to (Σ′, j′) such that the obvious diagram
commutes.

Note. If u is an embedding then the equivalence class of u is determined by its image inM . Hence embedded
holomorphic curves are the same as embedded surfaces Σ such that J maps TΣ to itself.

Proposition. If u: Σ →M is a holomorphic curve, then its area is equal to
∫
u∗ω = ⟨[ω], u∗[Σ]⟩.

Proof. To prove the first part it is enough to show that Area(v, Jv) = ω(v, Jv) for all v ∈ TM . This follows
from the fact that Area(v, Jv) = ω(v, Jv). To prove the second part it is enough to show that for all v and w
in TpM we have Area(v, w) ≥ ω(v, w) with equality iff w is in the span of v and Jv. Since J is ω-compatible,
we can find a basis ei and fi for TpM such that at p we have ω =

∑
i e

∗
i ∧ f∗i and J(ei) = fi. Wlog v = e1.

Write w =
∑

i aiei + bifi. Now Area(v, w) =
(∑

i(a
2
i + b2i )− a21

)1/2 ≥ b1. We have equality iff ai = bi = 0
for i ̸= 1.

Trivial example of holomorphic curves.

1. The zero set of a homogeneous polynomial over C in 3 variables is a holomorphic curve in CP 3.
2. If u: (Σ, j) → (M,J) is J-holomorphic (we assume that J is ω-tame) and u∗[Σ] = 0 ∈ H2(M), then u is

constant. (Proof: Area(u) = 0.)
3. Suppose M = Σ × V , where Σ is a Riemann surface and V is a symplectic manifold. Take ω and J

be product symplectic and almost-complex structure. For any p ∈ V the map Σ → Σ × V sending
x → (x, p) is holomorphic. Claim: These are they only holomorphic curves in the homology class
[Σ]× [·]. Proof: Let u′: (Σ′, j′) → (Σ× V, J) be another holomorphic curve in this homology class. The
projection Σ′ → Σ × V → V is JV -holomorphic. Its homology class is 0 in H2(V ). So it is constant
and the image of u is contained in Σ × {p} for some p ∈ V . The projection Σ′ → Σ × V → Σ is also
holomorphic. A non-constant holomorphic map Σ′ → Σ is a branched cover of degree at least 1. Since
homology class is [Σ] the degree of this map is 1 and it is an isomorphism.

Gromov Non-Squeezing Theorem. If ϕ:B2n(r) → B2(R)×R2n−2 is symplectomorphism, then r ≤ R.

Proof. (Modulo some stuff.) Choose c > 0 such that ℑ(ϕ) ⊂ B2(R)×[−c, c]2n−2. We get a map ϕ:B2n(r) →
S2(R+ ϵ)×T2n−2. Choose an ω-tame almost complex structure on the last manifold in such a way that on
ℑ(ϕ) it agrees with ϕ-pushforward of standard complex structure on R2n. The key is to show the existence
of J-holomorphic sphere u:S2 → S2(R + ϵ) ×T2n−2 such that ℑ(u) ∋ ϕ(0) and u∗[S

2] = [S2(R + ϵ)] × [·].
Let Σ denote ϕ−1(ℑ(u)) ⊂ B2n(r). We have 0 ∈ Σ. If t < r and if we replace Σ ∩ B2n(t) with another
surface with the same boundary, area does not decrease. Monotonicity lemma for minimal surfaces: Above
conditions on Σ imply Area(ϵ) ≥ πr2. Proof: Define Σt = Σ∩B2n(t), θ(t) = Area(Σt)/(πt

2), and l(t) as the
length of Σ ∩ S2n(t). We have limt→0 θ(t) = 1 and θ′(t) ≥ 0. Also Area′(Σt) ≥ l(t) and Area(Σt) ≤ tl(t)/2.
We have θ(r) ≥ θ(0) = 1. (Monotonicity.) Now πr2 ≤ Area(σ) ≤ Area(u) = π(R+ ϵ)2. This is true for any
ϵ > 0, hence r ≤ R.

How do we show that the desired holomorphic curve exists? (1) Define some kind of count of holomorphic
spheres containing a given point. (2) Show that this count is a topological invariant, (3) In the case of interest,
this invariant equals 1.

Let (X,ω) be a symplectic manifold, J an ω-tame almost complex structure, mg,n(X,A) be the space
of genus g J-holomorphic curves in X with n marked points in the homology class A. There are evaluation
maps evi:mg,n(X,A) → X that send a J-holomorphic curve to its corresponding marked point.

Last time: deduced Gromov non-squeezing theorem from the following statement: Let (V, ω) be a
compact symplectic manifold with π2(V ) = 0. Let X = (S2 × V, ω0 ⊕ ω). Let A = [S2] × [·] ∈ H2(X).
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Let J be any ω-tame almost complex structure on X. Then ev1:m0,1(X,A) → X is surjective. Outline of
the proof: Suppose V has dimension 2n − 2. We prove that if J is generic, then m0,1(X,A) is a compact

oriented manifold of dimension 2n. If {Jt | t ∈ [0, 1]} is a generic homotopy then
⋃

t{t} ×mJt
0,1(X,A) is a

cobordism from mJ0
0,1(X,A) to m

J1
0,1(X,A). If J is product almost complex structure, then mJ

0,1(X,A) = X.
This implies that for generic J the degree of ev1 is 1.

Genericity and transversality.

Definition. A J-holomorphic curve is multiply covered if it can be factored through a branched cover of
surface of degree greater than 1. Otherwise it is called simple.

Let m∗
g,n(X,A) be the space of simple curves in mg,n(X,A). Terminology: generic means Baire (count-

able intersection of open dense sets).

Theorem. For generic J the manifold m∗
g,k(X,A) is oriented (not necessarily compact) and we have

dimm∗
g,k(X,A) = (n− 3)(2− 2g) + 2⟨c1(TX), A⟩+ 2k.

Sard-Smale theorem. Let f :X → Y be a smooth map of separable Banach manifolds whose differential
at each point is Fredholm and has index l. Assume the map is Ck, where k ≥ 1 and k ≥ l + 1. Then a
generic y ∈ Y is a regular value of f so that f−1(y) is a manifold of dimension l.

Theorem. Let Z be a smooth finite-dimensional manifold. Let k ≥ 2. Then a generic Ck function f :Z → R
is Morse.

Proof. Let Y = Ck(Z,R). This is a smooth Banach manifold (a Banach space). Let E be a vector
bundle over Y such that Ef,z = T ∗

z Z. Define a section ψ:Y × Z → E by ψ(f, z) = dfz. Then ψ−1(0) =⋃
f{f} × Crit(f). Claim: For (f, z) ∈ ψ−1(0) we have dψ:Tf,zY × Z → Tf,z,0E is surjective, therefore

ψ−1(0) is a Banach manifold. Actually we show that Tf,zY × Z → Tf,z,0E → Ef,z = T ∗
z Z is surjective. If

f1 ∈ Ck(Z,R) and v ∈ TzZ, then ∇ψ(f1, v) = df1(z) + ∇v(df) can be anything. Claim: The projection
ψ−1(0) → Y has dπf,z Fredholm so that Sard-Smale applies. We have ker(dπf,z) = ker(∇ψ:TzZ → Ef,z.
There is an automorphism ∇ψ: coker(dπ:Tf,zψ−1(0) → TfY ) → coker(∇ψ:TzZ → Ef,z). It follows that a
generic f ∈ Ck(Z,R) is a regular value of π:ψ−1(0) → Ck(Z,R). If f is a regular value of π then for every
z ∈ Crit(f) we have dπ:Tf,zψ

−1(0) → TfC
k(Z,R) is surjective.

We say that E → X is a Banach vector bundle if E and X are Banach manifolds, π−1(x) is a Banach
space for any x ∈ X, and X has an open cover such that the corresponding restrictions are trivial bundles.

Theorem. If ∇ψ:TxX → Ex is surjective for all x ∈ ψ−1(0), then ψ−1(0) is a Banach submanifold of X.

Proposition. Let Y and Z be separable Banach manifolds, π:E → Y ×Z a Banach vector bundle, ψ:Y ×
Z → E a smooth section. Suppose that for all (y, z) ∈ ψ−1(0) the following holds: (1)∇ψ:Ty,z(Y ×Z) → Ey,z

is surjective. (2)∇ψ:TzZ → Ey,z is Fredholm of index l. Then for generic y ∈ Y the set {z ∈ Z | ψ(y, z) = 0}
is an l-dimensional submanifold of Z (and moreover, at each point in this set ∇ψ is surjective on tangent
space to Z).

Proof. It follows from (a) that ψ−1(0) ⊂ Y × Z is a Banach manifold (by implicit function theorem).
Let π:ψ−1(0) → Y denote the projection. By Sard-Smale theorem, it is enough to show that for all
(y, z) ∈ ψ−1 the differential of π, D = dπ:Ty,zψ

−1(0) → TyY is Fredholm. By (b) it is sufficient to prove
these two statements: (1) ker(D) = ker(∇ψ:TzZ → Ey,z) and (2) The map ∇ψ:TyY → Ey,z induces an
isomorphism coker(D) → coker(∇ψ:TzZ → Ey,z). Proof of (1): ker(D) = {(0, ż) | (0, ż) ∈ Ty,zψ

−1(0)} =
ker(∇ψ:TzZ → Ey,z)}. Proof of (2): Check that ∇ψ:TyY → Ey,z sends im(D) → im(∇ψ:TzZ → Ey,z).
Let (ẏ, ż) ∈ Ty,zψ

−1(0). Need to show ∇ψ(D(ẏ, ż)) ∈ im(∇ψ:TzZ → Ey,z). Check ∇ψ: coker(D) →
coker(∇ψ:TzZ → Ey,z) is injective. Have ∇ψ(ẏ, 0) = ∇ψ(0, ż) for some ż ∈ TzZ. Then (ẏ,−ż) ∈ Ty,zψ

−1(0)
and ẏ = D(ẏ,−ż). Check ∇ψ: coker(D) → coker(∇ψ:TzZ → Ey,z) is surjective. Let e ∈ Ey,z. By
hypothesis (a), e = ∇ψ(ẏ, ż) for some (ẏ, ż) ∈ Ty,zY × Z. We have e = ∇ψ(ẏ, 0) + ∇ψ(0, ż) = 0 in
coker(∇ψ:TzZ → Ey,z).

Example. Suppose Z is a closed smooth manifold, Y = Ck(Z,R), Ef,z = T ∗
z Z, and ψ(f, z) = dfz. It

follows that for generic f ∈ Ck(R) and for any z ∈ df−1(0) = Crit(f) we have ∇ψ:TzZ → Ef,z is surjective.
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Spectral flow. Reference: Robbin and Salaman, Spectral flow and the Maslov index. Let H be a Hilbert
space and let As:H → H be a continuous family of unbounded operators parametrized by s ∈ R. Assume
there are invertible self-adjoint operators A+ and A− such that lims→∞As = A+ and lims→−∞As = A−
in the norm topology. More technical assumptions. (All technical assumptions are satisfied if H is finite
dimensional.) Can define spectral flow of A (an integer number). Idea: count the number of eigenvalues
of As that cross 0 as s goes from −∞ to ∞. If H is finite-dimensional, then SF(A) is the difference between
the number of positive eigenvalues of A+ and A−.

Theorem. Under certain assumptions ∂s + As:L
2
1(R,H) → L2(R,H) is Fredholm and its index is the

spectral flow of A.

Proof. Assume H is finite-dimensional. For each h ∈ H by fundamental theorem of ODE’s there is a
function f :R → H such that (∂s + As)fh(s) and fh(0) = h. Define H+ = {h ∈ H | lims→∞ fh(s) = 0} and
H− = {h ∈ H | lims→−∞ fh(s) = 0}. Then ker(∂s + As) is isomorphic to H+ ∩ H−. Claim: H+ is the
negative eigenspace of A+ and H− is the positive eigenspace of A−. Claim: ∂s+As is bounded and has closed
image. Then coker(∂s+As) = ker(−∂s+A∗

s) = ker(∂s−A∗
s). Similarly to above, ker(∂s−A∗

s) = H+⊥∩H−⊥.
We have ind(∂s+As) = dim(H+∩H−)−dim(H+⊥−H−⊥) = dim(H+∩H−)+dim(H++H−)−dim(H) =
dimH+ + dimH− − dimH = SF(A).

Proposition. If X is a closed smooth manifold, f :X → R is a Morse function. then for a generic Ck-
metric g on X, the pair (f, g) is Morse-Smale.

Proof. Fix distinct critical points p and q of f . Let Y be the space of Ck-metrics g on X. Let Z be the
space of locally L2

1 maps γ:R → X such that lims→−∞ γ(s) = p and lims→∞ γ(s) = q, and γ(−∞,−R] and
γ[R,∞) are L2

1 for sufficiently large R.

Proposition. Let Y and Z be Ck separable Banach manifolds, E → Y × Z a Banach space bundle,
ψ:Y × Z → E a Ck section such that k ≥ 1 and k ≥ l + 1. Suppose for all (y, z) ∈ ψ−1(0) we have
(a) ∇ψ:T(y,z)(Y × Z) → E(y,z) is surjective and (b) restriction ∇ψ:TzZ → E(y,z) is Fredholm of index l.

Then for generic y ∈ Y the set {z ∈ Z | ψ(y, z) = 0} is an l-dimensional Ck submanifold of Z (and on this
set ∇ψ is surjective onto tangent space to Z).

Proposition. Let X be a closed smooth manifold, f :X → R a Morse function, and k a sufficiently large
integer. Then for a generic Ck metric g on X, the pair (f, g) is Morse-Smale.

Proof. Fix p and q in Crit(f). Let Y be the space of Ck metrics on X. Let Z be the space of locally L2
1

maps γ:R → X such that lims→−∞ γ(s) = p, for R sufficiently small so that γ(−∞, R] ⊂ Up, where Up is a
coordinate chart around p, we have γ: (−∞, R] → Rn is L2

1, Also we must have lims→∞ = q and an analogous
statement for Uq. Exercise: Z is a C∞ Banach manifold, and TγZ = L2

1(γ
∗TX). Let Eg,γ = L2(γ∗TX).

This is a C∞ Banach space bundle. Let ψ be a section of E such that ψ(g, γ)(s) = γ′(s) − ξ(γ(s)). Thus
ψ(g, γ) = 0 iff γ is a Ck+1 flow line with respect to g from p to q. Claim: hypotheses of previous proposition
are satisfied. Fix some torsion free connection on TX → X. If ψ(g, γ) = 0 then ∇ψ(ġ, γ̇) = ∇γ′ γ̇−∇γ̇ξ− ξ̇.
Given (g, γ), choose a trivialization of γ∗TX, which is parallel with respect to connection on TX. We
have ∇ψ(ġ, γ̇) = ∂sγ̇ − Asγ̇ − ξ̇, As = ∇ξ:Tγ(s)X → Tγ(s)X. We also have lims→−∞As = H(f, p) and
lims→∞As = H(f, q). (a) We check ∇ψ is surjective. Can show ∇ψ has closed range. (Skip.) Enough to
show if ω ∈ L2(γ∗TX) is orthogonal to im(∇ψ) then ω = 0. Such an ω satisfies

∫
R
⟨ξ̇, ω⟩ds = 0 for every ġ.

At any given point in the image of γ can find a ġ such that ξ̇ = ω there. Choosing ġ supported near that
point gives ω = 0 there. (b) L2

1(γ
∗TX) → L2(γ∗TX) sends γ̇ to ∂sγ̇ − Asγ̇ and is a Fredholm operator by

theory from last time. The index is equal to the spectral flow, which is equal to ind(p) − ind(q). Previous
proposition says for generic g the manifold m(p, q) has dimension ind(p) − ind(q) and for all γ ∈ m(p, q),
operators ∂s −As is surjective. Observe H+ = Tγ(0)D(p) and H− = Tγ(0)A(q). Recall coker(∂s −As) is the
intersection of orthogonal complements to H+ and H−, which is zero, hence the span of H+ and H− is Rn,
hence D(p) intersects A(q) transversally. This completes the proof.

Now let (M,ω) be a symplectic manifold, J be an ω-tame almost complex structure on M , A be an
element of H2(X), mg,k(X,A) be the space of genus g J-holomorphic curves in X in class A with n marked
points, m∗

g,k(X,A) be the space of simple (not multiply covered) curves in mg,k(X,A).
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Theorem. For generic J the manifold m∗
g,n(X,A) is oriented. Its dimension is

(n− 3)(2− 2g) + 2⟨c1(TX), A⟩+ 2k.

Theorem. Fix a complex structure j on Σg. Let Σ = (Σg, j), m(Σ, X,A) be the space of J-holomorphic
maps (Σg, j) → (X, J) in class A, m∗(Σ, X,A) the space of simple curves in m(Σ, X,A). For generic J the
manifold m∗(Σ, X,A) is oriented and has dimension n(2− 2g) + 2⟨c1(TX), A⟩.

Proof Sketch. Ignore the issue of Banach space completions. Let Y be the space ω-tame almost complex
structures J onX, Z be the space of smooth maps u: Σ → X representing the class A. Let EJ,u = T (T 0,1Σ⊗C

u∗TX) is the space of C-antilinear bundle maps TΣ → u∗TX. Let ψ(J, u) be the map TΣ → u∗TX defined
by ψ(J, u) = du+ J ◦ du ◦ j. We have ψ(J, u) = 0 iff J ◦ du = du ◦ j, i.e., u is holomorphic. We say that u is
somewhere injective whenever there is a z ∈ Σ such that u−1(u(z)) = {z} and du:TzΣ → Tu(z)X is injective.
Fact: If u is holomorphic then u is simple iff u is somewhere injective (McDuff-Salamon, Chapter 2). Need
to show: for (J, u) ∈ ψ−1(0): (a) ∇ψ:TJ,uY ×Z → EJ,u is simple; (b) ∇ψ:TuZ → EJ,u is Fredholm of index

n(2−2g)+2⟨c1(TX), A⟩. We see that TJY is the space of bundle maps J̇ :TX → TX such that J̇J+JJ̇ = 0.
and TuZ = T (u∗TX). We have ψ(J, u) = du + J ◦ du ◦ j. (b) We have ∇ψ(0, u̇) = (∂su + J∂tu)(ds − idt)
plus zero order term. We can deform the zeroth order term so that this is ∂̄ operator on holomorphic vector
bundle u∗TX over Σ. Riemann-Roch theorem implies that the index is n(2−2g)+2c1(u

∗TX). To complete
the proof, we use somewhere injective to prove (a).

Suppose we have a symplectic manifold (M,ω), J is ω-tame almost complex structure. Fix (Σ, j) and
u: Σ →M . We have ∂̄(u) = du+J◦du◦j ∈ Ω0,1(Σ, u∗TM) = Γ(T 0,1Σ⊗Cu

∗TM). The map u is holomorphic
iff ∂̄(u) = 0. If u is holomorphic, derivative of ∂̄ defines an operator Du:T (u

∗TM) → Γ(T 0,1Σ⊗C u∗TM).

Definition. u is transverse if Du is surjective (on C∞ on appropriate Banach space completions).

Last time we proved that if J is generic then all simple holomorphic curves are transverse. Note: If u
is transverse, then m(Σ,M) is a manifold near u, and Tum(Σ,M) = ker(Du). Also dim = ind(Du) = n(2−
2g)+2⟨c1(TM), A⟩. To complete the proof we need to show that for any pair (J, u) where u is J-holomorphic,
the following operator is surjective: TJg ⊕ Γ(u∗TM) → Γ(T 0,1Σ⊗ u∗TM), (J̇ , ξ) → Duξ + J̇ ◦ du ◦ j. Can
show closed range. More precisely, suppose η is perpendicular to image. Since u is somewhere injective, find
z ∈ Σ such that u embeds a neighborhood of z intoM , disjoint from the rest of u(Σ). It follows that η = 0 in
a neighborhood of z. So we have ⟨D(J̇ , 0), η⟩ =

∫
Σ
⟨J̇ ◦du◦j, η⟩ =

∫
u−1(U)

⟨J̇ ◦du◦j, η⟩ =
∫
N
⟨J̇ ◦du◦j, η⟩ > 0.

Since η ⊥ imDu⟩ we have D∗
uη = 0. Unique continuation theorem shows that if D∗

uη = 0 and η vanishes to
infinite order at a point, then η = 0.

Back to the Gromov nonsqueezing theorem. Take M = S2×V , ω = ωS2 ⊕ωV , J = JS2 ⊕JV . Claim:
The holomorphic spheres S2 × {v} are transverse.

Proof. Let u be the map S2 → S2 × {v}. We have the operator Du: Γ(u
∗TM) → Γ(T 0,1S2 ⊗ u∗TM). We

have splitting u∗TM = TS2 ⊕ TvV = TS2 ⊕ Cn−1. Du respects this splitting. Du is a sum of operators
of the form Γ(L) → Γ(T 0,1S2 ⊗ L) where L is a line bundle. Suppose an operator of the latter type has a
nonzero cokernel. Carleman Similarity Principle: If you have a solution of Cauchy-Riemann type equation
with a zero-order perturbation, then you can perform a change of coordinates such that the solution becomes
holomorphic. In our case η ∈ Ω0,1(S2, L) satisfies such an equation. It follows that any zero of η has negative
multiplicity. From Carleman it follows that deg(T 0,1S2 ⊗ L) ≤ 0.

Remark. Consider M = Σg × V . Are the curves Σ× {v} transverse? No, if g > 0.

Also: moduli spaces are canonically oriented.

Gromov Compactness Theorem. (Simplest version.) M , ω, J as usual. Let A ∈ H2(M). Suppose there
is no B ∈ π2(M) such that 0 <

∫
B
ω <

∫
A
ω. Then m(S2,M,A) is compact. Moreover, if Jt is a family of

ω-tame almost complex structures, then ∪t{t} ×mJt
(S2,M,A) is compact.

Idea of proof. Consider a sequence of maps uk:S
2 → M . The energy E(uk) =

∫
S2 |duk|2 =

∫
A
Cω. If

you also have |duk| < c then we can pass to a convergent subsequence. If not, reparametrize and pass to a
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subsequence so that |duk(0)| > k. Rescale the maps near 0. A holomorphic sphere magically appears with
energy less than

∫
A
ω.

Intersection property. Let (M,ω) be a 4-dimensional symplectic manifold, C1 and C2 two distinct simple
connected J-holomorphic curves. Then the intersection of C1 and C2 are isolated. Also each intersection
point has positive multiplicity. Multiplicity is 1 iff intersection is transverse.

Easy part: transverse intersection must have positive sign.

Adjunction formula. Let C be a simple J-holomorphic curve in X. Define c1(C) = c1(TX), where TX is
restricted to C. Let χ(C) be the Euler characteristic of domain of C. Then c1(C) = χ(C)+C ·C−2

∑
δ(p),

where the sum is taken over all singular points of C, and δ(p) is a positive integer, δ(p) = 1 iff C has a
transverse self-intersection at p.

Theorem. (Recognition of R4.) Let (M,ω) be (noncompact) symplectic manifold, H̃∗(M) = 0. Suppose
there is a compact subset K of M such that (M \K,ω) is symplectomorphic to (R4 \B,ωs). Then (M,ω)
is symplectomorphic to R4 with standard symplectic structure.

Proof. We see that M̃ \K is symplectomorphic to S2×S2 \B. Also H∗(M̃) = H∗(S
2×S2). Choose ω-tame

J on M̃ which is product structure outside of K. Take A = (1, 0) ∈ H∗(M̃) and B = (0, 1) ∈ H∗(M̃). Look
at ev: (M̃,A) → M̃ . Similarly to proof of nonsqueezing, this evaluation map has degree 1. Consider (p, q)
as shown. There is a holomorphic sphere S2 × {q} ⊂ m0,1. We claim that S2 × {q} is the only holomorphic
sphere in the class (1, 0) containing (p, q). Suppose c′ is another one. Then it is simple as above. By
intersection positivity c · c′ > 0. But (1, 0) · (1, 0) = 0. Contradiction. Also C is transverse by arguments
from last time. So (p, q) is a regular value of ev, and #ev−1(p, q) = 1. Claim: The holomorphic spheres in
the class (1, 0) give a foliation of m̃. There is a unique such sphere through each point. Any such sphere is
embedded: 2 = c1(C) = χ(C) + C · C − 2δ(C) = 2 + 0− 0. Different spheres don’t intersect.

Now we know that every point in M̃ is in a unique embedded holomorphic sphere in class (1, 0) = A
or (0, 1) = B respectively. Define ϕ:S2 × S2 → M̃ as follows. Given (x, y) ∈ S2 × S2 let C1 be the sphere
through (p, x) in class A, let C2 be the sphere through (y, q) in class B. Define ϕ(x, y) to be the intersection
of C1 with C2. (Unique by intersection positivity.) Claim: ϕ is a diffeomorphism. Surjective because every
point in M̃ is contained in an A sphere and a B sphere. Injective because different A spheres are disjoint
and different B spheres are disjoint. Smoothness omitted.

Also ϕ is the identity at infinity. Claim: ϕ is isotopic to a symplectomorphism that is still identity at
infinity. Proof: Let ω denote symplectic forms. Claim: ω ∧ϕ∗ω > 0. We have (ω ∧ϕ∗ω)(∂x1

, ∂y1
, ∂x2

, ∂y2
) =

ω(∂x1
, ∂y1

)ϕ∗ω(∂x2
, ∂y2

) + ω(∂x2
, ∂y2

)ϕ∗ω(∂x1
, ∂y1

). Let ωt = tω+ (1− t)ϕ∗ω on S2 × S2 for t ∈ [0, 1]. Since
ω ∧ ϕ∗ω > 0 it follows that ωt ∧ ωu > 0 for all t and u. Hence all ωt’s are all in the same cohomology class.
Choose 1-form βt with dβt = (d/dt)ωt and βt = 0 at infinity. Look for ϕt:S

2 × S2 → M̃ such that ϕ∗tω = ωt

and ϕ0 = ϕ and ϕt depends smoothly on t. Then ϕ∗1ω = ω1. To get ϕ∗tω = ωt for all t it is enough to
get (d/dt)ϕ∗tω = (d/dt)ωt. We have (d/dt)ϕ∗tω = LXt

ω = (d/dt)ωt = dβt. Xt is a vector field on S2 × S2

determining the isotopy. Since ω is nondegenerate there is Xt with IXt
= βt′ Xt = 0 at infinity so ϕ1 = ϕ0

at infinity. Conclusion: we have a symplectic diffeomorphism between S2 × S2 and M̃ , which is identity at
infinity.

Theorem. The group of symplectic diffeomorphisms of S2 × S2 is SO(3)× SO(3).

Proof. Key point is that for any ω-tame J on S2 × S2 we have two foliations by A-spheres and B-spheres.
Note: The claim is false for S2×S2 with symplectic structure ω1⊕ωλ, where

∫
S2 ω1 = 1,

∫
S2 ωλ = λ ∈ (1, 2].

Trouble is that (0, 1) = (1, 0) + (−1, 1). So in constructing B foliation the compactness argument fails.

Suppose (X,ω) is a closed symplectic manifold. A symplectic isotopy is a smooth family of symplec-
tomorphisms of X. We say that isotopy ϕ is generated by vector fields Xt if (d/dt)ϕt(x) = Xt(ϕ(x)).
Differentiating ϕ∗tω = ω we get 0 = LXt

ω = diXt
ω + iXt

dω. Conclusion: Xt generates a symplectic isotopy
iff ω(Xt, ·) is a closed 1-form.

Definition. The isotopy ϕt is Hamiltonian if ω(Xt, ·) is exact, i.e., ω(Xt, ·) = dHt, where Ht:X → R.

Degenerate Arnold Conjecture. If ϕ: (X,ω) → (X,ω) is Hamiltonian isotopic to idX then |Fix(ϕ)| ≥
min{|Crit(f)| | f :X → R}. It is still open!
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Nondegenerate Arnold Conjecture. If ϕ: (X,ω) → (X,ω) is Hamiltonian isotopic to idX then |Fix(ϕ)| ≥∑
i dim(Hi(X,Q)). Proved using Floer homology.

A fixed point p of f is nondegenerate if 1 − dfp:TpX → TpX is invertible. Equivalently, graph T (f) =
{(x, f(x))} ⊂ X ×X is transverse to the diagonal ∆ = {(x, x)} ⊂ X ×X at (p, p).

Lefschetz Fixed Point Theorem. If X is a closed smooth manifold and f :X → X is a smooth map
with nondegenerate fixed points then

∑
p∈Fix(f) sign det(1 − dfp) =

∑
i(−1)i tr(f∗:Hi(X,Q) → Hi(X,Q)).

It follows that if f ∼ idX then |Fix(f)| ≥
∣∣∑

i(−1)i dimHi(X,Q)
∣∣ = |χ(X)|.

Note. Arnold conjecture is false if we only require ϕ to be symplectically isotopic to idX .

Counterexample. The map ϕ: (T 2, ω) → (T 2, ω) such that ϕ(x, y) = (x+1/2, y) is symplectically isotopic
to identity via the map ϕt(x, y) = (x + t/2, y). This symplectic isotopy is not Hamiltonian because it is
generated by Xt = ∂x/2 and iXtω = dy/2, which is not exact. In fact, there is no Hamiltonian isotopy
from ϕ to id. If ϕ is a symplectic isotopy, define the flux of ϕ to be an element of H1(X,R) such that its
value on γ:S1 → X is

∫
[0,1]×S1 f

∗ω, where f : [0, 1]× S1 → X is the map such that f(t, 0) = ϕt(γ(0)).

Fact. This gives a well-defined element of H1(X,R) and ϕ is homotopic relative to endpoints to a Hamil-
tonian isotopy iff flux of ϕ is zero.

If ϕ is symplectically isotopic to identity, then the flux of ϕ is defined and is zero iff ϕ is Hamiltonian
isotopic to identity. If X = T 2, the flux of ϕ in the previous example is (0, 1/2) ̸= 0.

Now we enter the world of Floer homology. A. Floer, Symplectic fixed points and holomorphic spheres,
Communications in Mathematical Physics.

Symplectic action functional. Let L be the space of contractible smooth loops in X. Let L̃ be the space
of pairs (γ, [u]), where γ ∈ L and [u] is homotopy class of u:D2 → X relative boundary such that γ is the
restriction of u to the boundary. Consider the map A: L̃→ R such that A(γ, [u]) =

∫
[0,1]

Ht(γ(t))dt+
∫
D2 u

∗ω.

Lemma. (γ, [u]) ∈ Crit(A) iff γ′(t) = XHt
(γ(t)) iff γ(t) = ϕt(γ(0)). Hence Crit(A) = Fix(ϕ).

Proof. Let ξ ∈ T(γ,[u])L̃ = Γ(γ∗TX). Now

dAγ(ξ) = (d/ds)

(∫
[0,1]

Ht(γs(t))dt+

∫
us

ω

)
=

∫
[0,1]

dHt(ξ(t))dt+

∫
[0,1]

ω(ξ, γ′(t))dt

=

∫
[0,1]

(ω(XHt
, ξ(t)) + ω(ξ(t), γ′(t))dt =

∫
[0,1]

ω(ξ(t), γ′(t)−XHt
)dt.

(γ, [u]) ∈ Crit(A) iff the above integral is zero for all ξ iff γ′(t)−XHt
= 0 for all t.

Key example. Suppose Ht = H:X → R is a Morse function, XHt
= X and ω(X, ·) = dH. Now

Crit(H) ⊂ Fix(ϕ). Arnold conjecture is trivial in this case.

Let Jt, where t ∈ S1 be a family of ω-compatible almost complex structures on X. Each Jt defines a
metric gt on X by gt(v, w) = ω(v, Jtw). This defines a metric on L̃ as follows: If (γ, [u]) ∈ L̃ and ξ1, ξ2 ∈
T(γ,[u]), then ⟨ξ1, ξ2⟩ =

∫
S1 gt(ξ1(t), ξ2(t))dt. Consider a path ũ:R → L̃ such that ũ(s) = (u(s, ·), [Ds]).

Lemma: ũ is an upward gradient flow line of A iff ∂su + Jt(∂tu − XHt
) = 0. Note: This is almost the

equation for u to define a pseudoholomorphic map R × S1 → X. (Only almost because J depends on t
and there is XHt

term.) Proof: Need to check that (d/ds)ũ(s) = ∇A(u(s)), i.e., fix s, let γ(t) = u(s, t),
want for any ξ ∈ TγL = Γ(γ∗TX) the following: dAγ(ξ) = ⟨(d/ds)ũ(s), ξ⟩, i.e.,

∫
[0,1]

ω(ξ, γ′(t) − XHt
) =

⟨Jt(−γ′(t) +XHt
), ξ⟩, i.e.,

∫
[0,1]

ω(ξ, γ′(t)−XHt
) =

∫
[0,1]

ω(Jt(−γ′(t) +XHt
), Jtξ)dt. (Tame ok.)

Key example. Ht = H:X → R is a Morse function, Jt = J is an ω-compatible almost complex structure,
therefore gt = g, g(v, w) = ω(v, Jw). Suppose η:R → X is an upward gradient flow line of H, i.e., η′(s) =
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∇H(η(s)). Define u(s, t) = η(t). This satisfies ∂sη = JXH because JXH = ∇H because ⟨JXH , v⟩ = dH(v)
because ⟨JXH , v⟩ = ω(JXH , Jv) = ω(XH , v) = dH(v).

Conclusion. When Ht and Jt do not depend on t we have Crit(H) ⊂ Crit(A)/π2(X). All gradient flow
lines of H are gradient flow lines of A, therefore Morse homology of A is isomorphic to the Morse homology
of H.

Recall that (M,ω) is a closed symplectic manifold, H is a 1-periodic Hamiltonian: H:S1 ×M → R,
XHt is the corresponding vector field, and ϕt is a family of symplectomorphisms such that ϕ0 = idM ,
(d/dt)ϕt(x) = XHt(ϕt(x)). Let ϕ = ϕ1. We say that ϕt is a Hamiltonian isotopy from idM to ϕ.

Arnold Conjecture: ϕ has at least as many fixed points as the minimum number of critical points of a
function M → R. Nondegenerate version: If fixed points of ϕ are nondegenerate then the number of fixed
points is at least

∑
i dimHi(M,Q).

Now let L be the space of contractible loops in M . Define a symplectic action functional A:L → R
(if ⟨ω, π2(M)⟩ = 0) A(γ) =

∫
S1 Ht(γ(t))dt +

∫
D
ω, where D is a disc in M with boundary γ. We have

Crit(A) = Fix(ϕ) = {γ:S1 → M | γ′(t) = XHt
(γ(t)). If Jt is an ω-compatible almost complex structure for

t ∈ S1 then we have a metric on L.
An upward gradient flow line of A from γ− to γ+ is a map u:Rs → S1

t →M satisfying ∂su+ Jt(∂tu−
XHt

) = 0. We have lims→−∞ u(s, t) = γ−(t) and lims→∞ u(s, t) = γ+(t).
Floer homology: define Morse homology for A generated by fixed points of ϕ differential counts flow

lines as above.
If Ht does not depend on t, this should recover ordinary Morse homology of H.
Technical issues: transversality, grading on chain complex (dimension of moduli space of flow lines), com-

pactness (counting), gluing (∂2 = 0), orientations (counting with signs), removing symplectically aspherical
assumption.

Let ϕ: (M,ω) → (M,ω) be any symplectomorphism (not necessarily Hamiltonian isotopic to identity).
Define the mapping torus Yϕ = [0, 1] × M/(1, x) ∼ (0, ϕ(x)). Yϕ fibers over S1 with fiber M . There is
a vector field ∂t on Yϕ. Fixed points of ϕ correspond to circles in Y that are tangent to ∂t and go once
around the S1 direction. R× Yϕ has a symplectic form Ω = ω+ ds∧ dt. Choose an Ω-tame almost complex
structure J on R×Y such that J :TM → TM , J(∂s) = ∂t and J does not depend on s. Equivalently, choose
ω-tame almost complex structure Jt on M for each t ∈ R such that Jt+1 = ϕ∗ ◦ Jt ◦ ϕ−1

∗ . If X+ and X−
are fixed points of ϕ corresponding to circles γ+ and γ− in Yϕ, define a flow line from X+ to X− to be a
J-holomorphic cylinder C ⊂ R× Yϕ such that C is asymptotic to R× Yt as s→ ∞.

This is more general version of Floer homology for any ϕ ∈ Symp(M,ω). Chain complex is generated
by Fix(ϕ). Differential counts holomorphic cylinders in R × Yϕ. Any flow line as above is a section of
R× Yϕ → R× S1.

Why this generalizes previous setup? Suppose ϕ = ϕ1 comes from H:S1 ×M → R. Yϕ ↔ S1 ×M ,
(t, x) ↔ (t, ϕt(x)), γ:S

1 → Yϕ ↔ γ:S1 →M .

Grading. Given two fixed points x+ and x−, what is the dimension of the moduli space m(x+, x−) of flow
lines from x+ to x−? Dimension may be different for different components of m(x+, x−). Let u be a flow
lines from x+ to x−. We have u:R × R → M such that u(s, t + 1) = ϕ−1(u(s, t)), ∂su + Jt∂tu = 0 and
lims→±∞ u(s, t) = γ±(t). What is the dimension of m(x+, x−) near u? Assume everything is transverse. u
corresponds to a cylinder C ⊂ R× Y .

Deformation operator D:L2
1(C, TM) → L2(C, T 0,1C ⊗C TM). If we choose some trivialization of TM

over C, then D has the form D:L2
1(R×S1,R2n) → L2(R×S1,R2n) such that Dξ = ∂sξ+J0∂tξ+A(s, t)ξ).

J0 is the standard complex structure on R2n.
dimm(x+, x−) near u is in d(D). What is the index of D? A±(t) = lims→±∞A(s, t) is a symmetric

matrix. We have trivialized TM over γ±. Linearization of the flow ∂t along γ± from t = 0 to a given t defines
a pair of symplectic linear maps ψ±

t :TxM → TxM such that ψ±
0 = idTxM and ψ±

1 = dϕ:TxM → TxM . With
respect to trivialization we get two paths of symplectic matrices ψ±

t . Assume fixed points are nondegenerate,
so 1 is not an eigenvalue of ψ±

1 . A±(t) is given by (d/dt)ψ±
t = J0Atψ

±
t .

Theorem. Let A(s, t) be matrices parametrized by (s, t) ∈ R × S1 such that lims→±∞A(s, t) = A±(t) is
symmetric and 1 is not an eigenvalue of ψpm1. Then the operator D:L2

1(R× S1,R2n) → L2(R× S1,R2n)
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defined by Dξ = ∂sξ + J0∂tξ + A(s, t)ξ is Fredholm and ind(D) = CZ(ψ+
t ) − CZ(ψ−

t ). CZ is the integer
Conley-Zehnder index associated to a path of symplectic matrices.

Recall that we have a symplectic manifold (M,ω) with an automorphism ϕ. Consider the mapping
torus of ϕ: Yϕ = [0, 1] × /(1, x) ∼ (0, ϕ(x) = R ×M/(t + 1, x) ∼ (t, ϕ(x)). Fixed points of ϕ correspond
to parallel sections. Choose an ω-tame almost complex structure on E, or equivalently Jt on M such that
Jt+1 = ϕ∗Jtϕ

−1
∗ .

Floer homology of ϕ: Chain complex generators are fixed points of ϕ, regarded as circles in Yϕ, differential
counts holomorphic sections of R×Yϕ: If γ+ and γ− are circles in Yϕ corresponding to x+ and x− in Fix(ϕ),
then ⟨∂x+, x−⟩ counts maps u:R × R → M such that u(s, t + 1) = ϕ−1(u(s, t)), ∂su + Jt∂tu = 0 and
lims→±∞ u(s, t) = γ±(t) = x±.

The difference between gradings of x+ and x− equals expected dimension of m(x+, x−). Compute this.
Given u ∈ m(x+, x−) compute ind(Du). We have Du:L

2
1(R × S1, u∗E) → L2(R × S1, u∗E). and Duξ =

∂sξ+Jt∂tξ+A(s, t)ξ. Choose Hermitean trivialization τ of u∗E over R×S1. We have u∗E = R×S1×R2n

and Duξ = ∂sξ + J0∂sξ + A(s, t)ξ, where J0 is the standard complex structure on R2n. τ restricts to a
trivialization τ± of E over γ±. For |s| ≫ 0 we have ∂sξ + J0∂tξ + A(s, t)ξ ≈ ∂sξ + J0∇tξ. With respect to
τ± parallel transport along γ± from 0 to t defines a symplectic map ψ±

t ∈ Symp(R2n, ω0). The path ψ±
t of

symplectic matrices is equivalent to a path A±
t of symmetric matrices via (d/dt)ψ±

t = J0A
±
t ψt. Conclusion:

Duξ = ∂sξ + J0∂tξ + A(s, t)ξ where lims→±∞A(s, t) = A±
t . Theorem: If 1 /∈ Spec(ψ±

1 ) then D is Fredholm
and ind(D) = CZ(ψ+

t )− CZ(ψ−
t ).

Let {ψt | t ∈ [0, 1]} be a path of symplectic matrices on R2n with ψ0 = id and 1 /∈ Spec(ψ1). Define the
Conley-Zehnder index CZ(ψt) ∈ Z as follows. Define the Maslov cycle M = {A ∈ Sp2n(R) | 1 ∈ Spec(A)}.
Roughly speaking, CZ(ψt) is the signed count of ψt with M . Note: U(n) = Sp(2n) ∩ O(n) is a maximal
compact subgroup of Sp(2n). H1(Sp(2n),Z) = Z is generated by a continuous extension of det:U(n) → S1.
M is a co-oriented codimension 1 subvariety of Sp(2n), Poincaré dual to the generator of H1(Sp(2n),Z). So
if {ψt | t ∈ S1} is an arbitrary loop in Sp(2n) then {ψt} ∩M ∈ Z is defined. To define CZ index, declare

CZ

(
t→

⊕
n

(
et 0
0 e−t

))
= 0. To defined CZ(ψt), let γ be a path from

⊕
n

(
et 0
0 e−t

)
to ψ1, which is

transverse to M such that η + γ − {ψt} = 0 ∈ H1(Sp(2n)). Define CZ(ψt) = #(γ ∩M).
General properties: Naturality: If ϕ: [0, 1] → Sp(2n) is an arbitrary path, then CZ(ϕψϕ−1) = CZ(ψ).

Inverses: CZ(ψ−1) = −CZ(ψ). Change of trivialization: If ϕ: [0, 1] → Sp(2n) is a path such that ϕ(0) =
ϕ(1) = id, then CZ(ϕψ) = CZ(ψ) + 2 deg ϕ. Signature: If A is a symmetric matrix with det(A) ̸= 0 and
∥A∥ < 2π then CZ(exp(J0At)) = σ(A)/2.

Why is ind(∂s + J0∂t + A(s, t)) = CZ(ψ+
t ) − CZ(ψ−

t )? We omit the proof of Fredholm property. To
compute index we assume that A(s, t) is symmetric. For each s ∈ R take a family of symplectic matrices
ψs,t defined by ψs,0 = id, (d/dt)ψs,t = J0As,tψs,t. Claim: For a given s we have 0 ∈ Spec(J0∂t + A(s, t)) iff
1 ∈ Spec(ψs,1). CZ(ψ

+
t )−#(ψs,1) ∩M − CZ(ψ−

t ) = 0.

Theorem. If the almost complex structures Jt on M are generic, then for any m ∈ m(x+, x−), the opera-
tor Du is surjective, so m(x+, x−) is a manifold near u of dimension ind(u).

Proof. One needs to show that if u is constant, then Du is always surjective. If u is nonconstant, then the
projection of u to Y∅ is somewhere injective.

Index theorem for Cauchy-Riemann operators on Riemann surfaces with cylindrical ends. As-
sumptions: C is a Riemann surface with ends identified with [0,∞)×S1, E is a rank n complex vector bundle
on C (with Hermitean metric), D:L2

1(E) → L2(T 0,1C ⊗E) such that in local coordinates and trivialization
D = ∂s + i∂t + zeroth order term, on each end, for some trivialization of E, D = ∂s + i∂t + A(s, t) where
lims→∞A(s, t) = A(t) symmetric, and if ψ0 = id and (d/dt)ψt = J0A(t)ψt, then 1 /∈ Spec(ψ).

Theorem. D is Fredholm and ind(D) = nχ(C) + 2c1(E, τ) +
∑

ends CZτ .

To compute c1(E, τ): take a generic section s of ΛnE such that on each end, s is nonvanishing and
constant with respect to trivialization τ . Then c1(E, τ) = #s−1(0). This depends only on E and homotopy
class of τ . CZτ is the CZ index of the path ψt obtained as above. (Only depends on homotopy class of τ .)
We can identify some ends with (−∞, 0] × S1 instead, in which case you subtract the corresponding CZ
terms instead of adding them. Granted that D is Fredholm, prove index formula as follows: the right hand
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side of formula is well defined, i.e., does not depend on τ ; if C is a cylinder, then the theorem is true; if C
has no ends, then the theorem is true (by Riemann-Roch); index is additive under gluing.

Glue some ends of C1 to some ends of C2. If the operators agree on the global ends, then we can glue
E1 and E2 (using this on ends) to a bundle E1#E2 over C1#C2 and glue D1 and D2 to D1#D2 over C1#C2.
Then ind(D1#D2) = ind(D1) + ind(D2). Idea of additivity: neck stretching.

Why is nχ(C)+2c1(E, τ)+
∑

ends CZτ independent of τ? For any given end, the set of homotopy classes
of trivializations is an affine space over π1U(n) = Z. If you shift the trivialization by 1, then c1 changes
by ±1. If s is any generic section of E which is nonvanishing on ends, then c1(E, τ) = #s−1(0) −

∑
. If

you shift trivialization by 1, CZτ shifts by ∓2. We now know: index formula is true for cylinders and closed
surfaces and both sides of index formula are additive under gluing. Next step: deduce index formula when
C is a disc. For an arbitrary C, cap off the ends with discs. Since formula is true for closed surface and for
discs, by additivity it is true for C.

Back to Floer homology. H:S1 ×M → R generates ϕ: (M,ω) → (M,ω) and Hamiltonian isotopy ϕt
from 1 to ϕ. AssumeM is symplectically aspherical: ⟨c1(TM), π2(M)⟩ = ⟨ω, π2(M)⟩ = 0. CF∗(H) is the free
Z-module generated by contractible loops γ:S1 →M with γ′(t) = XHt

. (These are some of the fixed points
of ϕ.) Grading: Let γ:S1 →M be a generator. Define µ(γ) ∈ Z as follows. Choose a map η:D2 →M such
that η restricted to ∂D2 is γ. Trivialize η∗TM use this to trivialize γ∗TM . Homotopy class of trivialization
of γ∗TM does not depend on η because ⟨c1(TM), η−η′⟩ = 0. Linearization of equation, γ′(t) = XHt defines
a family of symplectic matrices ψ(t):TMγ(0) → TMγ(t).

Floer homology. We use Z/(2) coefficients. Assume ϕ has nondegenerate fixed points. Choose a generic
family of ω-tame almost complex structures Jt on M for t ∈ S1. Define (CF∗(H, J), ∂) as follows. Fix(ϕ) =
{γ:S1 →M | γ′(t) = XHt(γ(t))}. CF∗ is the free Z/(2)-module generated by fixed points corresponding to
contractible γ, with Z-grading. Given a generator γ, let u:D2 →M be a map such that its restriction to S1

is γ. This determines a homotopy class of trivialization of γ∗TM , independent of u because ⟨c1(TM), u −
u′⟩ = 0. With this trivialization, {dϕt:Tγ(0)M → Tγ(0)M}t∈[0,1] is a path of symplectic matrices from 1
to µ(x) = CZ.

Given fixed points x+ and x− corresponding to γ+ and γ− let m(x+, x−) = {u:Rs × S1 → M |
∂su + Jt(∂tu −XHt

) = 0 ∧ lims→±∞ u(s, ·) = γ±}. By previous theorem, if J is generic, dimm(x+, x−) =
µ(x+)− µ(x−). R acts on m(x+, x−) by translating s.

Definition. ∂: CF∗ → CF∗−1: ∂x+ =
∑

x−:µ(x+)−µ(x−)=1 #(m(x+, x−)/R)x−.

Lemma. ∂ is well defined, i.e., m(x+, x−)/R is finite when µ(x+)− µ(x−).

Gromov compactness. For any closed (M,ω) and any x+ and x− a sequence in m(x+, x−) has a subse-
quence which “converges” to a “broken flow line” with “bubble trees” attached. If (M,ω) is symplectically
aspherical, then we do not have any bubbles because any holomorphic sphere has

∫
ω > 0.

Theorem. ∂2 = 0.

Theorem. HF∗(H, J) does not depend on (H, J).

Proof idea. Consider generic family {(Hs, Js) | s ∈ R}. Assume (Hs, Js) = (H+, J+) for large positive s,
(Hs, Js) = (H−, J−) for large negative s. Define Φ:HF∗(H+, J+) → HF∗(H−, J−). Choose x+ and x−
in Fix(ϕ±) corresponding to γ±:S

1 → M . Let Φ(x+) =
∑

x−:µ(x+)=µ(x−) #m(x+, x−)x−. Similarly to
Morse theory case, Φ is a chain map, induces an isomorphism on homology depending only on the homotopy
class of the path from (H+, J+) to (H−, J−).

Remark. HF∗(H, J) does depend on ϕ in the sense that if (H+, J+) and (H−, J−) has ϕ+ and ϕ− the map
Φ:HF∗(H+, J+) → HF∗(H−, J−) might be nontrivial.

Theorem. HF∗(H, J) = H∗+n(M,Z/(2)).

Proof. Take Ht:M → R independent of t, Morse function H:M → R. (May have to replace H by ϵH,
ϵ > 0 small.) Take Jt = J independent of t, let g be the corresponding metric. Can arrange that (H, g) is
Morse-Smale.

17



Claim. If we replace H by ϵH for ϵ > 0 sufficiently small, then (CF∗(H, J), ∂) is well-defined and equal to
(CM

∗ (H, g), ∂). Need: Generators are the same. Gradings. Floer differential is defined. Differentials agree.
(1) Crit(H) ⊂ Fix(ϕ). This is an equality if ϵ is sufficiently small. (2) Recall CZ{exp(J0At) | t ∈ [0, 1]} =
σ(A)/2. If x ∈ Crit(H), then dϕt:TxM → TxM is exp(t∇XH) = exp(−tJ · Hess(H,x)), therefore µ(x) =
−σ(Hess)/2 = −n+ ind(f, x). (3) and (4): If µ(x+)− µ(x−) = 1, then every u ∈ m(x+, x−) is independent
of t. If u ∈ m(x+, x−) is independent of t, then Du is surjective. Du:L

2
1(R× S1,R2n) → L2(R× S1,R2n).

Duξ = ∂sξ + J0∂tξ + A(s)ξ, where ∂s + A(s) is the Morse theory deformation operator. Show: If ϵ is
small enough, then any ξ ∈ ker(Du) is independent of t. Then the same argument implies that anything in
coker(Du) = ker(D∗

u) is t-independent. Let ξ ∈ ker(Du). Write ξ = ξ0 + ξ1, where ξ0(s, t) =
∫
τ∈S1 ξ(s, τ)dτ .

Wlog ξ = ξ1. We see that ∥ξ∥L2 ≤ cϵ∥xi∥L2 .

Suppose (M,ω) is symplectically aspherical, H:S1 ×M → R, Jt (t ∈ S1) is a family of almost complex
structures. Then HF∗(H, J) is independent of (H, J) and HF∗(H, J) = HF∗+n(M,Z/(2)).

Take H:M → R independent of t, H → ϵH, ϵ > 0 small, J independent of t corresponding to g. Then
CFi(H, J) = CM

i+n(f, g)⊗Z/(2). Now t-independent J-holomorphic curve corresponds to gradient flow line.
Transversality as a holomorphic cylinder corresponds to transversality as a gradient flow line.

Last step: If ϵ is sufficiently small, then every solution to the equation ∂su+J(∂tu−XH) = 0 (∗), where
lims→±∞ u(s, t) = x± and ind(x+)− ind(x−) = 1 is t-independent. Morally S1 acts on the space of solution
by rotating t. If J is regular then all solutions are S1-independent, otherwise the dimension of moduli space
is too big. If J is not regular, then “localization” works. Direct argument in this case: Suppose that for any
ϵ > 0 there is a t-dependent solution. Start with ϵ0 > 0 sufficiently small that all previous steps work. For
every positive integer n there is a t-dependent solution to the equation for ϵ0/n: ∂sun+J(∂tun−XH/n) = 0.
Define vn(s, t) = un(ns, nt). Then ∂svn + J(∂tvn − XH) = 0 and vn(s, t + 1/n) = vn(s, t). By Gromov
compactness, a subsequence of vn converges to a solution of (∗). By previous equation, v∞ is S1-invariant.
Since v∞ is transverse, vn = v∞ for large n up to R-translation.

Definition. A symplectic manifold (M,ω) is called monotone if there is a λ > 0 such that ⟨c1(TM), A⟩ =
λ⟨ω,A⟩ for all A ∈ π2(M). Definition of HF∗(H, J) in the monotone case: Again, CF∗(H, J) is the free
Z/(2)-module generated by contractible loops γ:S1 →M such that γ′(t) = XHt

.

Grading is only defined in Z/N , where N = 2min{⟨c1(TM), A⟩ | A ∈ π2(M) ∧ ⟨c1(TM), A⟩ > 0}. If
γ:S1 → M is a generator, let u:D2 → M be a map such that it restriction to the boundary is γ. Let
τ be a trivialization of γ∗TM that extends to a trivialization of u∗TM with respect to τ , dϕt:TMγ(0) →
TMγ(t) is a symplectic matrix ψt. Define grading µ(γ) = CZ{ψt | t ∈ [0, 1]}. If u′ is another disk,
then CZ{ψt} = CZ{ψ′

t} = ±2⟨c1(TM), u − u′⟩. Differential: ∂γ =
∑

µ(γ)−µ(γ′)=1 #m1(γ, γ
′)γ′, where

m1(γ, γ
′) = {u ∈ m(γ, γ′) | ind(Du) = 1}. Claim: ∂ is well-defined, ∂2 = 0. Compactness argument.

Suppose un ∈ m(γ, γ′), ind(Du∗) ∈ {1, 2}. Subsequence converges to a cylinder with bubbles. We have
ind(un) =

∑
i ind(vi) +

∑
j 2⟨c1(TM), [Sj ]⟩, hence there are no bubbles and previous argument applies. As

before, HF∗(H, J) = ⊕i≡∗+n (mod N)Hi(M,Z/(2)).
Bad case: there are holomorphic spheres S with ⟨c1(TM), [S]⟩ < 0. Multiple covers of S have very

negative c1. Not so bad case: ⟨c1(TM), A⟩ = 0 for all A ∈ π2(M). Novikov rings.
Recall that a Lagrangian in (M2n, ω) is a closed submanifold Ln ⊂M such that ω restricted to L is 0. Let

L1 and L2 be two Lagrangians intersecting transversally. Idea: define HF∗(L1, L2) and CF∗(L1, L2) generated
by intersection points. Choose Jt, an ω-tame almost complex structure for t ∈ [0, 1]. Differential ⟨∂x+, x−⟩
counts u:R × [0, 1] → M such that u(s, 0) ∈ L1, u(s, 1) ∈ L2, lims→±∞ u(s, t) = x± and ∂su + Jt∂tu = 0.
Under favorable circumstances, ∂ is well defined, ∂2 = 0, HF∗(L1, L2) is invariant under appropriate isotopy
of L1 and L2. Bad stuff: bubbling of holomorphic spheres and bubbling of holomorphic discs with boundary
on L1 and L2. Let L be the manifold of all Lagrangian liner subspaces of (R2n, ω). We claim that π1(L) = Z.
The generator comes from {exp(iπt)R ⊂ C | t ∈ [0, 1]}. Relative grading: If x+ and x− belong to L1 ∩ L2

and there is u satisfying conditions above, define µ(x+) − µ(x−) ∈ Z. Given u, trivialize u∗TM such that
TL1 = Rn ⊕ {0} ⊂ R2n over R× {0} and TL2 = {0} ⊕Rn over {0} × [0, 1]. Along R× {1}, TL2 defines a
loop of Lagrangians starting and ending at {0} ⊕Rn. Then µ(x+)− µ(x−) is the integer corresponding to
the given element of the fundamental group.

Last time we learned Lagrangian Floer homology. If L0 and L1 are two Lagrangian submanifolds
of (M,ω) intersecting transversally and CF∗(L0, L1) is a free Z/(2)-module generated by intersection points
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with relative grading given by Maslov index. Relative grading lies inside Z/(n). If L0 and L1 are oriented,
then we have absolute Z/(2) grading by intersection sign. Differential counts holomorphic strips u:R ×
[0, 1] → M such that u(s, 0) ∈ L0, u(s, 1) ∈ L1, lims→±∞ u(s, t) = x±, ∂su + Jt∂tu = 0. In good cases,
HF∗(L0, L1) is well-defined and invariant under Hamiltonian isotopy of L0 or L1, e.g., if two noncontractible
circles on a surface are Hamiltonian isotopic then they must intersect.

Why does it matter that L0 and L1 are Lagrangian? If two strips are homotopic as such, then the
corresponding integrals coincide. Why is HF∗(L0, L1) invariant only under Hamiltonian and not symplectic
isotopy?

Example. Suppose f : (M,ω) → (M,ω) is a symplectomorphism. Its graph Γ is Lagrangian. The diagonal∆
is also Lagrangian. The intersection Γ ∩∆ is the set of fixed points of f .

Theorem. HF∗(Γ,∆) = HF∗(f). To define HF∗(f), choose Jt, t ∈ R, Jt+1 = f∗Jtf
−1
∗ .

Floer homology for symplectomorphisms of surfaces. Suppose we have a surface of genus greater
than 1. Let f : Σ

Nielsen-Thurston classification of surfaces diffeomorphism. Properties. Every diffeomorphism f is iso-
topic to one of the following: finite order: (fn = f for some m); reducible: there is an essential arc γ ⊂ Σ
such that f(γ) = γ; Pseudo-Anosov: two transverse singular foliations f1 and f2 on Σ.

Mapping torus: Yf = [0, 1]×Σ/(1, x)(̃0, f(x)). ω on Σ induces a closed form ω on Yf → [ω]+H2(Υ,R).

Definition. f is monotone if [ω] = λc1(E) in H2(Y,R) for some λ ∈ R. If f is monotone, define HF∗(f) as
follows. CF∗(f) = Z/(2) Fix(f). For Jt on Σ we have Jt+1 = F∗JtF

−1
∗ . We obtain a Z/(2)-grading by sign

of fixed points. Now ⟨∂x+, x−⟩ = #m1(x+, x−)/R. For compactness part of proof that ∂ is well-defined,
∂2 = 0, need that un is a sequence in m1(x+, x−) then

∫
un
ω < c. If u and u′ are in m1(x+, x−), then

⟨c1(E), u− u′⟩ = 0, therefore ⟨[ω], u− u′⟩ = 0.

Example. If f is isotopic to identity then f is monotonic iff f is Hamiltonian isotopic to identity. More
generally, suppose {ft | t ∈ [0, 1]} is a symplectic isotopy. This induces a diffeomorphism ϕ:Yf0 → Yf1 ,
[ω0] ̸= ϕ∗[ω1] and c1(E0) = ϕ∗c1(E1).

[ω0] relates to ϕ
∗[ω1] as follows: 0 → Z → H2(Yf ) → ker(1− f∗) → 0.

Conclusion. {ft} preserves monotonicity iff flow {ft} iff (Σ,R) annihilates ker. Also, any f is isotopic to
a monotonic symplectomorphism.

Suppose Σ is a closed surface, ω is an area form on Σ, ϕ: (Σ, ω) → (Σ, ω) is a symplectomorphism. The
mapping torus of ϕ is Yϕ = [0, 1]×Σ/(1, x) ∼ (0, ϕ(x)). Suppose that ω extends to a closed 2-form on Y and
R2 → E → Y is the vertical tangent bundle of Σ → Y → S1. ϕ is monotone if [ω] = λc1(E) in H2(Y,R).

Fact. (Seidel, Pacific Journal of Mathematics.) This map from monotone symplectomorphisms to orienta-
tion-preserving diffeomorphisms of Σ is a homotopy equivalence.

Assume ϕ is monotone and has nondegenerate fixed points. Define HF∗(ϕ) as follows: C∗ is the Z/(2)-
module generated by fixed points graded by Lefschetz sign. Choose Jt on Σ as usual. Now ∂p =

∑
q q ·

#m1(p, q)/R. Monotonicity implies that ∂ is well-defined.

Lemma. If J is generic then for any p, q ∈ Fix(ϕ) the set m1(p, q)/R is finite.

Proof. Key is that if c, c′ ∈ m1(p, q) then
∫
c
ω =

∫
c′
ω. Because if ind(c) = ind(c′) then λ⟨c1(E), [c− c′]⟩ =

0 = ⟨[ω], [c− c′]⟩ =
∫
c
ω =

∫
c′
ω.

Gromov compactness: if {cn} is a sequence in m(p, q) with
∫
cn
ω < R then there is a subsequence

converging to a “broken trajectory” from p to q. No bubbling because π2(Σ) = 0.
Suppose m1(p, q)/R is infinite. Let {cn} be a sequence of distinct elements in m1(p, q)/R. Then a

subsequence converges to a broken trajectory (ĉ0, . . . , ĉk). If k = 0 then ĉ0 ∈ m1(p, q)/R is not isolated, con-
tradicting transversality. If k > 0 then

∑
0≤i≤k ind(ci) = 1. So some ĉi has ind(ĉi) ≤ 0, again contradicting

transversality. Similarly, HF∗(ϕ) depends only on mapping class of ϕ.
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Examples. (1) ϕ = id, Y = S1 × Σ. HF∗(id) = H∗(Σ). (2) ϕ is finite order (ϕn = 1). All fixed points
have the same Z/(2)-grading, hence HF∗(ϕ) = ⊕p∈Fix(ϕ)Z/(2). (3) ϕ is a Dehn twist. Let γ ⊂ Σ be an
embedded circle, N be a neighborhood of γ, N ∼= [0, 1] × S1 ⊃ N ′ ∼= [ϵ, 1 − ϵ] × S1. ϕ = id on Σ \ N .
On N , ψ(x, y) = (x, y − x). We have HF∗(ϕ) = H∗(Σ \ γ). Proof: Do Hamiltonian isotopy so that ϕ
has the following form. On N ′, ϕ(x, y) = (x, y − x). On Σ \ N ′, ϕ is the time 1 flow of XH , where
H: Σ \ N ′ → R is a Morse-Smale. Fix(ϕ) = Crit(H). Choose J as usual. Lemma: If c ∈ m(p, q), then
c does not intersect N ′. This lemma implies that HF∗(ϕ) = HM

∗ (H) = H∗(Σ \ N ′) = H∗(Σ \ γ). Proof:
Let c ∈ m1(p, q). Let x ∈ [ϵ, 1 − ϵ]. Let T be the mapping tows of ϕ restricted to {x} × S1. Want to
show that C ∩ T = ϕ, R × T = Rs × S1

t × S1
y . J(∂/∂s) = ∂/∂t − x∂/∂y. Let F be the foliation of T

generated by ∂/∂t − x∂/∂y. Then R × F is a holomorphic foliation of R × T . Wlog x is rational and
c is transverse to T . [c ∩ (R × T )] = (a, b) ∈ H1(R × T ). Since c has positive intersection with the
holomorphic cylinders in R × F , we have ax − b ≥ 0, equality only if c ∩ (R × T ) = ∅. In particular, if
c∩ (R× T ) ̸= ∅, then [c∩ (R× T )] ̸= 0. To prove lemma, show [c∩ (R× T )] = 0. Write [c] = z0 + z, where
z0 is the real homology class of Morse cylinder from p to q and z ∈ H2(Y ). Need to show z ∩ (R× T ) = 0.
ind(c) = ind(H, p)− ind(H, q)+2⟨c1(E), z⟩. H2(Y ) = (S1⊗{α ∈ Σ | α ·γ = 0})⊕H2(Σ). Write z = (z1, z2).
1 = ind(c) = ind(H, p)− ind(H, q) + 2(2− 2g)z2, therefore z2 = 0.

Contact geometry. Let Y be a closed oriented 3-manifold. A contact form on Y is a 1-form λ such that
λ ∧ dλ > 0. Let ξ = ker(λ). This is an oriented 2-plane field on Y . ξ is called a contact structure. Note:
ξ is totally nonintegrable. (The kernel of λ is a foliation iff λ ∧ dλ = 0.) λ and λ′ determine the same ξ
iff λ′ = fλ for some f :Y → R>0. (If dim(Y ) = 2n − 1, we require λ ∧ (dλ)n−1 > 0.) Example: Standard
contact form on R3: λ = dz − ydx. Darboux-type theorem: Any contact structure is locally isomorphic to
this one. Gray stability theorem: If ξt is a family of contact structures for t ∈ [0, 1], then there is a family
of diffeos ϕt:Y → Y such that ϕ0 = id and ϕt∗ξ0 = ξt.

Reference: John Etnyre, Introductory Lectures in Contact Geometry.
An overtwisted contact form on R3: λ = cos(r)dz+sin(r)dθ. This contact structure is not diffeomorphic

to the previous one.
Why do we care? Contact manifolds are natural odd-dimensional counterparts of symplectic manifolds.

Information from contact geometry can give topological invariants of 3-manifolds.
If Y is a 3-manifold with a contact form λ, define the symplectization (Rs × Y, d(exp(s)λ)). Check

symplectic: d(exp(s)λ) = exp(s)(ds ∧ λ+ dλ).

Definition. Let (Y+, ξ+) and (Y−, ξ−) be contact 3-manifolds. A symplectic cobordism from (Y+, ξ+) to
(Y−, ξ−) is a compact symplectic 4-manifold (X,ω) such that ∂X = Y+ ⊔ −Y− and there are contact forms
λ± with ξ± = ker(λ±) such that ω|Y+

= dλ+ and ω|Y− = dλ−.

Example. (R4, ω) ⊃ (U, ω|U ). Under appropriate convexity conditions, ∂U has a contact form λ with
ω|∂U = dλ.

Definition. (Y, ξ) is symplectically fillable if there exists a symplectic cobordism from (Y, ξ) to ϕ.

Example. There is a “functor” from differential topology to contact geometry. Let M be any smooth
manifold. Choose a metric on M . Let ST ∗M be the unit cotangent bundle of M . This has an obvious
canonical contact form, which is obtained by tautological mapping of tangent bundle of ST ∗M into T ∗M .
This contact manifold does not depend on a metric on M .

Let (Y 2n−1, ξ) be a contact manifold. Let ξ = ker(λ) and λ ∧ (dλ)n−1 > 0. A Legendrian submanifold
of (Y, ξ) is a submanifold Ln−1 ⊂ Y such that TL ⊂ ξ|L. (R× L is Lagrangian in R× Y .)

Example. Legendrian knots in R3. Tangent vector cannot be vertical. They are uniquely determined
by the topological type of their projection to xy-plane and the areas of all parts of the plane obtained by
projection. They have two invariants: rotation number (if we orient the knot) and Thurston-Bennequin
invariant. Note: contact homology distinguishes Legendrian knots which are isotopic as smooth knots and
have the same rotation number and Thurston-Bennequin invariants.

If M is a smooth manifold and N is a submanifold, then (ST ∗M, ξ) contains the conormal bundle of N
({(x, y)} | x ∈ N ∧ y ∈ ST ∗

xM ∧ y|TxN = 0}. Smooth isotopy of N gives a Legendrian isotopy of L(N). For
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example, smooth knot in R3 turns into Legendrian submanifold of R3 ×S2, then contact homology gives us
an invariant that distinguished the unknot.

Definition. Let (Y 3, ξ) be a contact 3-manifold. ξ is overtwisted if there is an embedded disk D ∈ Y such
that ξ|∂D = TD|∂D.

Example: Standard contact structure on R3 is tight.

Theorem. (Eliashberg.) For any closed oriented Y , overtwisted contact structures are homotopy equivalent
to oriented 2-plane fields.

Classification of tight contact structures is much more subtle. Some 3-manifolds have none.

Theorem. (Eliashberg and Gromov.) Symplectically fillable implies tight.

Reeb vector field. This is a vector field R such that dλ(R, ·) = 0 and λ(R) = 1. It depends on λ, not
just ξ. A Reeb orbit is a map γ:R/T → Y such that γ′(t) = R(γ(t)). We mod out by reparametrization.
The k-fold iterate of Y is the pullback to R/KT , where K is a positive integer. γ is embedded iff γ is not
the K-fold iterate of some γ′ where k > 1.

Weinstein Conjecture. For any contact form on any closed 3-manifold there is a Reeb orbit.

Strategy. Define Floer homology generated by Reeb orbits whose differential counts holomorphic curves.
Show Floer homology is a topological invariant. Compute invariant, show its nontriviality.

Definition. An almost complex structure J onRs×Y is admissible if J acts compatibly with dλ, J(∂s) = R,
and J is R-invariant.

Look at holomorphic curves in R × Y . Let γ:R/T → Y be a Reeb orbit. The Reeb flow preserves λ.
LRλ = diRλ + iRdλ = d(1) + 0 = 0. Linearization of the Reeb flow on the contact planes along γ.
Pγ : ξγ(0) → ξγ(0) is symplectic with respect to dλ. γ is nondegenerate if 1 /∈ Pγ . Assume all Reeb orbits are
nondegenerate.

Let α1, . . . , αk, β1, . . . , βl be Reeb orbits, g ≥ 0. Define mg(α1, . . . , αk, β1, . . . , bl) as the set of all
J-holomorphic curves u: Σ → R × Y where u has positive ends at α1, . . . , αk, negative ends at β1, . . . , βl
and no other ends. Here Σ is a genus g surface with k + l punctures.

If
∑

i[αi] =
∑

j [βj ] in H1(Y ), define H2(Y, α1, . . . , αk, β1, . . . , βl) to be the set of relative homol-
ogy classes of 2-chains z with ∂z =

∑
i αi −

∑
j βj . This is an affine space over H2(Y ). We have

mg(α1, . . . , αk, β1, . . . , βl, z) = {u: Σ → R × Y ∈ mg | u∗[Σ] = z}. Choose a trivialization τ of ξ over
the αi and βj . Expected dimension of the moduli space mg(α1, . . . , αk, β1, . . . , βl, z) = (n − 3)χ(Σ) +
2c1(u

∗ξ, τ) +
∑

i CZτ (αi) −
∑

j CZτ (βj). This is the actual dimension if J is generic and u: Σ → R × Y is
not multiply covered, then moduli space is a manifold near u of this dimension. Multiple covers prevent this
theory from being complete (work in progress by Hofer-Wysocki-Zehnder).

CZ index in 3-dimensional case: Pγ : ξγ(0) → ξγ(0). Elliptic if eigenvalues are exp(±2πiθ), positive
hyperbolic if eigenvalues are λ > 0 and λ−1, negative hyperbolic if eigenvalues are λ < 0 and λ−1. Elliptic
case: linearized flow rotates by angle 2πθ for some θ ∈ R \Z. We have CZτ (γ) = 2⌊θ⌋+1. Hyperbolic case:
linearized flow rotates eigenspaces by angle πn for some n ∈ Z, CZτ (γ) = n.

Note: ifmg(α1, . . . , αk, β1, . . . , βl) is nonempty then
∑

i

∫
αi
λ ≥

∑
j

∫
βj
λ, equality only if {α1, . . . , αk} =

{β1, . . . , βl}. Here
∫
λ is “symplectic action”.

Proof: if u: Σ → R × Y is in mg, then u∗dλ ≥ 0 on all of Σ, with equality only where π ◦ du =
0. u∗dλ(v1, v2) = dλ(πdu(v1), πdu(v2)). u∗dλ(v, jv) = dλ(πdu(v), πdu(jv)) = dλ(πdu(v), Jπdu(v)) ≥ 0,
equality iff πdu(v) = 0. Apply Stokes theorem on Σ. In particular every holomorphic curve in R× Y has at
least one positive end. But it is possible to have no negative ends.

Compactness. (Bargeois-Eliashberg-Hofer-Wysocki-Zehnder.) Any sequence in mg has a subsequence
which converges to a “broken” curve.

Key point: for any u: Σ → R× Y in mg we have
∫
Σ
u∗dλ =

∑
i

∫
αi
λ−

∑
j

∫
βj
λ.
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Cylindrical contact homology. Chain complex generated by “good” Reeb orbits over Q. Differential
counts holomorphic cylinders in R× Y . Trouble with coverings. Either assume λ is “nice” so that there are
no bad holomorphic discs or add correction term (augmentation) to deal with bad discs.

Reference: Introduction to Symplectic Field Theory by Eliashberg-Givental-Hofer.

Cylindrical contact homology (in 3 dimensions)

Let Y be a closed oriented 3-manifold, λ be a contact form, λ∧ dλ > 0, R be the corresponding Reeb vector
field.

Example. Y = S3, λ = (x1dy1 − y1dx1 + x2dy2 − y2dx2)/2.

Exercise. R is tangent to the Hopf circles.

Example. Y = T 3 = (R/2πZ)3. λn = cos(nz)dx+ sin(nz)dy, Rn = cos(nz)∂/∂x+ sin(nz)∂/∂y.

To define CCH, assume all Reeb orbits are nondegenerate. (Above examples are “Morse-Bott”.) Choose
J on Rs × Y .

mg(α1, . . . , β1, . . . , z) is the set of all J-holomorphic curves u: Σ → R × Y such that domain Σ is a
genus g surface with k + l punctures, u has positive ends at αi, negative ends at βj . If u has a positive or
negative end at the k-fold iterate of an embedded Reeb orbit γ, there are k possible asymptotic markings.

Pretend that all of these moduli spaces are manifolds of the expected dimension. (Requires abstract
perturbation of Cauchy-Riemann equation: Hofer-Wysocki-Zehnder.) A Reeb orbit is “bad” if it is the
k-fold iterate of γ where k is even and γ is negative hyperbolic. Otherwise it is “good”. Let C∗ be the free
Q-module generated by good Reeb orbits. If α is a good Reeb orbit, then ∂α =

∑
β k

−1#m0(α, β, z)/R · β,
where α is the k-fold iterate of an embedded orbit.

“Theorem”. Suppose there is no contractible Reeb orbit γ bounding a disk D such that −1+2c1(ξ|D, τ)+
CZτ (γ) = 1. Then ∂2 = 0.

“Proof”. Let α, γ be generators, z ∈ H2(Y, α, γ), CZτ (α)−CZτ (γ) + 2c1(ξ|z, τ) = 2. Look at m0(α, γ, z).
Compactify and look at the boundary. We have #∂(m0(α, β, z)/R) = a⟨∂2α, γ⟩. For Γ ∈ H1(Y ), let CHΓ

∗
be the part corresponding to Reeb orbits in homology class Γ.

“Theorem”. Let λ1, λ2 be two different contact forms and J1, J2 two complex structures. Suppose that
both forms are nice and correspond to some contact structure. Then CHΓ

∗ (λ1, J1) = CHΓ
∗ (λ2, J2).

Definition. A contact form λ on Y is called nice, if all Reeb orbits are nondegenerate and there are no
contractible Reeb orbits γ bounding a disk D with −1 + 2c1(ξ|D, τ) + CZτ (γ) ∈ {1, 0,−1}.

“Proof”. Usual argument with continuation maps and chain homotopies. Niceness assumption implies
that boundaries of relevant moduli spaces of cylinders consist of broken curves involving only cylinders.

Corollary. Let Y be a closed oriented manifold with a contact structure ξ. If there is a nice contact form
for ξ, then CHΓ

∗ (Y, ξ) is well defined.

Corollary. If ξ has a nice contact form and CHΓ
∗ (Y, ξ) ̸= 0, then Weinstein conjecture holds for any contact

form for ξ.

Examples. T 3. After perturbation each circle of Reeb orbits splits into two Reeb orbits, one elliptic and
one positive hyperbolic. Therefore for each z with tan(z) ∈ Q ∪ {∞} we have generators ekz , h

k
z for k ≥ 1

integer. Claim: ∂ = 0. Idea: There are two index 1 cylinders from ez to hz, opposite sign. Like HM
∗ (S1).

No other cylinders because of symplectic action. Conclusion: Let T = (a, b, c) ∈ H1(T
3). If c ̸= 0, then

CHΓ
∗ = 0. If c = 0 and (a, b) ̸= (0, 0), then CHΓ

∗ = ⊕nH∗(S
1,Q). Corollary: Weinstein conjecture holds for

these contact structures. The contact structures determined by λn for different n are not isomorphic.

Let (Y, ξ) be a contact manifold (dimY = 3, can be generalized to other dimensions). Choose (1) contact
form λ with ξ = kerλ and nondegenerate Reeb orbits; (2) almost complex structure on Rs × Y such that
J(ξ) = ξ, J is compatible with dλ, J(∂s) = R, J is R-invariant; (3) abstract perturbations to make
moduli spaces of holomorphic curves transverse. Then we have contact homology algebra A over Q. The
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generators are good Reeb orbits. Relations: if α and β are good Reeb orbits then αβ = (−1)|α|·|β|βα, where
|α| = CZτ (α)− 1 (mod 2). If α is a good Reeb orbit, then

∂α =
∑
k≥0

∑
β

(combinatorial factor)
∑

z∈H2(Y,α,βi)

k − 1 + 2c1(ξ|z, τ) + CZ
τ
(α)−

∑
i

CZ
τ
(βi) = 1,

where βi are good Reeb orbits. Extend ∂ to A by the Leibniz rule. Theorem: ∂2 = 0 implies that HC∗(Y, ξ)
depends only on Y and ξ and not on the other choice. Also a symplectic cobordism X from Y+ to Y− induces
a DGA morphism A+ → A−.

Example. (S3, ξ), ξ is the standard contact structure. Reeb orbits are Hopf circles. Perturbation gives two
Reeb orbits (plus very long Reeb orbits). A∗ is generated by ak and bk for k ≥ 1. Also ∂ = 0 and |ak| =
|bk| = 0 (mod 2). Since H1(S

3) = H2(S
3) = 0, A has a Z-grading. Conclusion: HC∗(S

3, ξ) = Q[z2, z4, . . .].
deg(z2k = 2k.

“Theorem.” If ξ is an overtwisted contact structure on Y , then HC∗(Y, ξ) = 0. “Proof.” (Mei-Lin
Yau, Eliashberg.) Can find λ and J such that there is a Reeb orbit γ such that γ bounds a unique index 1
holomorphic disc in R × Y and γ is shorter than all other Reeb orbits. Now ∂γ = 1. If ∂α = 0 then
∂(γα) = (∂γ)α± γ(∂α) = 1α± γ · 0 = α.

Corollary. If Y is symplectically fillable, then ξ is tight.

Proof. Suppose X4 is a symplectic cobordism from (Y 3, ξ) to ϕ. Make choices to define A for Y . Then X
induces a DGA morphism Φ:A → Q. Suppose ξ is overtwisted. Then there is an α such that ∂α = 1 and
0 = Φ(∂α) = Φ(1) = 1. Symplectically fillable implies 1 ̸= 0 in HC∗. Overtwisted implies 1 = 0 in HC∗.
Possible: tight and 1 = 0. Examples: tight but not fillable.

Morse-Bott theory. Model case: X is a closed smooth manifold. A smooth function f :X → R is Morse-
Bott if Crit(f) is a union of closed submanifolds ofX, and for each p ∈ Crit(f, p) the mapH:TpX⊗TpX → R
is nondegenerate on the orthogonal complement of TpS, where S is the critical submanifold containing p.

Example. Height function on a torus lying on its side.

Example. If F → E → B → R and E → R with E → R Morse-Bott, then Crit(π∗f) = π−1 Crit(f), where
π = E → B.

The index of a critical submanifold can be regarded as an interval [i−(s), i+(s)], where i−(s) is the
number of negative eigenvalues of Hessian and i+(s) = i−(s) + dimS. Perturb f to f +

∑
s ϵsπ

∗fs where
fs: s→ R is Morse, π:N → S is a tubular neighborhood, ϵs is a small function which is positive near s and
0 elsewhere. Crit(f̂) = ∪s Critj(fs). Near s: df̂ = df + ϵsπ

∗dfs. Pick a generic metric g on X. What are the

gradient flow lines of f̂ , in terms of f? Answer: “Cascades”. Bourgeois (contact homology). Frauenfelder

(Morse theory). Claim: flow lines of f̂ correspond bijectively to cascades.

Exercise. Expected dimensions agree.

Exercise. Find an example where cascades with k > 1 contribute.

Example: torus lying on its side.

Floer homology. Let (X2n, ω) be a closed symplectic manifold (assume monotone) and ϕ: (X,ω) → (X,ω)
be a Hamiltonian symplectomorphism. Assume fixed point come in nondegenerate manifolds, i.e., Fix(ϕ) is
a union of closed submanifolds of X and for any p ∈ Fix(ϕ) we have ker(1− dϕp:TpX → TpX) = TpS where

S is the corresponding manifold of fixed points. Choose Morse functions fs: s → R. Define CFMB
∗ (ϕ) =

⊕C∗−ind−(s)(fs). Differential counts cascades.

“Theorem.” Can extend differential of Floer homology, continuation maps, etc. to this setting. Corol-
lary. HF∗(idX) = H∗−n(X). Proof. k = 0 is reduced to Morse homology. k > 0 cascades: holomorphic
spheres in X ruled out by monotonicity.
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Example. Cylindrical contact homology of (T 3, λn = cos(nz)dx+ sin(nz)dy). Claim:

CH∗(T
3, λn, (a, b, 0)) =

⊕
n

H∗(S
1).

Proof: Just need to show there are now cascades with k ≥ 1, i.e., no holomorphic cylinders between Reeb
orbits in different critical submanifolds. But all orbits γ with [γ] = (a, b, 0) have the same action. A simple
calculation completes the proof. Can also show that differential in contact homology algebra vanishes. (Lots
of holomorphic curves with 2 positive ends.)
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