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Definitions of Heisenberg groups and algebras

Definition. A symplectic vector space is a pair (V, ω), where V is a finite-dimensional real vector space and
ω is a nondegenerate real skew-symmetric bilinear form.

The dimension of a symplectic vector space is always even. We denote it by 2n.

Definition. A Heisenberg group for a symplectic vector space (V, ω) is the Lie group with the underlying
manifold V ×R and the multiplication (u, s)(v, t) = (u+ v, s+ t+ ω(u, v)/2) where u, v ∈ V and s, t ∈ R.

The map t 7→ (0, t) is a Lie group homomorphism from R to the Heisenberg group. Its image coincides
with the center of the Heisenberg group. The dimension of the Heisenberg group equals 2n+ 1.

Definition. A Heisenberg algebra for a symplectic vector space (V, ω) is the Lie algebra with the underlying
vector space V ⊕R and the commutator [(u, s), (v, t)] = (0, ω(u, v)) where u, v ∈ V and s, t ∈ R.

The map t 7→ (0, t) is a Lie algebra homomorphism from R to the Heisenberg algebra. Its image
coincides with the center of the Heisenberg algebra. The dimension of the Heisenberg algebra equals 2n+1.

Theorem. The map V ⊕R → V ×R that sends (v, t) to (v, t) for every v ∈ V and t ∈ R is the exponential
map from a Heisenberg algebra to the corresponding Heisenberg group.

Definitions of representations of Heisenberg groups and algebras

Heisenberg groups do not have irreducible finite-dimensional representations of dimension greater than 1.
This follows from the same result for Lie algebras, which we explain later. Hence we need to go to the infinite-
dimensional case. Finite-dimensional representations are unitarizable. In the infinite-dimensional case this is
not always true and has to be assumed. We restrict ourselves to the group of unitary operators on a Hilbert
space. We define a representation of a Heisenberg group as a continuous homomorphism from the Heisenberg
group to the group of the unitary operators. To talk about continuity we need to put a topology on the group
of unitary operators. One must be very careful about this topology. For example, if we choose the norm
topology, then from Stone’s theorem and the corresponding result for Lie algebras, which we explain later, it
follows that there are no irreducible unitary representations of a Heisenberg group on an infinite-dimensional
Hilbert space.

Definition. A representation of a Heisenberg group is a continuous homomorphism from the Heisenberg
group to the topological group of the unitary operators on a Hilbert space equipped with the strong operator
topology. Here the strong operator topology is the weakest topology on the set of all bounded operators
such that all evaluation maps at points are continuous.

The strong operator topology is weaker than the norm topology. Hence we can hope to find some
irreducible infinite-dimensional unitary representations of a Heisenberg group. In fact, there is a family of
such representations called Shrödinger representations, as we explain later.

Now we want to define representations of Heisenberg algebras. Existence of a faithful trace in the finite-
dimensional case immediately implies that there are no irreducible finite-dimensional Heisenberg algebra
representations of dimension greater than 1. Hence we have to go to the infinite-dimensional case. It is
an easy exercise in functional analysis [Reed and Simon, §VIII.5, Example 2] that there are no irreducible
representations of a Heisenberg algebra in the Lie algebra of bounded operators on an infinite-dimensional
Hilbert space. Hence we must allow unbounded operators. Stone’s theorem, which we explain below, tells us
that there is a bijective correspondence between representations of R in the group of the unitary operators
with the strong topology and skew-adjoint operators. Hence it makes sense to look at the Lie algebra of the
skew-adjoint operators defined on a dense subspace. However, it is unclear how one can define a commutator
of two such operators, in particular, what should be the domain of the commutator. Here is one possible
solution to this problem.
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Definition. A representation of a Heisenberg algebra is a Lie algebra homomorphism from the Heisenberg
algebra to the Lie algebra of skew-symmetric endomorphisms of a dense subspace D of a Hilbert space H.

It does not hurt to point out that continuity of such homomorphism follows from linearity. The commuta-
tor of two skew-symmetric endomorphisms of a dense subspace D is again an skew-symmetric endomorphism
of D in an obvious way, hence the target is indeed a Lie algebra.

We remark that the condition of skew-adjointness was relaxed to the condition of skew-symmetry. Any
Lie algebra has the zero operator and if we require it to be skew-adjoint or even closed, then D = H and we
do not want this to happen.

Since we have already mentioned skew-symmetry and skew-adjointness, let us briefly recall their prop-
erties.

Definition. An operator T is skew-symmetric if its adjoint operator T ∗ exists and T ⊂ −T ∗. Here we write
A ⊂ B whenever B extends A.

If T is skew-symmetric, then its domain is a dense subspace, because the adjoint operator is defined
only for such operators. Also T ∗∗ exists and is equal to the closure of T . We have the following four classes
of operators:

skew-symmetric T ⊂ T ∗∗ ⊂ −T ∗

closed skew-symmetric T = T ∗∗ ⊂ −T ∗

essentially skew-adjoint T ⊂ T ∗∗ = −T ∗

skew-adjoint T = T ∗∗ = −T ∗

Connection between representations of Heisenberg groups and algebras

In the finite-dimensional case the standard functor from the category of finite-dimensional Lie groups to
the category of finite-dimensional Lie algebras maps every finite-dimensional representation of a Lie group to
a finite-dimensional representation of the corresponding Lie algebra. In this section we establish an analog
of this construction for the infinite-dimensional case.

Theorem. (Stone, 1932.) The map A 7→ (t 7→ exp(tA)) establishes a bijective correspondence between
skew-adjoint operators A on a Hilbert space and representations of R in the group of unitary operators with
the strong topology.

Theorem. Suppose we have a representation of a Heisenberg group. Fix an element of the corresponding
Heisenberg algebra and take the Lie algebra homomorphism from R to the Heisenberg algebra that sends 1
to this element. Compose it with the exponential map and then with the representation. We obtain a
continuous homomorphism from R to the topological group of unitary operators with the strong topology.
By Stone’s theorem we get an skew-adjoint operator. Hence we have a mapping F from the Heisenberg
algebra to skew-adjoint operators. To obtain a Lie algebra homomorphism, denote by D the intersection of
the domains of all operators in the image of F and restrict everything to D. We claim that D is a dense
subspace and the restriction of F is a representation of the Heisenberg algebra.

In the finite-dimensional case there is a functor that goes the other way round: Every morphism of
Lie algebras is mapped to a morphism of the corresponding simply connected Lie groups. Moreover, this
functor is an equivalence of the categories of Lie algebras and simply connected Lie groups. In the infinite-
dimensional case this is not true. Later we give an example of a representation of a Heisenberg algebra that
does not correspond to any representation of the corresponding Heisenberg group.

Elementary properties of representations

Definition. A representation of a Heisenberg group on a Hilbert space H is called irreducible if H is
nontrivial and any closed subspace of H that is invariant under the action of the group coincides with H or
with the zero subspace.

Proposition. If F is an irreducible representation of a Heisenberg group, then for all real t we have F (0, t) =
exp(ht)I for some unique imaginary number h, where I is the identity operator.
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Proof. The image of (0, t) commutes with the image of F for all t. By the infinite-dimensional Schur’s
lemma we have F (0, t) = λ(t)I for some continuous homomorphism λ:R → U, where U is the group of
complex numbers of norm 1. Obviously, λ(t) = exp(ht) for some unique imaginary number h.

Definition. The number h defined in the previous proposition for an arbitrary irreducible representation of
a Heisenberg group is called the parameter of the representation. If h = 0, then the representation is called
trivial.

Proposition. The map u 7→ ((v, t) 7→ exp(u(v))) establishes a bijective correspondence between Hom(V, I)
and the set of all isomorphism classes of trivial irreducible representations of the Heisenberg group for a
symplectic vector space (V, ω). Here I := {z ∈ C | <z = 0} denotes the set of all imaginary numbers.

Proof. A trivial representation factors through the Lie group homomorphism (v, t) 7→ v from the Heisenberg
group to the vector space V with the additive Lie group structure.

Definition. A representation of a Heisenberg algebra on a Hilbert space H with a dense subspace D is
called irreducible if H is nontrivial and any closed subspace G of H such that G ∩D is invariant under the
action of the algebra coincides with H or with the zero subspace.

Proposition. If F is an irreducible representation of a Heisenberg algebra, then for all real t we have
F (0, t) = htI for some unique imaginary number h, where I is the identity operator.

Proof. The image of (0, t) commutes with the image of F for all t. By the infinite-dimensional Schur’s lemma
we have F (0, t) = λ(t)I for some continuous homomorphism λ:R → C. Since λ(t)I is skew-symmetric, we
have λ(t) = ht for some unique imaginary number h.

Definition. The number h defined in the previous proposition for an arbitrary irreducible representation
of a Heisenberg algebra is called the parameter of the representation. If h = 0, then the representation is
called trivial.

Proposition. The map u 7→ ((v, t) 7→ u(v)) establishes a bijective correspondence between Hom(V, I)
and the set of all isomorphisms classes of trivial irreducible representations of the Heisenberg algebra for a
symplectic vector space (V, ω).

Proof. A trivial representation factors through the Lie algebra homomorphism (v, t) 7→ v from the Heisen-
berg algebra to the vector space V regarded as an abelian Lie algebra.

Schrödinger representations of Heisenberg groups and algebras

In this section we define a series of nontrivial irreducible representations of Heisenberg groups and
algebras. First we need to look deeper into the structure of a symplectic vector space.

Definition. A polarization of a symplectic vector space (V, ω) is a pair (W,X) of subspaces of V such that
V = W ⊕ X, the form ω vanishes on W and X and defines a nondegenerate pairing between W and X,
which we denote by w · x. A Lagrangian subspace is a vector subspace of V that appears as a part of a
(unique) polarization of (V, ω).

It follows that ω(w + x,w′ + x′) = w · x′ − w′ · x for arbitrary w,w′ ∈ W and x, x′ ∈ X.

Definition. A Schrödinger representation of a Heisenberg group with a nonzero parameter h ∈ I correspond-
ing to a polarization (W,X) of a symplectic vector space (V, ω) is the representation Rh of the Heisenberg
group for the symplectic vector space (V, ω) on the Hilbert space L2(W,C) such that for arbitrary w, z ∈ W ,
x ∈ X, t ∈ R, and f ∈ L2(W,C) we have Rh(w + x, t)(f)(z) = exp(h(t+ z · x+ w · x/2))f(z + w).

Theorem. Any Schrödinger representation of a Heisenberg group is irreducible.

Definition. A Schrödinger representation of a Heisenberg algebra with a nonzero parameter h ∈ I cor-
responding to a polarization (W,X) of a symplectic vector space (V, ω) is the representation Sh of the
Heisenberg algebra for the symplectic vector space (V, ω) on the Hilbert space L2(W,C) with the dense
subspace S(W,C) of Schwartz functions such that for arbitrary w, z ∈ W , x ∈ X, t ∈ R, and f ∈ S(W,C)
we have Sh(w, x, t)(f)(z) = h(t+z ·x)f(z)+∂wf(z). Here ∂w is the derivation corresponding to the constant
vector field on W with value w.

Theorem. Any Schrödinger representation of a Heisenberg algebra is irreducible.
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Uniqueness of irreducible representations with a given parameter

Theorem. (von Neumann, 1931.) Every irreducible representation of a Heisenberg group with a nonzero
parameter h is unitarily equivalent to the Schrödinger representation with the parameter h.

Hypothesis. (Stone, 1930.) Every irreducible representation of a Heisenberg algebra with a nonzero pa-
rameter h is unitarily equivalent to the Schrödinger representation with the parameter h.

Stone’s hypothesis turned out to be wrong. In fact, Stone gave a sketch of a supposed proof of this
hypothesis in his paper. When von Neumann tried to understand this sketch, he realized that one needs to
put some integrability condition on representations of the Heisenberg algebra. In the end he obtained his
theorem, which he published with a complete proof in 1931.

In the next section we look at the simplest nontrivial case n = 1 and |h| = 1. We give a counterexample
to Stone’s hypothesis in this case. Later we discuss a correction to Stone’s hypothesis.

Examples

The easiest case is n = 0. It is obvious that the one-dimensional Schrödinger representations t →
exp(ht)I and t → htI are the only nontrivial irreducible representations.

The next case is n = 1. Assume |h| = 1. Fix an irreducible representation F of the Heisenberg
group with these parameters. Choose w ∈ W and x ∈ X such that w · x = 1. We have group homo-
morphisms from R to the Heisenberg group: s → (sw, 0), t → (tx, 0), and u → (0, u). Composing with
our representation and applying Stone’s theorem we see that F (sw, 0) = exp(sP ), F (tx, 0) = exp(tQ),
and F (0, u) = exp(hu)I for some skew-adjoint operators P and Q. The images of these three homo-
morphisms generate the Heisenberg group, therefore F is determined uniquely by P and Q. Suppose we
are given two arbitrary skew-adjoint operators P and Q. When do they correspond to some represen-
tation of the Heisenberg group? All relations between the elements of the Heisenberg group are gener-
ated by the three commutator relations between three one-parameter subgroups. The identity operator
commutes with everything, hence two of these relations are always satisfied. The only nontrivial one is
(sw, 0)(tx, 0)(sw, 0)−1(tx, 0)−1 = (0, st). Therefore the pair (P,Q) corresponds to a representation of the
Heisenberg group if and only if exp(sP ) exp(tQ) exp(sP )−1 exp(tQ)−1 = exp(hst)I.

The corresponding example for Heisenberg algebras is almost the same. Let us point the differences.
We have F (sw, 0) = sP , F (tx, 0) = tQ, and F (0, u) = huI for some skew-symmetric operators P and Q.
The only nontrivial relation is [(sw, 0), (tx, 0)] = (0, st). The pair (P,Q) corresponds to a representation of
the Heisenberg algebra if and only if [sP, tQ] = hstI or, equivalently, [P,Q] = hI.

We already know that representations of Heisenberg groups automatically produce representations of
Heisenberg algebras: If P and Q are skew-adjoint operators and exp(sP ) exp(tQ) exp(sP )−1 exp(tQ)−1 =
exp(hst)I, then [P̂ , Q̂] = hI, where P̂ and Q̂ are P and Q restricted to the dense subspace D defined earlier.
The converse of this statement is false.

Here is an example of two operators P and Q, which are not only skew-symmetric but also essentially
skew-adjoint (hence they have unique skew-adjoint extensions P̄ and Q̄, which are their closures) such that
the equality exp(sP̄ ) exp(tQ̄) exp(sP̄ )−1 exp(tQ̄)−1 = exp(hst)I does not hold in general. Suppose M is the
Riemann surface of the square root without the origin, H = L2(M,C) and D is a dense subspace of H
consisting of all compactly supported smooth functions. Define two essentially skew-adjoint endomorphisms
of D as follows: P = ∂x and Q = hx+∂y. Here ∂ means partial derivative and hx means multiplication by a
function. Obviously [P,Q] = hI. However, the corresponding relation for the exponents does not hold. This
is due to the fact that exp(t∂x) moves a function in the horizontal direction by t units and exp(t∂y) does
the same for the vertical direction. Hence the commutator exp(sP ) exp(tQ) exp(sP )−1 exp(tQ)−1 moves the
function to another sheet of the Riemann surface and multiplies it by some other function. However, the
other side exp(hst)I is just multiplication by constant, it cannot move the function to another sheet. Hence
the equality does not hold. The idea of this examples is due to Nelson. Reed and Simon give the details in
§VIII.5. Fuglede in his paper gives a similar example of this kind with weaker conditions on P and Q.

Correction to Stone’s hypothesis

Theorem. (Rellich, 1946; Dixmier, 1958; Kilpi, 1962.) Every irreducible representation F of a Heisenberg
algebra with a nonzero parameter h such that for every w ∈ W and for every x ∈ X with w · x = 1 the
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operator F (w, 0)2+F (x, 0)2, which is a symmetric endomorphism of D, is essentially self-adjoint, is unitarily
equivalent to the Schrödinger representation with the parameter h.
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